1
|
Tai T, Shao YY, Zheng YQ, Jiang LP, Han HR, Yin N, Li HD, Ji JZ, Mi QY, Yang L, Feng L, Duan FY, Xie HG. Clopidogrel ameliorates high-fat diet-induced hepatic steatosis in mice through activation of the AMPK signaling pathway and beyond. Front Pharmacol 2024; 15:1496639. [PMID: 39508046 PMCID: PMC11537861 DOI: 10.3389/fphar.2024.1496639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD) frequently confers an increased risk of vascular thrombosis; however, the marketed antiplatelet drugs are investigated for the prevention and treatment of MASLD in patients with these coexisting diseases. Methods To determine whether clopidogrel could ameliorate high-fat diet (HFD)-induced hepatic steatosis in mice and how it works, mice were fed on normal diet or HFD alone or in combination with or without clopidogrel for 14 weeks, and primary mouse hepatocytes were treated with palmitate/oleate alone or in combination with the compounds examined for 24 h. Body weight, liver weight, insulin resistance, triglyceride and total cholesterol content in serum and liver, histological morphology, transcriptomic analysis of mouse liver, and multiple key MASLD-associated genes and proteins were measured, respectively. Results and discussion Clopidogrel mitigated HFD-induced hepatic steatosis (as measured with oil red O staining and triglyceride kit assay) and reduced elevations in serum aminotransferases, liver weight, and the ratio of liver to body weight. Clopidogrel downregulated the expression of multiple critical lipogenic (Acaca/Acacb, Fasn, Scd1, Elovl6, Mogat1, Pparg, Cd36, and Fabp4), profibrotic (Col1a1, Col1a2, Col3a1, Col4a1, Acta2, and Mmp2), and proinflammatory (Ccl2, Cxcl2, Cxcl10, Il1a, Tlr4, and Nlrp3) genes, and enhanced phosphorylation of AMPK and ACC. However, compound C (an AMPK inhibitor) reversed enhanced phosphorylation of AMPK and ACC in clopidogrel-treated primary mouse hepatocytes and alleviated accumulation of intracellular lipids. We concluded that clopidogrel may prevent and/or reverse HFD-induced hepatic steatosis in mice, suggesting that clopidogrel could be repurposed to fight fatty liver in patients.
Collapse
Affiliation(s)
- Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuan-Yuan Shao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Yu-Qi Zheng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Ru Han
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Na Yin
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hao-Dong Li
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Li Yang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Lei Feng
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Fu-Yang Duan
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China
- Department of Clinical Pharmacology, China Pharmaceutical University School of Basic Medicine and Clinical Pharmacy, Nanjing, China
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacology, Nanjing Medical University School of Pharmacy, Nanjing, China
| |
Collapse
|
2
|
Liu W, Man X, Wang Y, Wang Q, Wang Z, Qi J, Qin Q, Han B, Sun J. Tirofiban mediates neuroprotective effects in acute ischemic stroke by reducing inflammatory response. Neuroscience 2024; 555:32-40. [PMID: 39025399 DOI: 10.1016/j.neuroscience.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Growing evidence suggests that neuroinflammation is a critical driver of the development, worsening, and cell death observed in acute ischemic stroke (AIS). While prior research has demonstrated that tirofiban enhances functional recovery in AIS patients by suppressing platelet aggregation, its impact and underlying mechanisms in AIS-related neuroinflammation remain elusive. The current study established an AIS mouse model employing photochemical techniques and assessed neurological function and brain infarct size using the modified neurological severity scale (mNSS) and 2,3,5-Triphenyltetrazolium chloride (TTC) staining, respectively. Tirofiban significantly reduced the volume of cerebral infarction in AIS mice, accompanied by an enhancement in their neurological functions. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays along with experiments assessing oxidative stress showed that tirofiban mitigated oxidative damage and apoptosis in the ischemic penumbra post-AIS. Additionally, DNA microarray analysis revealed alterations in gene expression patterns in the ischemic penumbra after tirofiban treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that most gene-level downregulated signaling pathways were closely related to the inflammatory response. Moreover, the protein microarray analysis revealed that tirofiban diminished the expression levels of inflammatory cytokines, such as interleukin-1 (IL-1), IL-6, and tumor necrosis factor-alpha, in the ischemic penumbra. Additionally, immunofluorescence staining showed that tirofiban regulated inflammatory responses by altering the state and phenotype of microglia. In conclusion, this study suggests that tirofiban reduces inflammatory response by regulating microglial state and phenotype and lowering the levels of inflammatory factors, providing neuroprotection in acute ischemic stroke.
Collapse
Affiliation(s)
- Wei Liu
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Xu Man
- Department of Integrative Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Yongbin Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Qingqing Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Zhiyuan Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Jianjiao Qi
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Qiaoji Qin
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China
| | - Ban Han
- Department of Neurology, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China.
| | - Jinping Sun
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
3
|
Li B, Zhang Y, Zheng Y, Cai H. The mechanisms and therapeutic potential of clopidogrel in mitigating diabetic cardiomyopathy in db/db mice. iScience 2024; 27:109134. [PMID: 38375215 PMCID: PMC10875154 DOI: 10.1016/j.isci.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/19/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Clopidogrel has been shown to play a protective role against diabetic nephropathy. However, whether clopidogrel exerts a protective effect against diabetic cardiomyopathy (DCM) is unknown. Three-month-old male db/db mice were administered clopidogrel daily at doses of 5, 10, and 20 mg/kg by gavage for 5 months. Here, we showed that clopidogrel effectively attenuated diabetes-induced cardiac hypertrophy and cardiac dysfunction by inhibiting cardiac fibrosis, inflammatory responses, and oxidative stress damage in db/db mice. Diabetes-induced cardiac fibrosis was inhibited by clopidogrel treatment via blockade of the TGF-β1/Smad3/P2RY12 pathway and inhibition of macrophage infiltration in db/db mice. The protective effects of clopidogrel against oxidative damage were mediated by the induction of the Nrf2 signaling pathway. Taken together, our findings provide strong evidence that clopidogrel is a promising effective agent for the treatment of DCM by alleviating diabetes-induced cardiac hypertrophy and dysfunction. P2RY12 might be an effective target for the treatment of DCM.
Collapse
Affiliation(s)
- Bing Li
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoting Zhang
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Yang Zheng
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - He Cai
- Department of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Tang F, Liu D, Zhang L, Xu LY, Zhang JN, Zhao XL, Ao H, Peng C. Targeting endothelial cells with golden spice curcumin: A promising therapy for cardiometabolic multimorbidity. Pharmacol Res 2023; 197:106953. [PMID: 37804925 DOI: 10.1016/j.phrs.2023.106953] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Cardiometabolic multimorbidity (CMM) is an increasingly significant global public health concern. It encompasses the coexistence of multiple cardiometabolic diseases, including hypertension, stroke, heart disease, atherosclerosis, and T2DM. A crucial component to the development of CMM is the disruption of endothelial homeostasis. Therefore, therapies targeting endothelial cells through multi-targeted and multi-pathway approaches hold promise for preventing and treatment of CMM. Curcumin, a widely used dietary supplement derived from the golden spice Carcuma longa, has demonstrated remarkable potential in treatment of CMM through its interaction with endothelial cells. Numerous studies have identified various molecular targets of curcumin (such as NF-κB/PI3K/AKT, MAPK/NF-κB/IL-1β, HO-1, NOs, VEGF, ICAM-1 and ROS). These findings highlight the efficacy of curcumin as a therapeutic agent against CMM through the regulation of endothelial function. It is worth noting that there is a close relationship between the progression of CMM and endothelial damage, characterized by oxidative stress, inflammation, abnormal NO bioavailability and cell adhesion. This paper provides a comprehensive review of curcumin, including its availability, pharmacokinetics, pharmaceutics, and therapeutic application in treatment of CMM, as well as the challenges and future prospects for its clinical translation. In summary, curcumin shows promise as a potential treatment option for CMM, particularly due to its ability to target endothelial cells. It represents a novel and natural lead compound that may offer significant therapeutic benefits in the management of CMM.
Collapse
Affiliation(s)
- Fei Tang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Dong Liu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Li-Yue Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jing-Nan Zhang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao-Lan Zhao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Li C, Hao J, Qiu H, Xin H. CaMKK2 alleviates myocardial ischemia/reperfusion injury by inhibiting oxidative stress and inflammation via the action on the AMPK-AKT-GSK-3β/Nrf2 signaling cascade. Inflamm Res 2023:10.1007/s00011-023-01756-6. [PMID: 37338678 DOI: 10.1007/s00011-023-01756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
OBJECTIVE Calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) can regulate numerous biological processes and is implicated in diverse pathological processes. Yet its role in myocardial ischemia/reperfusion (MI/R) injury remains unknown. This project explored the possible functions and mechanisms of CaMKK2 in MI/R injury. METHODS A rat model of MI/R in vivo was established using the left anterior descending coronary artery ligation method. Rat cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) in vitro to establish a cell model. Overexpression of CaMKK2 was achieved by infecting recombinant adeno-associated virus or adenovirus expressing CaMKK2. Real-time quantitative PCR, immunoblotting, TTC staining, TUNEL assay, ELISA, oxidative stress detection assays, flow cytometry, and CCK-8 assay were carried out. RESULTS A decline in CaMKK2 levels was induced by MI/R in vivo or H/R in vitro. Up-modulation of CaMKK2 in rats ameliorated the cardiac injury evoked by MI/R injury accompanied by suppression of cardiac apoptosis, oxidative stress, and proinflammatory response. Rat cardiomyocytes with CaMKK2 overexpression were also protected from H/R damage by inhibiting apoptosis, oxidative stress, and proinflammatory response. CaMKK2 overexpression led to increased phosphorylation of AMPK, AKT, and GSK-3β, and enhanced activation of Nrf2 under MI/R or H/R conditions. Inhibition of AMPK abolished CaMKK2-mediated Nrf2 activation and relevant cardioprotective effect. Restraint of Nrf2 also diminished CaMKK2-mediated relevant cardioprotective effect. CONCLUSIONS Up-regulation of CaMKK2 provides a therapeutic benefit in the rat model of MI/R injury by boosting the Nrf2 pathway through regulation of AMPK/AKT/GSK-3β, which suggests CaMKK2 as a new molecular target for the treatment of MI/R injury.
Collapse
Affiliation(s)
- Chengliang Li
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Jiajia Hao
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Huichang Qiu
- Department of General Practice, Guangzhou First People's Hospital, Guangzhou, 510180, China
| | - Hong Xin
- Healthcare Simulation Center, Department of Research, Education and Information, Guangzhou First People's Hospital, No.1 Panfu Road, Guangzhou, 510180, China.
| |
Collapse
|
6
|
Falco L, Tessitore V, Ciccarelli G, Malvezzi M, D'Andrea A, Imbalzano E, Golino P, Russo V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants (Basel) 2023; 12:1185. [PMID: 37371915 DOI: 10.3390/antiox12061185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The thrombosis-related diseases are one of the leading causes of illness and death in the general population, and despite significant improvements in long-term survival due to remarkable advances in pharmacologic therapy, they continue to pose a tremendous burden on healthcare systems. The oxidative stress plays a role of pivotal importance in thrombosis pathophysiology. The anticoagulant and antiplatelet drugs commonly used in the management of thrombosis-related diseases show several pleiotropic effects, beyond the antithrombotic effects. The present review aims to describe the current evidence about the antioxidant effects of the oral antithrombotic therapies in patients with atherosclerotic disease and atrial fibrillation.
Collapse
Affiliation(s)
- Luigi Falco
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Viviana Tessitore
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Giovanni Ciccarelli
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Marco Malvezzi
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | | | - Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Golino
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| | - Vincenzo Russo
- Cardiology Unit, Department of Medical Translational Science, University of Campania "Luigi Vanvitelli"-Monaldi Hospital, 80126 Naples, Italy
| |
Collapse
|
7
|
Gebeshuber CA, Daniel-Fischer L, Regele H, Schachner H, Aufricht C, Kornauth C, Ley M, Alper SL, Herzog R, Kratochwill K, Perco P. Computational drug repositioning of clopidogrel as a novel therapeutic option for focal segmental glomerulosclerosis. Transl Res 2023:S1931-5244(23)00057-9. [PMID: 37059330 DOI: 10.1016/j.trsl.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 04/16/2023]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a glomerular lesion often associated with nephrotic syndrome. It is also associated with a high risk of progression to end-stage kidney disease. Current treatment of FSGS is limited to systemic corticosteroids or calcineurin inhibition, along with inhibitors of the renin-angiotensin-aldosterone system. FSGS is heterogeneous in etiology, and novel therapies targeting specific, dysregulated molecular pathways represent a major unmet medical need. We have generated a network-based molecular model of FSGS pathophysiology using previously established systems biology workflows to allow computational evaluation of compounds for their predicted interference with molecular processes contributing to FSGS. We identified the anti-platelet drug clopidogrel as a therapeutic option to counterbalance dysregulated FSGS pathways. This prediction of our computational screen was validated by testing clopidogrel in the adriamycin FSGS mouse model. Clopidogrel improved key FSGS outcome parameters and significantly reduced urinary albumin to creatinine ratio (p<0.01) and weight loss (p<0.01), and ameliorated histopathological damage (p<0.05). Clopidogrel is used to treat several cardiovascular diseases linked to chronic kidney disease. Clopidogrel's favorable safety profile and its efficacy in the adriamycin mouse FSGS model thus recommend it as an attractive drug repositioning candidate for clinical trial in FSGS.
Collapse
Affiliation(s)
| | - Lisa Daniel-Fischer
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Heinz Regele
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Helga Schachner
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christoph Aufricht
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christoph Kornauth
- Division of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Matthias Ley
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria
| | - Seth L Alper
- Division of Nephology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA 02215
| | - Rebecca Herzog
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria; Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Paul Perco
- Delta 4 GmbH, Alserstrasse 23 / 30, 1080 Vienna, Austria.
| |
Collapse
|
8
|
Zhou X, Guo W, Yin H, Chen J, Ma L, Yang Q, Zhao Y, Li S, Liu W, Li H. Whole Exome Sequencing Study in a Family with Type 2 Diabetes Mellitus. Int J Gen Med 2021; 14:8217-8229. [PMID: 34815695 PMCID: PMC8605871 DOI: 10.2147/ijgm.s335090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/01/2021] [Indexed: 12/25/2022] Open
Abstract
Background Type 2 diabetes mellitus (T2DM) is characterized by β cell decline in the pancreas and insulin resistance. This study aimed to investigate the possible pathogenic gene mutation sites of T2DM patients using whole exome sequencing. Materials and Methods We recruited a Chinese family with 3-generation history of diabetes. The whole blood genomic DNA of seven members of the family was extracted and sent for whole exome sequencing. Biological information was analyzed with in silico prediction methods, including significance analysis of single nucleotide polymorphism (SNP)/Indel site, and analysis of specific SNP/Indel proteins and their potential mechanisms. Results Six out of seven members of the family were diagnosed with diabetes. All DNA samples (23 kb) met quality requirements of library construction. Clean reads of each sample demonstrated high Q20 and Q30 (>80%), indicating good sequencing quality of sequencing data. A total of 130,693 SNPs and 15,928 Indels were found in DNA samples. A total of 22 significant SNPs and Indel mutation sites located on 19 genes were obtained, including ZCCHC3, SYN2, RPL14, SRRD, AMD1, CAMKK2, ZNF787, RNF157, NPIPB15, ALG3, KIAA0040, MAST2, ESRRA, C8orf58, PNLIPRP1, DACH1, MACC1, CAPN9 and DMKN. An rs2305205 mutation of PNLIPRP1 gene and an rs778701848 mutation of CAMKK2 gene may be associated with the pathogenesis of T2DM in this family. Conclusion Exons of these diabetic patients demonstrated an rs2305205 mutation in PNLIPRP1 gene and an rs778701848 mutation in CAMKK2 gene. These two mutations might promote T2DM occurrence through reducing sensitivity of peripheral tissue to insulin and reducing insulin secretion.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Weichang Guo
- Department of Physical Education, Kunming Medical University, Kunming, People's Republic of China
| | - Hejia Yin
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Jie Chen
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Liju Ma
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Qiuping Yang
- Department of Geriatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yan Zhao
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Shaoyou Li
- Department of NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Weijun Liu
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Huifang Li
- Department of Diabetes, The First Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
9
|
Lee PT, Liao IC, Lee CH, Hsu LW, Liu PY. Expression of Vascular Cell Adhesion Molecule-1 in Peripheral Artery Disease is Enriched in Patients with Advanced Kidney Disease. ACTA CARDIOLOGICA SINICA 2021; 37:591-599. [PMID: 34812232 PMCID: PMC8593482 DOI: 10.6515/acs.202111_37(6).20210701b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Serving as an inflammatory biomarker in patients under regular hemodialysis (HD), the arterial tissue expression of vascular cell adhesion molecule 1 (VCAM-1) in patients with different renal function has rarely been investigated and remains unclear. METHODS Fifty-one consecutive patients with peripheral arterial disease (PAD) who underwent percutaneous transluminal angioplasty were recruited and divided into a normal renal function group, chronic kidney disease (CKD) group, and HD group. Background disease, clinical and angiographic severity, and serum level of VCAM-1 in the three groups were analyzed. The tissue expression of VCAM-1 was quantitatively demonstrated by immunohistochemical (IHC) staining and protein extraction from cell membranes in another amputated cohort. RESULTS In PAD patients, the serum level of VCAM-1 was significantly elevated in the HD group compared with the other two groups (1990.2 ± 607.1 ng/ml vs. 1547.9 ± 511.2 ng/ml vs. 1161.0 ± 435.8 ng/ml, p < 0.001). Serum VCAM-1 was a prognostic factor of major adverse cardiac or limb events (odds ratio: 1.002, 95% confidence interval: 1.001-1.003, p = 0.003). The expression of VCAM-1 was higher in the PAD amputated arterial tissue of CKD and HD patients as demonstrated by quantitative analysis of IHC staining and quantitative membrane protein extraction. CONCLUSIONS VCAM-1 is a cardiovascular prognostic biomarker. Both serum level and the tissue expression of VCAM-1 were significantly higher in PAD patients with advanced kidney disease.
Collapse
Affiliation(s)
- Po-Tseng Lee
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Chuang Liao
- Department of Pathology, Chi-Mei Medical Center
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Cheng-Han Lee
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University
| | | | - Ping-Yen Liu
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Chen L, Chen Z, Xu Z, Feng W, Yang X, Qi Z. Polydatin protects Schwann cells from methylglyoxal induced cytotoxicity and promotes crushed sciatic nerves regeneration of diabetic rats. Phytother Res 2021; 35:4592-4604. [PMID: 34089208 DOI: 10.1002/ptr.7177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 01/03/2023]
Abstract
Oxidative stress plays the main role in the pathogenesis of diabetes mellitus and peripheral neuropathy. Polydatin (PD) has been shown to exhibit strong antioxidative and antiinflammatory effects. At present, no research has focused on the possible effects of PD on Schwann cells and impaired peripheral nerves in diabetic models. Here, we used an in vitro Schwann cell damage model induced by methylglyoxal and an in vivo diabetic sciatic nerve crush model to study problems in such an area. In our experiment, we demonstrated that PD potently alleviated the decrease of cellular viability, prevented reactive oxygen species generation, and suppressed mitochondrial depolarization as well as cellular apoptosis in damaged Schwann cells. Moreover, we found that PD could upregulate Nrf2 and Glyoxalase 1 (GLO1) expression and inhibit Keap1 and receptor of AGEs (RAGE) expression of damaged Schwann cells. Finally, our in vivo experiment showed that PD could promote sciatic nerves repair of diabetic rats. Our results revealed that PD exhibited prominent neuroprotective effects on Schwann cells and sciatic nerves in diabetic models. The molecular mechanisms were associated with activating Nfr2 and GLO1 and inhibiting Keap1 and RAGE.
Collapse
Affiliation(s)
- Lulu Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zixiang Chen
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuqiu Xu
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weifeng Feng
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaonan Yang
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zuoliang Qi
- Department No.16 of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
12
|
Haye A, Ansari MA, Rahman SO, Shamsi Y, Ahmed D, Sharma M. Role of AMP-activated protein kinase on cardio-metabolic abnormalities in the development of diabetic cardiomyopathy: A molecular landscape. Eur J Pharmacol 2020; 888:173376. [PMID: 32810493 DOI: 10.1016/j.ejphar.2020.173376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular complications associated with diabetes mellitus remains a leading cause of morbidity and mortality across the world. Diabetic cardiomyopathy is a descriptive pathology that in absence of co-morbidities such as hypertension, dyslipidemia initially characterized by cardiac stiffness, myocardial fibrosis, ventricular hypertrophy, and remodeling. These abnormalities further contribute to diastolic dysfunctions followed by systolic dysfunctions and eventually results in clinical heart failure (HF). The clinical outcomes associated with HF are considerably worse in patients with diabetes. The complexity of the pathogenesis and clinical features of diabetic cardiomyopathy raises serious questions in developing a therapeutic strategy to manage cardio-metabolic abnormalities. Despite extensive research in the past decade the compelling approaches to manage and treat diabetic cardiomyopathy are limited. AMP-Activated Protein Kinase (AMPK), a serine-threonine kinase, often referred to as cellular "metabolic master switch". During the development and progression of diabetic cardiomyopathy, a plethora of evidence demonstrate the beneficial role of AMPK on cardio-metabolic abnormalities including altered substrate utilization, impaired cardiac insulin metabolic signaling, mitochondrial dysfunction and oxidative stress, myocardial inflammation, increased accumulation of advanced glycation end-products, impaired cardiac calcium handling, maladaptive activation of the renin-angiotensin-aldosterone system, endoplasmic reticulum stress, myocardial fibrosis, ventricular hypertrophy, cardiac apoptosis, and impaired autophagy. Therefore, in this review, we have summarized the findings from pre-clinical and clinical studies and provided a collective overview of the pathophysiological mechanism and the regulatory role of AMPK on cardio-metabolic abnormalities during the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Abdul Haye
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Yasmeen Shamsi
- Department of Moalejat, School of Unani Medical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Danish Ahmed
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture Technology and Sciences, Allahabad, Uttar Pradesh, India
| | - Manju Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
13
|
A Novel STAT3-Mediated GATA6 Pathway Contributes to tert-Butylhydroquinone- (tBHQ-) Protected TNF α-Activated Vascular Cell Adhesion Molecule 1 (VCAM-1) in Vascular Endothelium. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6584059. [PMID: 33274004 PMCID: PMC7683157 DOI: 10.1155/2020/6584059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/16/2020] [Accepted: 10/22/2020] [Indexed: 11/17/2022]
Abstract
The activation of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells has been well considered implicating in the initiation and processing of atherosclerosis. Oxidative stress is mechanistically involved in proatherosclerotic cytokine-induced VCAM-1 activation. tert-Butylhydroquinone (tBHQ), a synthetic phenolic antioxidant used for preventing lipid peroxidation of food, possesses strongly antioxidant capacity against oxidative stress-induced dysfunction in various pathological process. Here, we investigated the protective role of tBHQ on tumor necrosis factor alpha- (TNFα-) induced VCAM-1 activation in both aortic endothelium of mice and cultured human vascular endothelial cells and uncovered its potential mechanisms. Our data showed that tBHQ treatment significantly reversed TNFα-induced activation of VCAM-1 at both transcriptional and protein levels. The mechanistic study revealed that inhibiting neither nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nor autophagy blocked the beneficial role of tBHQ. Alternatively, tBHQ intervention markedly alleviated TNFα-increased GATA-binding protein 6 (GATA6) mRNA and protein expressions and its translocation into nucleus. Further investigation indicated that tBHQ-inhibited signal transducer and activator of transcription 3 (STAT3) but not mitogen-activated protein kinase (MAPK) pathway contributed to its protective role against VCAM-1 activation via regulating GATA6. Collectively, our data demonstrated that tBHQ prevented TNFα-activated VCAM-1 via a novel STAT3/GATA6-involved pathway. tBHQ could be a potential candidate for the prevention of proatherosclerotic cytokine-caused inflammatory response and further dysfunctions in vascular endothelium.
Collapse
|
14
|
Jundi D, Krayem I, Bazzi S, Karam M. In vitro effects of azide-containing human CRP isoforms and oxLDL on U937-derived macrophage production of atherosclerosis-related cytokines. Exp Ther Med 2020; 20:57. [PMID: 32952647 DOI: 10.3892/etm.2020.9185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/18/2019] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis is an inflammatory chronic disease of the arterial wall. Monomeric (m) and pentameric (p) C-reactive protein (CRP) and oxidized low density lipoproteins (oxLDL) seem to affect the pattern of cytokine production by macrophages, thus playing an important role in atherogenesis. Azide, the commercial preservative of CRP, may influence its action in vitro. The present study aimed to determine the effects of both isoforms of azide-containing CRP (mCRP and pCRP) with and without oxLDL on cytokine production by U937-derived macrophages. U937 monocytes were cultured and differentiated into macrophages and treated with mCRP, pCRP, oxLDL and azide individually and in combination. ELISA were performed to measure the levels of interferon-γ (IFN-γ), interleukin (IL)-4, IL-6, IL-10 and tumor necrosis factor (TNF)-α in culture supernatants collected from U937-derived macrophages following their respective treatments. Most single and combined treatments, especially in triple combination, were able to downregulate the levels of IFN-γ and IL-6 compared with control untreated cells, whilst the combination of mCRP and pCRP increased IL-4 levels. Regarding IL-10, except for an increase induced by mCRP, no significant effect was caused by any treatment compared with the control. On the other hand, the levels of TNF-α were not significantly affected by any treatment except for a decreasing trend that was observed with mCRP/oxLDL treatment compared with control. By contrast, double azide caused a significant decrease in the levels of IFN-γ and IL-6. The results of the present study indicated that mCRP, pCRP, oxLD and possibly azide, individually or in different combinations, had the tendency to upregulate the expression of IL-4 and to downregulate that of the pro-atherogenic cytokines, IFN-γ and IL-6, suggesting that the intima microenvironment serves a crucial role in atherogenesis.
Collapse
Affiliation(s)
- Dania Jundi
- Department of Biology, University of Balamand, Kourah, P. O. Box 100 Tripoli, North Governorate, Lebanon
| | - Imtissal Krayem
- Department of Biology, University of Balamand, Kourah, P. O. Box 100 Tripoli, North Governorate, Lebanon
| | - Samer Bazzi
- Department of Biology, University of Balamand, Kourah, P. O. Box 100 Tripoli, North Governorate, Lebanon
| | - Marc Karam
- Department of Biology, University of Balamand, Kourah, P. O. Box 100 Tripoli, North Governorate, Lebanon
| |
Collapse
|
15
|
Xie T, Wang C, Jin Y, Meng Q, Liu Q, Wu J, Sun H. CoenzymeQ10-Induced Activation of AMPK-YAP-OPA1 Pathway Alleviates Atherosclerosis by Improving Mitochondrial Function, Inhibiting Oxidative Stress and Promoting Energy Metabolism. Front Pharmacol 2020; 11:1034. [PMID: 32792941 PMCID: PMC7387644 DOI: 10.3389/fphar.2020.01034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis (AS) is an excessive chronic inflammatory hyperplasia caused by the damage of vascular endothelial cell morphology and function. Changes in mitochondrial internal conformation and increase of reactive oxygen species (ROS) can lead to energy metabolism disorders in mitochondria, which further affects the occurrence of atherosclerosis by impairing vascular endothelial function. Coenzyme Q10 (CoQ10) is one of the components of mitochondrial respiratory chain, which has the functions of electron transfer, reducing oxidative stress damage, improving mitochondrial function and promoting energy metabolism. The main purpose of this study is to investigate the protective effects of CoQ10 against AS by improving mitochondrial energy metabolism. Both in high fat diet (HFD) fed APOE -/- mice and in ox-LDL-treated HAECs, CoQ10 significantly decreased the levels of TG, TC and LDL-C and increased the levels of HDL-C, thus playing a role in regulating lipid homeostasis. Meanwhile, CoQ10 decreased the levels of LDH and MDA and increased the levels of SOD and GSH, thus playing a role in regulating oxidation level. CoQ10 also inhibited the over-release of ROS and increased ATP content to improve mitochondrial function. CoQ10 also decreased the levels of related inflammatory factors (ICAM-1, VCAM-1, IL-6, TNF-α and NLRP3). In order to study the mechanism of the experiment, AMPK and YAP were silenced in vitro. The further study suggested AMPK small interfering RNA (siRNA) and YAP small interfering RNA (siRNA) affected the expression of OPA1, a crucial protein regulating the balance of mitochondrial fusion and division and decreased the therapeutic effects of CoQ10. These results indicated that CoQ10 improved mitochondrial function, inhibited ROS production, promoted energy metabolism and attenuated AS by activating AMPK-YAP-OPA1 pathway. This study provides a possible new mechanism for CoQ10 in the treatment of AS and may bring a new hope for the prevention and treatment of AS in the future.
Collapse
Affiliation(s)
- Tianqi Xie
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China.,Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Tentolouris A, Eleftheriadou I, Tzeravini E, Tsilingiris D, Paschou SA, Siasos G, Tentolouris N. Endothelium as a Therapeutic Target in Diabetes Mellitus: From Basic Mechanisms to Clinical Practice. Curr Med Chem 2020; 27:1089-1131. [PMID: 30663560 DOI: 10.2174/0929867326666190119154152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022]
Abstract
Endothelium plays an essential role in human homeostasis by regulating arterial blood pressure, distributing nutrients and hormones as well as providing a smooth surface that modulates coagulation, fibrinolysis and inflammation. Endothelial dysfunction is present in Diabetes Mellitus (DM) and contributes to the development and progression of macrovascular disease, while it is also associated with most of the microvascular complications such as diabetic retinopathy, nephropathy and neuropathy. Hyperglycemia, insulin resistance, hyperinsulinemia and dyslipidemia are the main factors involved in the pathogenesis of endothelial dysfunction. Regarding antidiabetic medication, metformin, gliclazide, pioglitazone, exenatide and dapagliflozin exert a beneficial effect on Endothelial Function (EF); glimepiride and glibenclamide, dipeptidyl peptidase-4 inhibitors and liraglutide have a neutral effect, while studies examining the effect of insulin analogues, empagliflozin and canagliflozin on EF are limited. In terms of lipid-lowering medication, statins improve EF in subjects with DM, while data from short-term trials suggest that fenofibrate improves EF; ezetimibe also improves EF but further studies are required in people with DM. The effect of acetylsalicylic acid on EF is dose-dependent and lower doses improve EF while higher ones do not. Clopidogrel improves EF, but more studies in subjects with DM are required. Furthermore, angiotensin- converting-enzyme inhibitors /angiotensin II receptor blockers improve EF. Phosphodiesterase type 5 inhibitors improve EF locally in the corpus cavernosum. Finally, cilostazol exerts favorable effect on EF, nevertheless, more data in people with DM are required.
Collapse
Affiliation(s)
- Anastasios Tentolouris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Ioanna Eleftheriadou
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Evangelia Tzeravini
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Dimitrios Tsilingiris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Stavroula A Paschou
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Nikolaos Tentolouris
- Diabetes Center, 1st Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| |
Collapse
|
17
|
Porshneva K, Papiernik D, Psurski M, Łupicka-Słowik A, Matkowski R, Ekiert M, Nowak M, Jarosz J, Banach J, Milczarek M, Goszczyński TM, Sieńczyk M, Wietrzyk J. Temporal inhibition of mouse mammary gland cancer metastasis by CORM-A1 and DETA/NO combination therapy. Theranostics 2019; 9:3918-3939. [PMID: 31281522 PMCID: PMC6587338 DOI: 10.7150/thno.31461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/17/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon monoxide and nitric oxide are two of the most important vasoprotective mediators. Their downregulation observed during vascular dysfunction, which is associated with cancer progression, leads to uncontrolled platelet activation. Therefore, the aim of our studies was to improve vasoprotection and to decrease platelet activation during progression of mouse mammary gland cancer by concurrent use of CO and NO donors (CORM-A1 and DETA/NO, respectively). Methods: Mice injected intravenously with 4T1-luc2-tdTomato or orthotopically with 4T1 mouse mammary gland cancer cells were treated with CORM-A1 and DETA/NO. Ex vivo aggregation and activation of platelets were assessed in the blood of healthy donors and breast cancer patients. Moreover, we analyzed the compounds' direct effect on 4T1 mouse and MDA-MB-231 human breast cancer cells proliferation, adhesion and migration in vitro. Results: We have observed antimetastatic effect of combination therapy, which was only transient in orthotopic model. During early stages of tumor progression concurrent use of CORM-A1 and DETA/NO demonstrated vasoprotective ability (decreased endothelin-1, sICAM and sE-selectin plasma level) and downregulated platelets activation (decreased bound of fibrinogen and vWf to platelets) as well as inhibited EMT process. Combined treatment with CO and NO donors diminished adhesion and migration of breast cancer cells in vitro and inhibited aggregation as well as TGF-β release from breast cancer patients' platelets ex vivo. However, antimetastatic effect was not observed at a later stage of tumor progression which was accompanied by increased platelets activation and endothelial dysfunction related to a decrease of VASP level. Conclusion: The therapy was shown to have antimetastatic action and resulted in normalization of endothelial metabolism, diminution of platelet activation and inhibition of EMT process. The effect was more prominent during early stages of tumor dissemination. Such treatment could be applied to inhibit metastasis during the first stages of this process.
Collapse
Affiliation(s)
- Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Agnieszka Łupicka-Słowik
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Ekiert
- Division of Surgical Oncology and Clinical Oncology; Department of Oncology, Wroclaw Medical University, Wroclaw, Poland
- Lower Silesian Oncology Center, Wroclaw, Poland
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Tomasz M. Goszczyński
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Sieńczyk
- Faculty of Chemistry, Division of Medicinal Chemistry and Microbiology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
18
|
Evidence for the important role of inflammation in xenotransplantation. JOURNAL OF INFLAMMATION-LONDON 2019; 16:10. [PMID: 31148951 PMCID: PMC6537172 DOI: 10.1186/s12950-019-0213-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence of a sustained state of systemic inflammation after pig-to-nonhuman primate (NHP) xenotransplantation (that has been termed systemic inflammation in xenograft recipients [SIXR]). Increases in inflammatory markers, e.g., C-reactive protein, histones, serum amyloid A, D-dimer, cytokines, chemokines, and a decrease in free triiodothyronine, have been demonstrated in the recipient NHPs. The complex interactions between inflammation, coagulation, and the immune response are well-recognized, but the role of inflammation in xenograft recipients is not fully understood. The evidence suggests that inflammation can promote the activation of coagulation and the adaptive immune response, but the exact mechanisms remain uncertain. If prolonged xenograft survival is to be achieved, anti-inflammatory strategies (e.g., the administration of anti-inflammatory agents, and/or the generation of genetically-engineered organ-source pigs that are protected from the effect of inflammation) may be necessary to prevent, control, or negate the effect of the systemic inflammation that develops in xenograft recipients. This may allow for a reduction in the intensity of exogenous immunosuppressive therapy. If immunological tolerance to a xenograft is to be obtained, then control of inflammation may be essential.
Collapse
|
19
|
Porshneva K, Papiernik D, Psurski M, Nowak M, Matkowski R, Ekiert M, Milczarek M, Banach J, Jarosz J, Wietrzyk J. Combination Therapy with DETA/NO and Clopidogrel Inhibits Metastasis in Murine Mammary Gland Cancer Models via Improved Vasoprotection. Mol Pharm 2018; 15:5277-5290. [DOI: 10.1021/acs.molpharmaceut.8b00781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Mateusz Psurski
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Rafał Matkowski
- Division of Surgical Oncology and Clinical Oncology, Department of Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Lower Silesian Oncology Center, 53-413 Wroclaw, Poland
| | - Marcin Ekiert
- Division of Surgical Oncology and Clinical Oncology, Department of Oncology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Lower Silesian Oncology Center, 53-413 Wroclaw, Poland
| | - Magdalena Milczarek
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Banach
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| |
Collapse
|
20
|
Park EJ, Kim YM, Kim HJ, Chang KC. Luteolin activates ERK1/2- and Ca 2+-dependent HO-1 induction that reduces LPS-induced HMGB1, iNOS/NO, and COX-2 expression in RAW264.7 cells and mitigates acute lung injury of endotoxin mice. Inflamm Res 2018; 67:445-453. [PMID: 29497773 DOI: 10.1007/s00011-018-1137-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Although luteolin has shown to have anti-inflammatory action, no report is available whether luteolin inhibits HMGB1 and protects acute lung injury (ALI) in endotoxin rodents. We hypothesized that HO-1 induction by luteolin might play a crucial role for inhibition of pro-inflammatory mediators including HMGB1 through MAPK signaling in LPS-induced RAW264.7 cells, and it ameliorates ALI of endotoxin mice. METHODS The effects of luteolin on the production of pro-inflammatory mediators in LPS-activated RAW264.7 cells and LPS-injected mice were evaluated. The mechanisms were investigated using various signal inhibitors. RESULTS Luteolin significantly increased HO-1 expression through ERK1/2 signaling in a time- and concentration-dependent manner. Indeed, luteolin inhibited pro-inflammatory mediators (HMGB1, iNOS/NO, COX-2, and NF-κB activity) in LPS-activated RAW264.7 cells. In addition, PD98059, an ERK1/2 inhibitor, treatment failed to inhibit production of these pro-inflammatory mediators by luteolin. Interestingly, luteolin augmented HO-1 induction through Ca2+ influx in RAW264.7 cells. Administration of luteolin significantly inhibited plasma HMGB1 level, and iNOS expression in the lung that resulted in a significant reduction of ALI in endotoxin mice that was reversed by a HO-1 inhibitor, ZnPPIX. CONCLUSION Therefore, we conclude that luteolin has a great potential for treatment of ALI and related diseases, where HMGB1 is a therapeutic target.
Collapse
Affiliation(s)
- Eun Jung Park
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 52527, Republic of Korea
| | - Young Min Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 52527, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 52527, Republic of Korea
| | - Ki Churl Chang
- Department of Pharmacology and Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju, 52527, Republic of Korea.
| |
Collapse
|
21
|
Yang H, Feng A, Lin S, Yu L, Lin X, Yan X, Lu X, Zhang C. Fibroblast growth factor-21 prevents diabetic cardiomyopathy via AMPK-mediated antioxidation and lipid-lowering effects in the heart. Cell Death Dis 2018; 9:227. [PMID: 29445083 PMCID: PMC5833682 DOI: 10.1038/s41419-018-0307-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/29/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Our previous studies showed that both exogenous and endogenous FGF21 inhibited cardiac apoptosis at the early stage of type 1 diabetes. Whether FGF21 induces preventive effect on type 2 diabetes-induced cardiomyopathy was investigated in the present study. High-fat-diet/streptozotocin-induced type 2 diabetes was established in both wild-type (WT) and FGF21-knockout (FGF21-KO) mice followed by treating with FGF21 for 4 months. Diabetic cardiomyopathy (DCM) was diagnosed by significant cardiac dysfunction, remodeling, and cardiac lipid accumulation associated with increased apoptosis, inflammation, and oxidative stress, which was aggravated in FGF21-KO mice. However, the cardiac damage above was prevented by administration of FGF21. Further studies demonstrated that the metabolic regulating effect of FGF21 is not enough, contributing to FGF21-induced significant cardiac protection under diabetic conditions. Therefore, other protective mechanisms must exist. The in vivo cardiac damage was mimicked in primary neonatal or adult mouse cardiomyocytes treated with HG/Pal, which was inhibited by FGF21 treatment. Knockdown of AMPKα1/2, AKT2, or NRF2 with their siRNAs revealed that FGF21 protected cardiomyocytes from HG/Pal partially via upregulating AMPK–AKT2–NRF2-mediated antioxidative pathway. Additionally, knockdown of AMPK suppressed fatty acid β-oxidation via inhibition of ACC–CPT-1 pathway. And, inhibition of fatty acid β-oxidation partially blocked FGF21-induced protection in cardiomyocytes. Further, in vitro and in vivo studies indicated that FGF21-induced cardiac protection against type 2 diabetes was mainly attributed to lipotoxicity rather than glucose toxicity. These results demonstrate that FGF21 functions physiologically and pharmacologically to prevent type 2 diabetic lipotoxicity-induced cardiomyopathy through activation of both AMPK–AKT2–NRF2-mediated antioxidative pathway and AMPK–ACC–CPT-1-mediated lipid-lowering effect in the heart.
Collapse
Affiliation(s)
- Hong Yang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Anyun Feng
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sundong Lin
- Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Lechu Yu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiufei Lin
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xiaoqing Yan
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.,Wenzhou Biomedical Innovation Center, Wenzhou, China
| | - Xuemian Lu
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Chi Zhang
- Ruian Center of Chinese-American Research Institute for Diabetic Complications, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Chinese-American Research Institute for Diabetic Complications, Wenzhou Medical University, Wenzhou, China. .,School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China. .,Wenzhou Biomedical Innovation Center, Wenzhou, China.
| |
Collapse
|
22
|
Denslow A, Świtalska M, Jarosz J, Papiernik D, Porshneva K, Nowak M, Wietrzyk J. Clopidogrel in a combined therapy with anticancer drugs-effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models. PLoS One 2017; 12:e0188740. [PMID: 29206871 PMCID: PMC5716579 DOI: 10.1371/journal.pone.0188740] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/13/2017] [Indexed: 12/31/2022] Open
Abstract
Clopidogrel, a thienopyridine derivative with antiplatelet activity, is widely prescribed for patients with cardiovascular diseases. In addition to antiplatelet activity, antiplatelet agents possess anticancer and antimetastatic properties. Contrary to this, results of some studies have suggested that the use of clopidogrel and other thienopyridines accelerates the progression of breast, colorectal, and prostate cancer. Therefore, in this study, we aimed to evaluate the efficacy of clopidogrel and various anticancer agents as a combined treatment using mouse models of breast, colorectal, and prostate cancer. Metastatic dissemination, selected parameters of platelet morphology and biochemistry, as well as angiogenesis were assessed. In addition, body weight, blood morphology, and biochemistry were evaluated to test toxicity of the studied compounds. According to the results, clopidogrel increased antitumor and/or antimetastatic activity of chemotherapeutics such as 5-fluorouracil, cyclophosphamide, and mitoxantrone, whereas it decreased the anticancer activity of doxorubicin, cisplatin, and tamoxifen. The mechanisms of such divergent activities may be based on the modulation of tumor vasculature via factors, such as transforming growth factor β1 released from platelets. Moreover, clopidogrel increased the toxicity of docetaxel and protected against mitoxantrone-induced toxicity, which may be due to the modulation of hepatic enzymes and protection of the vasculature, respectively. These results demonstrate that antiplatelet agents can be useful but also dangerous in anticancer treatment and therefore use of thienopyridines in patients undergoing chemotherapy should be carefully evaluated.
Collapse
Affiliation(s)
- Agnieszka Denslow
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marta Świtalska
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Joanna Jarosz
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Diana Papiernik
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Kseniia Porshneva
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Marcin Nowak
- Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Wietrzyk
- Department of Experimental Oncology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
- * E-mail:
| |
Collapse
|
23
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
24
|
Yang D, Xiao CX, Su ZH, Huang MW, Qin M, Wu WJ, Jia WW, Zhu YZ, Hu JF, Liu XH. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-α-mediated inflammation response in endothelial cells by blocking the MAPK/NF-κB and activating Nrf2/HO-1. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 32:15-23. [PMID: 28732803 DOI: 10.1016/j.phymed.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/08/2017] [Accepted: 04/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Endothelial inflammation is an increasingly prevalent condition in the pathogenesis of many cardiovascular diseases. (-)-7(S)-hydroxymatairesinol (7-HMR), a naturally occurring plant lignan, possesses both antioxidant and anti-cancer properties and therefore would be a good strategy to suppress tumor necrosis factor-α (TNF-α)-mediated inflammation in vascular endothelial cells (VECs). PURPOSE The objective of this study is to evaluate for its anti-inflammatory effect on TNF-α-stimulated VECs and underling mechanisms. STUDY DESIGN/METHODS The effect of the 7-HMR on suppression of TNF-α-induced inflammation mediators in VECs were determined by qRT-PCR and Western blot. MAPKs and phosphorylation of Akt, HO-1 and NF-κB p65 were examined using Western blot. Nuclear localisation of NF-κB was also examined using Western blot and immunofluorescence. RESULTS Here we found that 7-HMR could suppress TNF-α-induced inflammatory mediators, such as vascularcelladhesion molecule-1, interleukin-6 and inducible nitric oxide synthase expression both in mRNA and protein levels, and concentration-dependently attenuated reactive oxidase species generation. We further identified that 7-HMR remarkably induced superoxide dismutase and heme oxygenase-1 expression associated with degradation of Kelch-like ECH-associated protein 1 (keap1) and up-regulated nuclear factor erythroid 2-related factor 2 (Nrf2). In addition, 7-HMR time- and concentration-dependently attenuated TNF-α-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) and Akt, but not p38, or c-Jun N-terminal kinase 1/2. Moreover, 7-HMR significantly suppressed TNF-α-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. CONCLUSION Our results demonstrated that 7-HMR inhibited TNF-α-stimulated endothelial inflammation, at least in part, through inhibition of NF-κB activation and upregulation of Nrf2-antioxidant response element signaling pathway, suggesting 7-HMR might be used as a promising vascular protective drug.
Collapse
Affiliation(s)
- Di Yang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Chen-Xi Xiao
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zheng-Hua Su
- Department of Pharmaceutical Chemistry, School of Pharmacy, Jilin University, Changchun 130021, China
| | - Meng-Wei Huang
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ming Qin
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wei-Jun Wu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wan-Wan Jia
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yi-Zhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jin-Feng Hu
- Department of Natural Products Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Xin-Hua Liu
- Shanghai Key Laboratory of Bioactive Small Molecules and Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
25
|
Cerda A, Pavez M, Manriquez V, Luchessi AD, Leal P, Benavente F, Fajardo CM, Salazar L, Hirata MH, Hirata RDC. Effects of clopidogrel on inflammatory cytokines and adhesion molecules in human endothelial cells: Role of nitric oxide mediating pleiotropic effects. Cardiovasc Ther 2017; 35. [DOI: 10.1111/1755-5922.12261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 03/26/2017] [Indexed: 01/01/2023] Open
Affiliation(s)
- Alvaro Cerda
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN; Universidad de La Frontera; Temuco Chile
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Monica Pavez
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN; Universidad de La Frontera; Temuco Chile
| | - Victor Manriquez
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN; Universidad de La Frontera; Temuco Chile
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicological Analysis; Federal University of Rio Grande do Norte; Natal RN Brazil
| | - Pamela Leal
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN; Universidad de La Frontera; Temuco Chile
| | - Felipe Benavente
- Centro de Excelencia en Medicina Traslacional, CEMT-BIOREN; Universidad de La Frontera; Temuco Chile
| | - Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Luis Salazar
- Centro de Biología Molecular y Farmacogenética, CBMF-BIOREN; Universidad de La Frontera; Temuco Chile
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences; University of Sao Paulo; Sao Paulo Brazil
| |
Collapse
|
26
|
Sun H, Qu Q, Chen ZF, Tan SL, Zhou HJ, Qu J, Chen H. Impact of CYP2C19 Variants on Clinical Efficacy of Clopidogrel and 1-Year Clinical Outcomes in Coronary Heart Patients Undergoing Percutaneous Coronary Intervention. Front Pharmacol 2016; 7:453. [PMID: 27932982 PMCID: PMC5121225 DOI: 10.3389/fphar.2016.00453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/11/2016] [Indexed: 01/23/2023] Open
Abstract
The impact of pharmacogenetic variants of cytochrome P450 2C19 (CYP2C19) on clopidogrel-mediated effects on platelet inhibition, inflammatory response and endothelial function, as well as risk of major adverse cardiovascular events (MACE), in coronary heart patients undergoing percutaneous coronary intervention (PCI) was investigated. To this end, we assessed the residual platelet aggregation rate (RPA), maximal aggregation rate (MAR) and plasma levels of sCD40L, sP-selectin, MMP-9, sVCAM-1 and sE-selectin after 24 h of PCI in 559 patients treated with clopidogrel and followed up for 1 year for evidence of MACE. CYP2C19*2 and *3 variants were identified using a clopidogrel-sensitive gene detection kit. Our results showed higher RPA and MAR as well as increased sE-selectin, sCD40L, sP-selectin, MMP-9, and sVCAM-1 levels in CYP2C19 intermediate metabolizer (IM, CYP2C19*1/*2, or *1/*3), poor metabolizer (PM, CYP2C19*2/*2, *2/*3, or *3/*3) and combined IM+PM groups, relative to those in extensive metabolizers (EM, CYP2C19*1/*1). In total, 519 patients completed 1 year of follow-up, among which 69 (13.3%) experienced MACE. The risk of MACE in CYP2C19 IM+PM patients was 2.664 times higher than that in CYP2C19 EM patients (OR = 2.664 (1.397–5.193), P = 0.004). The data suggest that CYP2C19*2 and *3 variants modulate the drug efficacy of clopidogrel in coronary heart patients undergoing PCI and further enhance the risk of MACE. Accordingly, CYP2C19 pharmacogenetic profiling may be beneficial for coronary heart patients undergoing PCI to predict the efficacy of treatment with clopidogrel. We propose that IM and PM patients should benefit from treatment with higher clopidogrel doses to improve efficacy and reduce the incidence of MACE.
Collapse
Affiliation(s)
- Hong Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha, China; Institute of Clinical Pharmacy, Central South UniversityChangsha, China; Department of Pharmacy, Provincial Clinical College of Fujian Medical University, Fujian Provincial HospitalFuzhou, China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University Changsha, China
| | - Zhen-Fan Chen
- Department of Pharmacy, Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou, China
| | - Sheng-Lan Tan
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha, China; Institute of Clinical Pharmacy, Central South UniversityChangsha, China
| | - Hai-Jun Zhou
- Department of Pharmacy, Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital Fuzhou, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital, Central South UniversityChangsha, China; Institute of Clinical Pharmacy, Central South UniversityChangsha, China
| | - Hui Chen
- Hypertension Laboratory, Provincial Clinical College of Fujian Medical University, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital Fuzhou, China
| |
Collapse
|