1
|
Sahu SA, Panda S, Das AC, Mishra L, Rath S, Sokolowski K, Kumar M, Mohanty R, Nayak R, Satpathy A, Lapinska B. Efficacy of Sub-Gingivally Delivered Propolis Nanoparticle in Non-Surgical Management of Periodontal Pocket: A Randomized Clinical Trial. Biomolecules 2023; 13:1576. [PMID: 38002260 PMCID: PMC10669236 DOI: 10.3390/biom13111576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Naturally sourced products like propolis are commonly employed for the non-surgical treatment of periodontal pockets. The use of nanoparticle formulations of these natural remedies has the potential to improve treatment outcomes. The aim of the present study was to evaluate the efficacy of sub-gingivally delivered propolis nanoparticles in the non-surgical management of periodontal pockets. Forty patients diagnosed with periodontitis presenting at least one periodontal pocket with a probing pocket depth between 4 and 6 mm were selected. Patients were randomly assigned into the control group (n = 20), which received scaling and root planing (SRP) and saline (SRP + Saline), and the test group (n = 20), which received SRP and sub-gingivally delivered propolis nanoparticles (PRO) into the periodontal pocket (SRP + PRO). The clinical parameters recorded were plaque index (PI), gingival index (GI), relative attachment loss (RAL), probing pocket depth (PPD), and bleeding on probing (BOP). They were assessed at baseline, one month, and three months post therapy. The results indicated that there was a significant improvement in clinical parameters (p < 0.05) in the test sites compared with the control sites at the end of the study. The gingival index at one month and three months was found to be significantly better in the SRP + PRO group than the SRP + Saline group, with a p value of <0.001. The BOP, PPD, and RAL showed significant improvement with the SRP + PRO group at the end of the 3-month follow-up with p values of 0.0001, 0.001, and 0.05, respectively. The subgingival delivery of propolis nanoparticles showed promising results as an adjunct to SRP in patients with periodontitis presenting periodontal pockets.
Collapse
Affiliation(s)
- Sushree Ambika Sahu
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Saurav Panda
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Abhaya Chandra Das
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Lora Mishra
- Department of Conservative Dentistry & Endodontics, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India;
| | - Satchidananda Rath
- Department of Physics, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 752050, Odisha, India;
| | - Krzysztof Sokolowski
- Department of Conservative Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland;
| | - Manoj Kumar
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rinkee Mohanty
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Rashmita Nayak
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Anurag Satpathy
- Department of Periodontics and Oral Implantology, Institute of Dental Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar 751003, Odisha, India; (S.A.S.); (A.C.D.); (M.K.); (R.M.); (R.N.); (A.S.)
| | - Barbara Lapinska
- Department of General Dentistry, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| |
Collapse
|
2
|
Zheng X, Al Naggar Y, Wu Y, Liu D, Hu Y, Wang K, Jin X, Peng W. Untargeted metabolomics description of propolis's in vitro antibacterial mechanisms against Clostridium perfringens. Food Chem 2023; 406:135061. [PMID: 36481515 DOI: 10.1016/j.foodchem.2022.135061] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Propolis is a natural resinous substance that is collected by honeybees (Apis mellifera) with promising antibacterial effects. Here, we examined the antibacterial activity of Chinese propolis against Clostridium perfringens, a bacterial pathogen that threatens food safety and causes intestinal erosion. The inhibitory effects of the ethanolic extract of Chinese propolis (CPE) on human-associated C. perfringens strains were determined by using the circle of inhibition, the minimum inhibitory concentrations, and bactericidal concentrations. CPE also induced morphological elongation, bacterial cell wall damage, and intracellular material leakage in C. perfringens. Untargeted HPLC-qTOF-MS-based metabolomics analysis of the bacterial metabolic compounds revealed that propolis triggered glycerophospholipid metabolism, one carbon pool by folate, and d-glutamine and d-glutamate metabolism alterations in C. perfringens. Finally, caffeic acid phenethyl ester was identified as the key active ingredient in CPE. This study suggested the usage of propolis as an alternative to antibiotics in controlling C. perfringens.
Collapse
Affiliation(s)
- Xing Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle, Germany
| | - Yuchen Wu
- Shanghai High School International Division (SHSID), Shanghai 200231, China
| | - Dan Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| | - Xiaolu Jin
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenjun Peng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|
3
|
Fernandes PM, Rosalen PL, Fernandes DT, Dias-Neto E, Alencar SM, Bueno-Silva B, Alves FDA, Lopes MA. Brazilian organic propolis for prevention and treatment of radiation-related oral acute toxicities in head and neck cancer patients: A double-blind randomized clinical trial. Front Pharmacol 2022; 13:973255. [PMID: 36278178 PMCID: PMC9585325 DOI: 10.3389/fphar.2022.973255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oral mucositis (OM) is one of the most important acute toxicities from radiotherapy (RT) in head and neck cancer patients and can impair oncologic treatment. Dysphagia, dysgeusia, pain, and oral candidiasis are other common toxicities. Brazilian Organic Propolis (BOP) is a recently described propolis variant and BOP types 4 and 6 have shown important antioxidant, anti-inflammatory, and antifungal properties.Purpose: To investigate the use of BOP as a preventive and/or complementary therapeutic option for radiotherapy-induced oral mucositis, dysphagia, dysgeusia, pain, and oral candidiasis. Additionally, proinflammatory cytokines were assessed to investigate their anti-inflammatory role.Methods: Sixty patients were included in this randomized, double-blind, controlled clinical trial. Patients were randomized to receive either aqueous suspension of a BOP or placebo throughout RT. Also, all patients underwent low-level laser therapy as routine oral care. OM, dysphagia, and dysgeusia were assessed weekly according to WHO and NCI scales. Pain-related to OM was assessed according to a Visual Analog Scale and the presence or absence of oral candidiasis was checked by intraoral examination. Protein levels of TNF-α and IL-1β from oral mucosa were assessed by ELISA.Results: Patients in the propolis group had a lower mean score of OM, dysphagia, dysgeusia, and most patients reported moderate pain. Fewer patients developed oral candidiasis in the propolis group, and the number of episodes was lower among patients that used BOP (p < 0.05). In addition, the BOP group presented significantly lower levels of IL-1β since the beginning of treatment when compared with placebo patients (p < 0.05) and a lower level of TNF-α at the end of treatment (p < 0.001).Conclusion: Topic use of BOP reduced TNF-α and IL-1β levels, oral candidiasis episodes, and seems to be a useful complementary option for the prevention and treatment of the main acute oral toxicities of RT.Clinical Trial Registration:http://www.ensaiosclinicos.gov.br/rg/RBR-9f8c78/, identifier RBR-9f8c78
Collapse
Affiliation(s)
- Patrícia Maria Fernandes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Bioscience, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Biological Sciences Graduate Program, Federal University of Alfenas, Alfenas, Minas Gerais, Brazil
| | - Diego Tetzner Fernandes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Emmanuel Dias-Neto
- Laboratory of Medical Genomics, Research International Center (CIPE), A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Severino Matias Alencar
- Department of Agri-food Industry, Food and Nutrition, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Bruno Bueno-Silva
- Dental Research Division, Guarulhos University, Guarulhos, São Paulo, Brazil
| | - Fábio de Abreu Alves
- Stomatology Department, A.C. Camargo Cancer Center, São Paulo, São Paulo, Brazil
| | - Márcio Ajudarte Lopes
- Oral Diagnosis Department, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- *Correspondence: Márcio Ajudarte Lopes,
| |
Collapse
|
4
|
Effects of Propolis and Persica Mouthwashes on Minor Aphthous Ulcers: A Comparative Study. JORJANI BIOMEDICINE JOURNAL 2022. [DOI: 10.52547/jorjanibiomedj.10.1.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
5
|
Measurement of the Level of Nitric Oxide in Exhaled Air in Patients Using Acrylic Complete Dentures and with Oral Pathologies. COATINGS 2021. [DOI: 10.3390/coatings11020169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The measurement of nitric oxide (NO) in exhaled air is used in diagnostics and monitoring of the pathologies in the respiratory system but also in the oral cavity. Researchers have shown a huge increase of its level in asthma and diseases in the oral cavity. It seems reasonable to research the impact of pathologies in the oral cavity on the level of NO in exhaled air. The purpose of this study was to determine the impact of inflammation in the oral cavity (according to the material of dentures) on the level of nitric oxide in exhaled air. Three groups of patients were examined in this study. The hygiene of acrylic dentures, hard tissues, periodontal tissues, hygiene of the oral cavity, and level of NO in exhaled air were examined. Prosthetic stomatitis, denture plaque, tooth decay, poor sanitation and periodontitis increase levels of NO.
Collapse
|
6
|
Rojczyk E, Klama-Baryła A, Łabuś W, Wilemska-Kucharzewska K, Kucharzewski M. Historical and modern research on propolis and its application in wound healing and other fields of medicine and contributions by Polish studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113159. [PMID: 32736052 DOI: 10.1016/j.jep.2020.113159] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The history of medical application of propolis (also known as bee glue) dates back to the times of ancient Greeks, Romans, Persians and Egyptians. Honey and other bee products, including propolis, occupy an important place in Polish folk medicine. Scientific research on propolis in Poland began in the early 1960s in Zabrze and continues until now. AIM OF THE REVIEW The aim of this review is to provide an overview of information on Polish research on propolis and its medical application with particular emphasis on studies concerning wound healing. Consequently, our goal is also to shed a new light on therapeutic potential of Polish propolis in order to support future research in the field. MATERIALS AND METHODS A systematic review of scientific literature on propolis and its medical application was performed by using the literature databases (PubMed, Web of Science, Google Scholar). We paid special attention to papers describing the effect of propolis on skin wound healing as well as to Polish contribution to research on propolis. RESULTS Professor Stan Scheller was the first Polish scientist dealing with propolis and its medical potential. His legacy was continued by several research teams that studied the topic in various aspects. They analyzed propolis composition, its antioxidant, anti-inflammatory, antimicrobial, antiapoptotic and anticancer properties as well as its application in dentistry and wound treatment. Burn wound healing physiology after propolis administration was thoroughly studied on pig model, whereas research on patients proved the efficacy of propolis in chronic venous leg ulcer treatment. CONCLUSION Polish scientists have made a significant contribution to the research on propolis, its biological properties and influence on wound healing. Propolis ointments can effectively accelerate the healing process and improve healing physiology, so they can be recommended as a promising topical medication for wound treatment in the future clinical and preclinical trials.
Collapse
Affiliation(s)
- Ewa Rojczyk
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland.
| | - Agnieszka Klama-Baryła
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Wojciech Łabuś
- The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| | - Katarzyna Wilemska-Kucharzewska
- Department of Internal Medicine, School of Public Health in Bytom, Medical University of Silesia, 7 Żeromskiego Street, 41-902, Bytom, Poland.
| | - Marek Kucharzewski
- Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, 19 Jordana Street, 41-808, Zabrze, Poland; The Burn Centre of Stanisław Sakiel, 2 Jana Pawła II Street, 41-100, Siemianowice Śląskie, Poland.
| |
Collapse
|
7
|
Miryan M, Alavinejad P, Abbaspour M, Soleimani D, Ostadrahimi A. Does propolis affect the quality of life and complications in subjects with irritable bowel syndrome (diagnosed with Rome IV criteria)? A study protocol of the randomized, double-blinded, placebo-controlled clinical trial. Trials 2020; 21:698. [PMID: 32758282 PMCID: PMC7405434 DOI: 10.1186/s13063-020-04615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is one of the most frequent and recurrent gastrointestinal diseases. However, up to now, no pharmacological agent has been approved to treat IBS. Emerging evidence showed that inflammation has a vital role in enhancing nervous system sensitivity and perception of abdominal pain in subjects with IBS. Propolis is an herbal substance with a broad spectrum of antioxidants, anti-inflammatory, and prebiotic properties, which might exert beneficial effects to reduce the severity of IBS. The current clinical trial aims to evaluate the efficacy of propolis supplementation on IBS. METHODS This single-center, randomized, double-blind, placebo-controlled clinical trial will be performed to evaluate the effect of propolis supplementation in adult patients with IBS diagnosed with Rome IV criteria. Fifty-two eligible patients will randomly be allocated to receive a propolis tablet (450 mg, containing 100 mg polyphenol compounds) or identical placebo, twice daily for 6 weeks. The primary outcome of the trial is an improvement in IBS severity from baseline to the sixth week of intervention. The secondary outcomes include the change in weight, waist circumference, and IBS quality of life. We will use the paired sample t test or Mann-Whitney U test for the within-group comparison and independent sample t test or Wilcoxon rank-sum and chi-square test or Fisher's exact test for the between-group comparison. Besides, a multivariable-adjusted mean effect will be computed using the ANCOVA test. DISCUSSION We hypothesize that propolis supplementation would be useful for treating IBS through its antioxidants, anti-inflammatory, and prebiotic properties. This trial will show the results of propolis supplementation, whether positive or negative, on IBS. If the current trial confirms our hypothesis, propolis supplementation can be a new choice in adjunctive therapy of IBS. TRIAL REGISTRATION Iranian Registry of Clinical Trials IRCT20190708044154N1. Registered on 26 December 2019. Updated on 13 February 2020. https://en.irct.ir/trial/40983 SPONSOR: Tabriz University of Medical Sciences, Tabriz, Iran.
Collapse
Affiliation(s)
- Mahsa Miryan
- Nutrition Research Center, Student Research Committee, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pezhman Alavinejad
- Alimentary Tract Research Center, Ahvaz Imam Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Davood Soleimani
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2019; 151:104582. [PMID: 31794871 DOI: 10.1016/j.phrs.2019.104582] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative pathology affecting milions of people worldwide associated with deposition of senile plaques. While the genetic and environmental risk factors associated with the onset and consolidation of late onset AD are heterogeneous and sporadic, growing evidence also suggests a potential link between some infectious diseases caused by oral microbiota and AD. Oral microbiota dysbiosis is purported to contribute either directly to amyloid protein production, or indirectly to neuroinflammation, occurring as a consequence of bacterial invasion. Over the last decade, the development of Human Oral Microbiome database (HOMD) has deepened our understanding of oral microbes and their different roles during the human lifetime. Oral pathogens mostly cause caries, periodontal disease, and edentulism in aged population, and, in particular, alterations of the oral microbiota causing chronic periodontal disease have been associated with the risk of AD. Here we describe how different alterations of the oral microbiota may be linked to AD, highlighting the importance of a good oral hygiene for the prevention of oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), and IdisBa, Palma de Mallorca, Balearic Islands, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex 51687, France
| | | | - Francesca Pistollato
- Centre for Health & Nutrition, Universidad Europea del Atlantico, Santander, Spain
| | - Tamara Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Grazia D'Onofrio
- Unit of Geriatrics, Department of Medical Sciences, Fondazione Casa Sollievo della sofferenza, San Giovanni Rotondo, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Becerra TB, Calla-Poma RD, Requena-Mendizabal MF, Millones-Gómez PA. Antibacterial Effect of Peruvian Propolis Collected During Different Seasons on the Growth of Streptococcus Mutans. Open Dent J 2019. [DOI: 10.2174/1874210601913010327] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Introduction:
Propolis is a gummy, resinous substance made by bees from the buds and exudates of plants. The antibacterial activity of propolis has been widely studied and is known to vary according to its geographical origin, the type of surrounding flora, the collecting bee species, the mode of its collection and even the season in which it is collected. Unfortunately, these observations have not been corroborated experimentally.
Aim:
To compare the antibacterial activities of ethanolic extracts of propolis collected in the summer and autumn on the growth of Streptococcus mutans ATCC 25175.
Materials and Methods:
Propolis samples were collected in the summer and autumn and labeled “A” or “B” by an individual who was not directly involved in the study. Then, 5% ethanolic extracts of propolis were prepared for each sample. S. mutans was plated onto brain heart infusion agar plates into which wells were formed, and the plates were divided into four groups to test the antibacterial effectiveness of both the extracts and the positive (0.12% chlorhexidine digluconate) and negative (96% ethanol) controls.
Results:
Inhibition halos of 26.4±2.6 and 18.2±1.8 mm were observed for the autumn and summer propolis extracts, respectively, while those of the negative and positive controls were 0 and 13 mm, respectively. These differences were statistically analyzed using Student’s t-test.
Conclusion:
The significantly higher growth of S. mutans in the extracts made from propolis collected in autumn than that grown on extracts collected in summer indicates that the season in which propolis is collected does indeed influence its antibacterial activity.
Collapse
|
10
|
Carvalho CD, Fernandes WHC, Mouttinho TBF, Souza DMD, Marcucci MC, D’Alpino PHP. Evidence-Based Studies and Perspectives of the Use of Brazilian Green and Red Propolis in Dentistry. Eur J Dent 2019; 13:459-465. [PMID: 31795009 PMCID: PMC6890504 DOI: 10.1055/s-0039-1700598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This review analyzes the evidence and perspectives of dental use of the green and red propolis produced in Brazil by Apis mellifera L. Multiple applications of propolis were found considering its antibacterial, antifungal, anti-inflammatory, immunomodulatory, antiviral, and healing properties. Its therapeutic effects are mainly due to the presence of alcohols, aldehydes, aliphatic acids, aliphatic esters, amino acids, aromatic acids, aromatic esters, flavonoids, hydrocarbyl esters, ethers, fatty acids, ketones, terpenes, steroids, and sugars. Propolis has been mainly used in dentistry in the composition of dentifrices and mouthwashes. Studies have also demonstrated promising use against dentin hypersensitivity, root canal treatment, Candida albicans, and other microorganisms. Overall review of the literature presented here demonstrated that both Brazilian green and red propolis are effective for the problems of multiple etiologies that affect the oral cavity in different dental specialties.
Collapse
Affiliation(s)
| | | | | | | | - Maria Cristina Marcucci
- Laboratory of Natural Products and Chemometrics, Programa de Pós-Graduação Stricto sensu em Farmácia, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Stricto sensu em Biotecnologia e Inovação em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| | - Paulo Henrique Perlatti D’Alpino
- Programa de Pós-Graduação Stricto sensu em Biotecnologia e Inovação em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
- Programa de Pós-Graduação Stricto sensu em Ensino de Ciências em Saúde, Universidade Anhanguera de São Paulo (UNIAN-SP), São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Habluetzel A, Schmid C, Carvalho TS, Lussi A, Eick S. Impact of honey on dental erosion and adhesion of early bacterial colonizers. Sci Rep 2018; 8:10936. [PMID: 30026515 PMCID: PMC6053432 DOI: 10.1038/s41598-018-29188-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/05/2018] [Indexed: 01/20/2023] Open
Abstract
The aim was to investigate if honey causes erosion and if salivary pellicle modified with honey, or its components, or the by-product propolis has a protective effect against dental erosion and adhesion of early bacterial colonizers. The tested substances were: 3 types of honey, methylglyoxal (MGO), hydrogen peroxide, propolis. First in the erosion experiment, 120 human enamel specimens were covered with salivary pellicle and modified with the substances. Then they were eroded with 1% citric acid, pH 3.6 for 2 min, before surface hardness was measured. In the microbiological assay, the enamel specimens (n = 126) covered with modified salivary pellicle were contaminated with bacterial suspensions. The antimicrobial activity of each substance and their effect on early bacterial colonizer adhesion and biofilm formation were determined. Despite a low pH, honey did not cause erosion. On the other hand, pellicle modification with the tested solutions did not protect the enamel from erosion. Microbiologically, the 3 honeys inhibited species-specific growth of oral bacteria. Propolis decreased initial attachment of Streptococcus gordonii, while one honey inhibited demineralization of enamel by biofilm. In conclusion, pellicle modification with honey, or its components, or propolis did neither protect against erosion nor promote it. Propolis presented some bacterial adhesion inhibition.
Collapse
Affiliation(s)
- Alexandra Habluetzel
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Christoph Schmid
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Thiago S Carvalho
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Adrian Lussi
- Department of Restorative, Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Shaikh S, Kumar SM. Beneficial effects of specific natural substances on oral health. Saudi Med J 2017; 38:1181-1189. [PMID: 29209665 PMCID: PMC5787627 DOI: 10.15537/smj.2017.12.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Substances that are consumed daily or occasionally may influence an individual’s oral health. Some substances, such as alcohol, tobacco, and areca nut, adversely affect the oral region. However, some other substances, such as honey and green tea, which have antimicrobial properties, and berries, which have anticarcinogenic potential, exhibit beneficial effects on oral health. The effectiveness of synthetic drugs in maintaining oral health cannot be ignored; however, the benefits of synthetic drugs are associated with adverse effects and high costs. By contrast, the medicinal use of natural substances is associated with safety, affordability, and long-term benefits. In this paper, we review various natural substances that are potentially beneficial to oral health.
Collapse
Affiliation(s)
- Sameer Shaikh
- Department of Oral Diagnosis and Oral Medicine, College of Dentistry, University of Ha'il, Ha'il, Kingdom of Saudi Arabia. E-mail.
| | | |
Collapse
|
13
|
The Influence of Toothpaste Containing Australian Melaleuca alternifolia Oil and Ethanolic Extract of Polish Propolis on Oral Hygiene and Microbiome in Patients Requiring Conservative Procedures. Molecules 2017; 22:molecules22111957. [PMID: 29137160 PMCID: PMC6150324 DOI: 10.3390/molecules22111957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023] Open
Abstract
The study was based on the use of a toothpaste with antiphlogistic activity, containing Australian Melaleuca alternifolia oil (tea tree oil—TTO) and ethanolic extract of Polish propolis (EEP). Fifty-one patients with varying conditions of the gingiva were divided into two groups. The study group received the toothpaste with TTO and EEP, while the control group received the same toothpaste but without TTO and EEP. Approximal plaque index (API), simplified oral hygiene index (OHI-s) and modified sulcus bleeding index (mSBI) were assessed in three subsequent stages. During each examination, swabs were employed for microbiological inoculation. During the period of use of toothpastes with TTO and EEP, a significant reduction of the API was observed, as assessed upon the control visit after 7 days and after 28 days, compared to baseline. A statistically significant reduction of mSBI was observed after 7 and 28 days of using the toothpaste with TTO and EEP, as compared to the value upon the initial visit. Statistically significant differences in the OHI-s value were observed in the study group, which was using the active toothpaste. The use of a toothpaste containing TTO and EEP helps to maintain microbiome balance. The observed stabilisation of bacterial microflora confirms the beneficial activity of toothpaste containing EEP and TTO compared to the control group, where the lack of these substances contributed to the emergence of qualitative and quantitative changes in oral microbiome.
Collapse
|