1
|
Angele P, Zellner J, Schröter S, Flechtenmacher J, Fritz J, Niemeyer P. Biological Reconstruction of Localized Full-Thickness Cartilage Defects of the Knee: A Systematic Review of Level 1 Studies with a Minimum Follow-Up of 5 Years. Cartilage 2022; 13:5-18. [PMID: 36250517 PMCID: PMC9924981 DOI: 10.1177/19476035221129571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE The objective of this study was to evaluate the best available mid- to long-term evidence of surgical procedures for the treatment of localized full-thickness cartilage defects of the knee. DESIGN Systematic review using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines of Level 1 randomized clinical trials (RCTs), meta-analyses of RCTs and systematic reviews with a minimum follow-up of 5 years. Data extracted included patient demographics, defect characteristics, clinical and radiological outcomes, as well as treatment failures. RESULTS Six RCTs and 3 Level 1 systematic reviews were included. Two RCTs compared microfracture (MFx) to periosteum-covered autologous chondrocyte implantation (ACI-P), 1 to matrix-associated ACI (M-ACI) and 2 to osteochondral autograft transplantation (OAT). One study compared OAT to collagen membrane covered ACI (ACI-C). The 3 Level 1 systematic reviews/meta-analyses assessed the outcome of MFx, OAT, and various ACI methods in RCTs. OAT showed significantly better outcomes compared with MFx. In the 2 RCTs comparing ACI-P and MFx, no significant differences in clinical outcomes were seen, whereas significantly better outcomes were reported for M-ACI versus MFx in 1 study including patients with larger defects (5 cm2), and for ACI-C versus OAT in terms of Cincinnati Score. Higher failure rates were reported for MFx compared with OAT and for OAT compared with ACI-C, while no significant differences in failure rates were observed for ACI-P compared to MFx. CONCLUSION Restorative cartilage procedures (ACI-C or M-ACI and OAT) are associated with better long-term clinical outcomes including lower complication and failure rates when compared with reparative techniques (MFx). Among the restorative procedures, OAT seems to be inferior to ACI especially in larger defects after longer follow-up periods. LEVEL OF EVIDENCE Level I: Systematic review of Level I studies.
Collapse
Affiliation(s)
- Peter Angele
- Sporthopaedicum Regensburg, Regensburg,
Germany,Klinik für Unfall- und
Wiederherstellungschirurgie, Universitätsklinikum Regensburg, Regensburg,
Germany,Peter Angele, Sporthopaedicum Regensburg,
Hildegard-von-Bingen-Strasse 1, 93053 Regensburg, Germany.
| | | | - Steffen Schröter
- Abteilung für Unfall- und
Wiederherstellungschirurgie, Jung-Stilling Krankenhaus, Diakonie Klinikum GmbH,
Siegen, Germany
| | | | - Jürgen Fritz
- Orthopädisch Chirurgisches Centrum,
Tübingen, Germany
| | - Philipp Niemeyer
- OCM—Orthopädische Chirurgie München,
München, Germany,Klinik für Orthopädie und
Traumatologie, Universitätsklinikum Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Nazim B Tengku Yusof T, Seow D, Vig KS. Extracorporeal Shockwave Therapy for Foot and Ankle Disorders: A Systematic Review and Meta-Analysis. J Am Podiatr Med Assoc 2022; 112:18-191. [PMID: 34878537 DOI: 10.7547/18-191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Extracorporeal shockwave therapy (ESWT) was first introduced into clinical practice in 1982 and has been a beneficial inclusion to the noninvasive treatment option of numerous orthopaedic pathologies. However, clinical evidence of the use of ESWT for various foot and ankle disorders has been limited with a consensus on its efficacy yet available. Therefore, the purpose of this study is to systematically review the literature, to provide a critical evaluation and meta-analysis for the use of ESWT in foot and ankle disorders. METHODS The PubMed and Embase databases were systematically reviewed and clinical studies that reported ESWT use for various foot and ankle disorders included. RESULTS A total of 24 clinical studies that included 12 randomized controlled trials and 12 case series were identified. Analysis of the evidence has indicated that ESWT can help manage plantar fasciitis, calcaneal spur, Achilles tendinopathy and Morton's neuroma. Meta-analysis of the change in pre- to post-VAS overall scores for plantar fasciitis significantly favored ESWT compared to placebo/conservative treatment with a MD -3.10 (95% CI, -4.36 to -1.83; I2 = 68%; P < 0.00001). CONCLUSIONS The current evidence has suggested that ESWT can provide symptomatic benefit to plantar fasciitis treatment, with minimal and unremarkable side effects. Overall, ESWT has been demonstrated to be a safe treatment option with a favorable complication profile. Further well-designed studies of ESWT for the treatment of calcaneal spurs, Achilles tendinopathy and Morton's neuroma are warranted to more soundly and safely support its current use. Future studies are suggested to investigate the optimization of ESWT treatment protocols.
Collapse
Affiliation(s)
| | - Dexter Seow
- †Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Khushdeep S Vig
- ‡Department of Orthopedic Surgery, Albany Medical Center, Albana, NY
| |
Collapse
|
3
|
Mairpady A, Mourad AHI, Mozumder MS. Accelerated Discovery of the Polymer Blends for Cartilage Repair through Data-Mining Tools and Machine-Learning Algorithm. Polymers (Basel) 2022; 14:polym14091802. [PMID: 35566970 PMCID: PMC9104973 DOI: 10.3390/polym14091802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
In designing successful cartilage substitutes, the selection of scaffold materials plays a central role, among several other important factors. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate the physical, mechanical, and biological properties that might be suitable for cartilage tissue engineering. Hence, the objective of this study is to implement an inverse design approach to predict the best polymer(s)/blend(s) for cartilage repair by using a machine-learning algorithm (i.e., multinomial logistic regression (MNLR)). Initially, a systematic bibliometric analysis on cartilage repair has been performed by using the bibliometrix package in the R program. Then, the database was created by extracting the mechanical properties of the most frequently used polymers/blends from the PoLyInfo library by using data-mining tools. Then, an MNLR algorithm was run by using the mechanical properties of the polymers, which are similar to the cartilages, as the input and the polymer(s)/blends as the predicted output. The MNLR algorithm used in this study predicts polyethylene/polyethylene-graftpoly(maleic anhydride) blend as the best candidate for cartilage repair.
Collapse
Affiliation(s)
- Anusha Mairpady
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Abdel-Hamid I. Mourad
- Mechanical and Aerospace Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- National Water and Energy Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Mohammad Sayem Mozumder
- Chemical and Petroleum Engineering Department, UAE University, Al Ain P.O. Box 15551, United Arab Emirates;
- Correspondence:
| |
Collapse
|
4
|
Filardo G, Andriolo L, Angele P, Berruto M, Brittberg M, Condello V, Chubinskaya S, de Girolamo L, Di Martino A, Di Matteo B, Gille J, Gobbi A, Lattermann C, Nakamura N, Nehrer S, Peretti GM, Shabshin N, Verdonk P, Zaslav K, Kon E. Scaffolds for Knee Chondral and Osteochondral Defects: Indications for Different Clinical Scenarios. A Consensus Statement. Cartilage 2021; 13:1036S-1046S. [PMID: 31941355 PMCID: PMC8808892 DOI: 10.1177/1947603519894729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To develop patient-focused consensus guidelines on the indications for the use of scaffolds to address chondral and osteochondral femoral condyle lesions. DESIGN The RAND/UCLA Appropriateness Method (RAM) was used to develop patient-specific recommendations by combining the best available scientific evidence with the collective judgement of a panel of experts guided by a core panel and multidisciplinary discussers. A list of specific clinical scenarios was produced regarding adult patients with symptomatic lesions without instability, malalignment, or meniscal deficiency. Each scenario underwent discussion and a 2-round vote on a 9-point Likert-type scale (range 1-3 "inappropriate," 4-6 "uncertain," 7-9 "appropriate"). Scores were pooled to generate expert recommendations. RESULTS Scaffold (chondral vs. osteochondral), patient characteristics (age and sport activity level), and lesion characteristics (etiology, size, and the presence of osteoarthritis [OA]) were considered to define 144 scenarios. The use of scaffold-based procedures was considered appropriate in all cases of chondral or osteochondral lesions when joints are not affected by OA, while OA joints presented more controversial results. The analysis of the evaluated factors showed a different weight in influencing treatment appropriateness: the presence of OA influenced 58.3% of the indications, while etiology, size, and age were discriminating factors in 54.2%, 29.2%, and 16.7% of recommendations, respectively. CONCLUSIONS The consensus identified indications still requiring investigation, but also the convergence of the experts in several scenarios defined appropriate or inappropriate, which could support decision making in the daily clinical practice, guiding the use of scaffold-based procedures for the treatment of chondral and osteochondral knee defects.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy,Luca Andriolo, Clinica Ortopedica e
Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Di Barbiano, 1/10,
Bologna 40136, Italy.
| | - Peter Angele
- Clinic for Trauma and Reconstructive
Surgery, University Hospital Regensburg, Regensburg, Bayern, Germany,Sporthopaedicum Regensburg, Regensburg,
Germany
| | - Massimo Berruto
- UOS Knee SURGERY-1st University Clinic
of Orthopaedics, ASST Pini-CTO, Milan, Italy
| | - Mats Brittberg
- Cartilage Research Unit, University of
Gothenburg, Gothenburg, Sweden,Region Halland Orthopaedics, Kungsbacka
Hospital, Kungsbacka, Sweden
| | - Vincenzo Condello
- Joint Preservation and Reconstructive
Surgery and Sports Medicine Unit, Humanitas Castelli Clinic, Bergamo, Lombardy,
Italy
| | - Susan Chubinskaya
- Department of Pediatrics, Orthopedic
Surgery & Medicine (Section of Rheumatology), Rush University Medical Center,
Chicago, IL, USA
| | - Laura de Girolamo
- Orthopaedic Biotechnology Laboratory,
IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Berardo Di Matteo
- Department of Biomedical Sciences,
Humanitas University, Rozzano, Milan, Italy,Humanitas Clinical and Research
Center- IRCCS, Via Manzoni 56, 20089, Rozzano - Milan, Italy
| | - Justus Gille
- Department of Trauma and Orthopaedic
Surgery, University Hospital Schleswig-Holstein, Campus Luebeck, Luebeck,
Germany
| | - Alberto Gobbi
- Orthopaedic Arthroscopic Surgery
International (OASI) Bioresearch Foundation, Milan, Italy
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Division of Sports Medicine, Center for Cartilage Repair, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Norimasa Nakamura
- Institute for Medical Science in
Sports, Osaka Health Science University, Osaka, Japan
| | - Stefan Nehrer
- Center for Regenerative Medicine,
Danube University, Krems an der Donau, Austria
| | - Giuseppe M. Peretti
- IRCCS Istituto Ortopedico Galeazzi,
Milan, Italy,Department of Biomedical Sciences for
Health, University of Milan, Milan, Italy
| | - Nogah Shabshin
- Department of Radiology, Emek Medical
Center, Clalit Healthcare Services, Afula, Israel,Department of Radiology, PennMedicine,
Philadelphia, PA, USA
| | - Peter Verdonk
- ORTHOCA, AZ Monica Hospitals, Antwerp,
Belgium,Aspetar Hospital, Doha, Qatar
| | - Kenneth Zaslav
- Ortho Virginia, Virginia Commonwealth
University, Richmond, VA, USA
| | - Elizaveta Kon
- Department of Biomedical Sciences,
Humanitas University, Rozzano, Milan, Italy,Humanitas Clinical and Research
Center- IRCCS, Via Manzoni 56, 20089, Rozzano - Milan, Italy,Department of Traumatology,
Orthopedics and Disaster Surgery, First Moscow State Medical University of the
Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russian
Federation
| |
Collapse
|
5
|
Kilian D, Sembdner P, Bretschneider H, Ahlfeld T, Mika L, Lützner J, Holtzhausen S, Lode A, Stelzer R, Gelinsky M. 3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00153-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Magnetic resonance imaging (MRI) is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body. So far, MRI data have not been used to model and generate a patient-specific design of multilayered tissue substitutes in the case of interfacial defects. For orthopedic cases that require highly individual surgical treatment, implant fabrication by additive manufacturing holds great potential. Extrusion-based techniques like 3D plotting allow the spatially defined application of several materials, as well as implementation of bioprinting strategies. With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans (OCD) patient, this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on different biomaterial inks. A workflow was developed which covers the processing steps of MRI-based defect identification, segmentation, modeling, implant design adjustment, and implant generation. A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting, the direct embedding of a patient’s own cells in the printing process. As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography (SLA) model of lesioned femoral condyles, a novel versatile CAD/CAM workflow was successfully established that opens up new perspectives for the treatment of multi-zonal (osteochondral) defects.
Graphic abstract
Collapse
|
6
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
7
|
Andriolo L, Di Martino A, Altamura SA, Boffa A, Poggi A, Busacca M, Zaffagnini S, Filardo G. Matrix-assisted chondrocyte transplantation with bone grafting for knee osteochondritis dissecans: stable results at 12 years. Knee Surg Sports Traumatol Arthrosc 2021; 29:1830-1840. [PMID: 32809120 DOI: 10.1007/s00167-020-06230-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE To document clinical and radiological results of arthroscopic matrix-assisted autologous chondrocyte transplantation (MACT) combined with bone grafting for the treatment of knee osteochondritis dissecans (OCD) at long-term follow-up. METHODS Thirty-one knees in 29 patients (20.4 ± 5.7 years) were treated for symptomatic unfixable OCD lesions (2.6 ± 1.1 cm2) and prospectively evaluated at 2, 5, and 12 years (average, minimum 10 years). Patients were evaluated over time with IKDC subjective score, EQ-VAS, and Tegner scores. Failures were also documented. At the final follow-up, MRI evaluation was performed in 14 knees with the MOCART 2.0 score. RESULTS Beside 4 early failures, an overall clinical improvement was documented: the IKDC subjective score improved from 39.9 ± 16.8 to 82.1 ± 17.0 and 84.8 ± 17.2 at 2 and 5 years, respectively (p < 0.0005), and remained stable for up to 12 years (85.0 ± 20.2). EQ-VAS and Tegner scores presented similar trends, but patients did not reach their original activity level. Worse results were obtained for lesions bigger than 4 cm2. At MRI evaluation, subchondral bone abnormalities were detected in over 85% of knees at long-term follow-up. CONCLUSIONS Arthroscopic bone grafting followed by MACT for unfixable knee OCD can offer a promising and stable clinical outcome over time in lesions smaller than 4 cm2, with a low failure rate of 13%. Persistent subchondral alterations were documented at long-term MRI evaluation, suggesting the limits of this approach to regenerate the osteochondral unit in patients affected by knee OCD. LEVEL OF EVIDENCE IV.
Collapse
Affiliation(s)
- Luca Andriolo
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Alessandro Di Martino
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Sante Alessandro Altamura
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy.
| | - Alberto Poggi
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Maurizio Busacca
- Centro di Riferimento di Radiologia in Attività di Ricerca, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Stefano Zaffagnini
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli, 1, 40136, Bologna, Italy
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Orthopaedic and Traumatology Unit, Ospedale Regionale di Lugano, EOC, Lugano, Switzerland
| |
Collapse
|
8
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
9
|
Khajavi M, Hajimoradloo A, Zandi M, Pezeshki-Modaress M, Bonakdar S, Zamani A. Fish cartilage: A promising source of biomaterial for biological scaffold fabrication in cartilage tissue engineering. J Biomed Mater Res A 2021; 109:1737-1750. [PMID: 33738960 DOI: 10.1002/jbm.a.37169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Here, engineered cartilage-like scaffold using an extracellular matrix (ECM) from sturgeon fish cartilage provided a chondroinductive environment to stimulate cartilaginous matrix synthesis in human adipose stem cells (hASCs). Three dimensional porous and degradable fish cartilage ECM-derived scaffold (FCS) was produced using a protocol containing chemical decellularization, enzymatic solubilization, freeze-drying and EDC-crosslinking treatments and the effect of different ECM concentrations (10, 20, 30, and 40 mg/ml) on prepared scaffolds was investigated through physical, mechanical and biological analysis. The histological and scanning electron microscopy analysis revealed the elimination of the cell fragments and a 3-D interconnected porous structure, respectively. Cell viability assay displayed no cytotoxic effects. The prepared porous constructs of fish cartilage ECM were seeded with hASCs for 21 days and compared to collagen (Col) and collagen-10% hyaluronic acid (Col-HA) scaffolds. Cell culture results evidenced that the fabricated scaffolds could provide a proper 3-D structure to support the adhesion, proliferation and chondrogenic differentiation of hASCs considering the synthesis of specific proteins of cartilage, collagen type II (Col II) and aggrecan (ACAN). Based on the results of the present study, it can be concluded that the porous scaffold derived from fish cartilage ECM possesses an excellent potential for cartilage tissue engineering.
Collapse
Affiliation(s)
- Maryam Khajavi
- Department of Fisheries, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Abdolmajid Hajimoradloo
- Department of Fisheries, Faculty of Fisheries and Environmental Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mojgan Zandi
- Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | | - Shahin Bonakdar
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Abbas Zamani
- Department of Fisheries, Faculty of Natural Resources and Environment, Malayer University, Malayer, Iran
| |
Collapse
|
10
|
De Moor L, Minne M, Tytgat L, Vercruysse C, Dubruel P, Van Vlierberghe S, Declercq H. Tuning the Phenotype of Cartilage Tissue Mimics by Varying Spheroid Maturation and Methacrylamide-Modified Gelatin Hydrogel Characteristics. Macromol Biosci 2021; 21:e2000401. [PMID: 33729714 DOI: 10.1002/mabi.202000401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/14/2022]
Abstract
In hybrid bioprinting of cartilage tissue constructs, spheroids are used as cellular building blocks and combined with biomaterials for dispensing. However, biomaterial intrinsic cues can deeply affect cell fate and to date, the influence of hydrogel encapsulation on spheroid viability and phenotype has received limited attention. This study assesses this need and unravels 1) how the phenotype of spheroid-laden constructs can be tuned through adjusting the hydrogel physico-chemical properties and 2) if the spheroid maturation stage prior to encapsulation is a determining factor for the construct phenotype. Articular chondrocyte spheroids with a cartilage specific extracellular matrix (ECM) are generated and different maturation stages, early-, mid-, and late-stage (3, 7, and 14 days, respectively), are harvested and encapsulated in 10, 15, or 20 w/v% methacrylamide-modified gelatin (gelMA) for 14 days. The encapsulation of immature spheroids do not lead to a cartilage-like ECM production but when more mature mid- or late-stage spheroids are combined with a certain concentration of gelMA, a fibrocartilage-like as well as a hyaline cartilage-like phenotype can be induced. As a proof of concept, late-stage spheroids are bioprinted using a 10 w/v% gelMA-Irgacure 2959 solution with the aim to test the processing potential of the spheroid-laden bioink.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium
| | - Mendy Minne
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, Kortrijk, 8500, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Chris Vercruysse
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Ghent University, Ghent, 9000, Belgium.,Tissue Engineering Lab, Department of Development and Regeneration, KU Leuven, Kortrijk, 8500, Belgium
| |
Collapse
|
11
|
Luo S, Shi Q, Li W, Wu W, Zha Z. ITGB1 promotes the chondrogenic differentiation of human adipose-derived mesenchymal stem cells by activating the ERK signaling. J Mol Histol 2020; 51:729-739. [PMID: 33057850 DOI: 10.1007/s10735-020-09918-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022]
Abstract
Adipose-derived mesenchymal stem cell (ADSC) with a high capacity of chondrogenic differentiation was a promising candidate for cartilage defect treatment. This study's objective is to study the roles of integrin β1 (ITGB1) in regulating ADSC chondrogenic differentiations as well as the underlying mechanisms. The identity of ADSC was confirmed by flow cytometry. ITGB1 gene was overexpressed in human ADSC (hADSC) by transfection with LV003-recombinant plasmids. Gene mRNA and protein levels were examined using quantitative RT-PCR and western blotting, respectively. Differentially expressed mRNAs and proteins were characterized by next-generation RNA sequencing and label-free quantitative proteomics, respectively. ERK signaling and AKT signaling in hADSCs were inhibited by treating with SCH772984 and GSK690693, respectively. ITGB1 gene overexpression substantially increased collagen type II alpha 1 chain (COL2A1), aggrecan (ACAN), and SRY-box transcription factor 9 (SOX9) expression but suppressed collagen type I alpha 1 chain (COL1A1) expression in hADSCs. Next-generation RNA sequencing identified a total of 246 genes differentially expressed in hADSCs by ITGB1 overexpression, such as 183 upregulated and 63 downregulated genes. Label-free proteomics characterized 34 proteins differentially expressed in ITGB1-overexpressing hADSCs. Differentially expressed genes and proteins were enriched by different biological processes such as cell adhesion and differentiation and numerous signaling pathways such as the ERK signaling pathway. ERK inhibitor treatment caused substantially enhanced chondrogenic differentiation in ITGB1-overexpressing hADSCs. ITGB1 promoted the chondrogenic differentiation of human ADSCs via the activation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Simin Luo
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Qiping Shi
- Department of Endocrine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wuji Li
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Wenrui Wu
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Zhengang Zha
- Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
12
|
Seow D, Tengku Yusof TNB, Yasui Y, Shimozono Y, Kennedy JG. Treatment Options for Turf Toe: A Systematic Review. J Foot Ankle Surg 2020; 59:112-116. [PMID: 31882133 DOI: 10.1053/j.jfas.2018.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 02/03/2023]
Abstract
Turf toe is hyperextension injury of the plantar plate at the first metatarsophalangeal joint. Etiologies have often included sports/activities with excessive forefoot axial loading and/or violent pivotal movements. The purpose of the systematic review was to systematically review and present an overview for the current evidence-based treatment options of turf toe. Both authors systematically reviewed the PubMed and EMBASE databases from inception to April 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The level of evidence and quality of evidence were assessed by using the Level of Evidence for Primary Research Question of the Journal of Bone and Joint Surgery, and the quality of evidence was assessed with use of the Newcastle-Ottawa scale. Data were collected and categorized into: case reports and case series. Eight studies (16 turf toes) met the aforementioned criteria and were included. Five case reports and 3 case series reported various treatment options for turf toe. Specifically, 3 studies reported solely conservative treatment (n = 5), 1 study reported solely surgical treatment (n = 1), and 4 studies involved patients in conservative and/or surgical treatments (n = 10). All studies were of level of clinical evidence 4 and quality of clinical evidence score 2 (poor quality). Conservative treatment included closed reduction and immobilization, and surgical treatment included plantar plate tenodesis. Restricted dorsiflexion was the most common complication reported. Turf toe is an underreported injury with no evidence-based treatment guideline to date. Future studies of higher level and quality of evidence with a specific classification system (Jahss or Anderson) consistently reported are warranted for the development of an optimal guideline to determine the most appropriate treatment for each specific severity in injury.
Collapse
Affiliation(s)
- Dexter Seow
- Research Fellow, Department of Orthopedic Surgery, NYU Langone Health, New York, NY.
| | | | - Youichi Yasui
- Assistant Professor, Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshiharu Shimozono
- Orthopedic Surgeon, Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan; Orthopedic Surgeon, Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| | - John G Kennedy
- Chief of Foot and Ankle Surgery, Department of Orthopedic Surgery, NYU Langone Health, New York, NY
| |
Collapse
|
13
|
De Moor L, Fernandez S, Vercruysse C, Tytgat L, Asadian M, De Geyter N, Van Vlierberghe S, Dubruel P, Declercq H. Hybrid Bioprinting of Chondrogenically Induced Human Mesenchymal Stem Cell Spheroids. Front Bioeng Biotechnol 2020; 8:484. [PMID: 32523941 PMCID: PMC7261943 DOI: 10.3389/fbioe.2020.00484] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
To date, the treatment of articular cartilage lesions remains challenging. A promising strategy for the development of new regenerative therapies is hybrid bioprinting, combining the principles of developmental biology, biomaterial science, and 3D bioprinting. In this approach, scaffold-free cartilage microtissues with small diameters are used as building blocks, combined with a photo-crosslinkable hydrogel and subsequently bioprinted. Spheroids of human bone marrow-derived mesenchymal stem cells (hBM-MSC) are created using a high-throughput microwell system and chondrogenic differentiation is induced during 42 days by applying chondrogenic culture medium and low oxygen tension (5%). Stable and homogeneous cartilage spheroids with a mean diameter of 116 ± 2.80 μm, which is compatible with bioprinting, were created after 14 days of culture and a glycosaminoglycans (GAG)- and collagen II-positive extracellular matrix (ECM) was observed. Spheroids were able to assemble at random into a macrotissue, driven by developmental biology tissue fusion processes, and after 72 h of culture, a compact macrotissue was formed. In a directed assembly approach, spheroids were assembled with high spatial control using the bio-ink based extrusion bioprinting approach. Therefore, 14-day spheroids were combined with a photo-crosslinkable methacrylamide-modified gelatin (gelMA) as viscous printing medium to ensure shape fidelity of the printed construct. The photo-initiators Irgacure 2959 and Li-TPO-L were evaluated by assessing their effect on bio-ink properties and the chondrogenic phenotype. The encapsulation in gelMA resulted in further chondrogenic maturation observed by an increased production of GAG and a reduction of collagen I. Moreover, the use of Li-TPO-L lead to constructs with lower stiffness which induced a decrease of collagen I and an increase in GAG and collagen II production. After 3D bioprinting, spheroids remained viable and the cartilage phenotype was maintained. Our findings demonstrate that hBM-MSC spheroids are able to differentiate into cartilage microtissues and display a geometry compatible with 3D bioprinting. Furthermore, for hybrid bioprinting of these spheroids, gelMA is a promising material as it exhibits favorable properties in terms of printability and it supports the viability and chondrogenic phenotype of hBM-MSC microtissues. Moreover, it was shown that a lower hydrogel stiffness enhances further chondrogenic maturation after bioprinting.
Collapse
Affiliation(s)
- Lise De Moor
- Tissue Engineering Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sélina Fernandez
- Tissue Engineering Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Chris Vercruysse
- Tissue Engineering Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Liesbeth Tytgat
- Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Mahtab Asadian
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Peter Dubruel
- Polymer Chemistry and Biomaterials Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Heidi Declercq
- Tissue Engineering Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Tissue Engineering Lab, Department of Development and Regeneration, Faculty of Medicine, KU Leuven Kulak, Kortrijk, Belgium
- *Correspondence: Heidi Declercq, ;
| |
Collapse
|
14
|
Alkaya D, Gurcan C, Kilic P, Yilmazer A, Gurman G. Where is human-based cellular pharmaceutical R&D taking us in cartilage regeneration? 3 Biotech 2020; 10:161. [PMID: 32206495 DOI: 10.1007/s13205-020-2134-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Lately, cellular-based cartilage joint therapies have gradually gained more attention, which leads to next generation bioengineering approaches in the development of cell-based medicinal products for human use in cartilage repair. The greatest hurdles of chondrocyte-based cartilage bioengineering are: (i) preferring the cell source; (ii) differentiation and expansion processes; (iii) the time necessary for chondrocyte expansion pre-implantation; and (iv) fixing the chondrocyte count in accordance with the lesion surface area of the patient in question. The chondrocyte presents itself to be the focal starting material for research and development of bioengineered cartilage-based medicinal products which promise the regeneration and restoration of non-orthopedic cartilage joint defects. Even though chondrocytes seem to be the first choice, inevitable complications related to proliferation, dedifferentation and redifferentiation are probable. Detailed studies are a necessity to fully investigate detailed culturing conditions, the chondrogenic strains of well-defined phenotypes and evaluation of the methods to be used in biomaterial production. Despite a majority of the current methods which aid amelioration of joint functionality, they are insufficient in fully restoring the natural structure and composition of the joint cartilage. Hence current studies have trended towards gene therapy, mesenchymal stem cells and tissue engineering practices. There are many studies addressing the outcomes of chondrocytes in the clinical scene, and many vital biomaterials have been developed for structuring the bioengineered cartilage. This study aims to convey to the audience the practical significance of chondrocyte-based clinical applications.
Collapse
|
15
|
Pereira HF, Cengiz IF, Silva FS, Reis RL, Oliveira JM. Scaffolds and coatings for bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:27. [PMID: 32124052 DOI: 10.1007/s10856-020-06364-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/13/2020] [Indexed: 05/28/2023]
Abstract
Bone tissue has an astonishing self-healing capacity yet only for non-critical size defects (<6 mm) and clinical intervention is needed for critical-size defects and beyond that along with non-union bone fractures and bone defects larger than critical size represent a major healthcare problem. Autografts are, still, being used as preferred to treat large bone defects. Mostly, due to the presence of living differentiated and progenitor cells, its osteogenic, osteoinductive and osteoconductive properties that allow osteogenesis, vascularization, and provide structural support. Bone tissue engineering strategies have been proposed to overcome the limited supply of grafts. Complete and successful bone regeneration can be influenced by several factors namely: the age of the patient, health, gender and is expected that the ideal scaffold for bone regeneration combines factors such as bioactivity and osteoinductivity. The commercially available products have as their main function the replacement of bone. Moreover, scaffolds still present limitations including poor osteointegration and limited vascularization. The introduction of pores in scaffolds are being used to promote the osteointegration as it allows cell and vessel infiltration. Moreover, combinations with growth factors or coatings have been explored as they can improve the osteoconductive and osteoinductive properties of the scaffold. This review focuses on the bone defects treatments and on the research of scaffolds for bone regeneration. Moreover, it summarizes the latest progress in the development of coatings used in bone tissue engineering. Despite the interesting advances which include the development of hybrid scaffolds, there are still important challenges that need to be addressed in order to fasten translation of scaffolds into the clinical scenario. Finally, we must reflect on the main challenges for bone tissue regeneration. There is a need to achieve a proper mechanical properties to bear the load of movements; have a scaffolds with a structure that fit the bone anatomy.
Collapse
Affiliation(s)
- Helena Filipa Pereira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal.
| | - Ibrahim Fatih Cengiz
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Filipe Samuel Silva
- Center for Micro-Electro Mechanical Systems, University of Minho, Azurém Campus, 4800-058, Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, Barco, 4805-017, Guimarães, Portugal
| |
Collapse
|
16
|
Long-term Results of Matrix-assisted Autologous Chondrocyte Transplantation Combined With Autologous Bone Grafting for the Treatment of Juvenile Osteochondritis Dissecans. J Pediatr Orthop 2020; 40:e115-e121. [PMID: 31107345 DOI: 10.1097/bpo.0000000000001404] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Osteochondritis dissecans is a pathology affecting young patients that involves the entire osteochondral unit. In the case of unfixable fragments, regenerative cartilage treatments are a viable solution, but little is known about the use of these procedures for the treatment of juvenile osteochondritis dissecans (JOCD). The aim of this study was to evaluate the long-term results offered by matrix-assisted autologous chondrocyte transplantation combined with autologous bone grafting for the treatment of JOCD. METHODS Nineteen patients have been enrolled. The mean age at the time of treatment was 16.8±1.5 years, with a mean body mass index of 22.9±2.7. The average size of the defects was 2.8±1.2 cm. All patients were evaluated prospectively before surgery and at 12, 24, 60, and at a final follow-up of 120 months with International Knee Documentation Committee scores, EuroQol-Visual Analogue Scale, and the Tegner Score. RESULTS A statistically significant improvement in all clinical scores was observed from baseline evaluation to 120 months of final follow-up. In particular, the International Knee Documentation Committee subjective score improved from the preoperative evaluation of 38.7±17.3 to 74.0±21.8 at 12 months (P<0.0005), with scores remaining stable for up to 120 months (83.8±20.7), with all follow-ups showing a statistically significant improvement compared with the basal value (P<0.0005). Three patients failed at 12 months, for a failure rate of 16% at 10 years of follow-up. Lesions >3.5 cm obtained worse subjective results. In addition, lesion size and female sex were significantly associated with failures. CONCLUSIONS The matrix-assisted autologous chondrocyte transplantation technique with autologous bone grafting is a valid treatment option for JOCD in case of unfixable fragments. The clinical improvement obtained is significant and stable, with good results maintained for up to 10 years of follow-up and an overall low failure rate. Lesion size and sex could influence the clinical outcome and should be considered in the treatment choice. LEVEL OF EVIDENCE Level IV-case series.
Collapse
|
17
|
Yontar NS, Aslan L, Can A, Ogut T. One step treatment of talus osteochondral lesions with microfracture and cell free hyaluronic acid based scaffold combination. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2019; 53:372-375. [PMID: 31126702 PMCID: PMC6819796 DOI: 10.1016/j.aott.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/30/2018] [Accepted: 04/05/2019] [Indexed: 01/25/2023]
Abstract
Objective The aim of this study was to assess the effectiveness of microfracture and cell free hyaluronic acid (HA) based scaffold combination in the treatment of talus osteochondral defects (OCD). Methods This study retrospectively evaluated the clinical results of the 20 patients (14 males and 6 females, mean age at the time of surgery: 32.9 years (range: 16–52 years)) who were treated with MFx and cell-free HA-based scaffold combination for talus OCD smaller than 1.5 cm2 and deeper than 7 mm. Results were evaluated with AOFAS and VAS scores. Also, patients' satisfaction was questioned. Results Patients were evaluated after an average follow-up of 20.3 months. Intraoperative measurements showed that mean depth of the lesions were 10.4 ± 1.9 mm after debridement. The mean preoperative AOFAS score was 57.45 ± 9.37, which increased to 92.45 ± 8.4 postoperatively (p < 0.05). VAS score was improved from 7.05 ± 2.45 to 1.65 ± 2.20 postoperatively (p < 0.05). Conclusion MFx and cell-free HA-based scaffold combination appear to be a safe and efficient technique that provide good clinical outcomes for lesions deeper than 7 mm. Level of evidence Level IV, Therapeutic Study.
Collapse
|
18
|
Khalilifar MA, Baghaban Eslaminejad MR, Ghasemzadeh M, Hosseini S, Baharvand H. In Vitro and In Vivo Comparison of Different Types of Rabbit Mesenchymal Stem Cells for Cartilage Repair. CELL JOURNAL 2019; 21:150-160. [PMID: 30825288 PMCID: PMC6397606 DOI: 10.22074/cellj.2019.6149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/08/2018] [Indexed: 01/09/2023]
Abstract
Objective Systematic studies indicate a growing number of clinical studies that use mesenchymal stem cells (MSCs) for the
treatment of cartilage lesions. The current experimental and preclinical study aims to comparatively evaluate the potential of
MSCs from a variety of tissues for the treatment of cartilage defect in rabbit’s knee which has not previously been reported.
Materials and Methods In this experimental study, MSCs isolated from bone marrow (BMMSCs), adipose (AMSCs), and ears
(EMSCs) of rabbits and expanded under in vitro culture. The growth rate and differentiation ability of MSCs into chondrocyte
and the formation of cartilage pellet were investigated by drawing the growth curve and real-time polymerase chain reaction
(RT-PCR), respectively. Then, the critical cartilage defect was created on the articular cartilage (AC) of the rabbit distal femur,
and MSCs in collagen carrier were transplanted. The studied groups were as the control (only defect), sham (defect with
scaffold), BMMSCs in the scaffold, EMSCs in the scaffold, and EMSCs in the scaffold with cartilage pellets. Histological and
the gene expression analysis were performed following the transplantation.
Results Based on our comparative in vitro investigation, AMSCs possessed the highest growth rate, as well as the
lowest chondrogenic differentiation potential. In this context, MSCs of the ear showed a significantly higher growth rate
and cartilage differentiation potential than those of bone marrow tissue (P<0.05). According to our in vivo assessments,
BMMSC- and EMSC-seeded scaffolds efficiently improved the cartilage defect 4 weeks post-transplantation, while no
improvement was observed in the group contained the cartilage pellets.
Conclusion It seems that the ear contains MSCs that promote cartilage regeneration as much as the conventional MSCs
from the bone marrow. Considering a high proliferation rate and easy harvesting of MSCs of the ear, this finding could be of
value for the regenerative medicine.
Collapse
Affiliation(s)
- Mohammad Ali Khalilifar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Mohamad Reza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran. Electronic Address:
| | - Mohammad Ghasemzadeh
- Infertility and Reproductive Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
19
|
Utomo DN, Mahyudin F, Wardhana TH, Purwati P, Brahmana F, Gusti AWR. Physicobiochemical Characteristics and Chondrogenic Differentiation of Bone Marrow Mesenchymal Stem Cells (hBM-MSCs) in Biodegradable Porous Sponge Bovine Cartilage Scaffold. Int J Biomater 2019; 2019:8356872. [PMID: 30805001 PMCID: PMC6360592 DOI: 10.1155/2019/8356872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/07/2018] [Accepted: 12/19/2018] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering had been believed to overcome the limitation of cartilage lesions treatment. Nowadays the studies focus on using mesenchymal stem cells in scaffold. A biodegradable porous sponge bovine cartilage scaffold is expected to have the physicobiochemical characterization to promote chondrogenic differentiation of hBM-MSCs. Scaffold from bovine cartilage was printed in 5 mm diameter sponge, categorized into nondecellularized (SBCS) and decellularized (DSBCS). Physical characteristics (pore diameter and interconnectivity) were done using a Scanning Electron Microscope (SEM). Biodegradability assessment used Phosphate Buffered Saline in 15, 30, 60 minutes, 6, 24, 48, 72 hours, and 1, 2 weeks. The swelling ratios were counted in 5, 10, 15, 30, 60, and 360 minutes. Biochemical characteristics were obtained by enzyme-linked immunosorbent assay for type II collagen, aggrecan, and Transforming Growth Factors-β (TGF-β). Data were statistically compared. hBM-MSCs were seeded on both scaffolds. Histological examination used hematoxylin-eosin taken at the 2nd and 4th weeks after seeding. There was no significant difference (p=0.473; p=0.142) on mean porosity 90.07 ± 4.64% vs. 88.93 ± 4.18% and pore diameter 111.83 ± 14.23 μm vs. 105.29 ± 11.14 μm assessment between SBCS and DSBCS groups. Scaffolds from both groups showed pore interconnectivity. DSBCS group had faster biodegradability. SBCS group sweals better. SBCS group contains type II collagen, aggrecan, and TGF-β with mean values 380.78 ± 18.63 ng/ml, 30.71 ± 4.50 ng/ml, and 130.12 ± 7.73 ng/ml, respectively, while DSBCS contained type II collagen, aggrecan, and TGF-β with mean values 64.83 ± 13.54 ng/ml, 8.41 ± 2.38 ng/ml, and 16.39 ± 4.49 ng/ml, respectively. The results were statistically different (p<0.001). Chondrocytes were found within scaffold on the 2nd and 4th weeks. Physicobiochemical characteristic of biodegradable sponge bovine cartilage scaffold promotes chondrogenic differentiation of hBM-MSCs.
Collapse
Affiliation(s)
- Dwikora Novembri Utomo
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Ferdiansyah Mahyudin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Teddy Heri Wardhana
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | - Purwati Purwati
- Stem Cell Research and Development Center, Universitas Airlangga, Surabaya, Indonesia
| | - Febrian Brahmana
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universitas Airlangga/Dr. Soetomo General Hospital, Surabaya, Indonesia
| | | |
Collapse
|
20
|
López-Alcorocho JM, Guillén-Vicente I, Rodríguez-Iñigo E, Guillén-Vicente M, Fernández-Jaén TF, Caballero R, Casqueiro M, Najarro P, Abelow S, Guillén-García P. Study of Telomere Length in Preimplanted Cultured Chondrocytes. Cartilage 2019; 10:36-42. [PMID: 29322876 PMCID: PMC6376562 DOI: 10.1177/1947603517749918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DESIGN In the process of cell division, the extremes of the eukaryotic chromosomes are progressively shortening, and this phenomenon is related to cell degeneration and senescence. The treatment of cartilage lesions with autologous chondrocytes implies that cells proliferate in an artificial environment. We have studied the viability of cultured chondrocytes after measurement of their telomere length before implantation. METHODS Articular cartilage biopsies (B1, B2, and B3) were obtained from 3 patients (2 males and 1 female) with knee cartilage defects, who were going to be treated with chondrocyte implantation. Chondrocytes were cultured in DMEM with autologous serum. After the third passage, an aliquot of 1 million cells was removed to estimate the telomere length and the remaining cells were implanted. Telomere length was measured by quantitative fluorescent in situ hybridization (Q-FISH). Patients' clinical outcome was determined preoperatively, and 12 and 24 months postimplantation with the International Knee Documentation Committee (IKDC) questionnaire. RESULTS After chondrocyte implantation, IKDC score doubled at 12 and 24 months with regard to the basal value. After 3 passages, chondrocytes were cultured for a mean of 45.67 days, the mean duplication time being 4.53 days and the mean number of cell divisions being 10.04 during the culture period. The 20th percentile of telomere lengths were 6.84, 6.96, and 7.06 kbp and the median telomere lengths 10.30, 10.47, and 10.73 kbp, respectively. No significant correlation was found between IKDC score and telomere length. CONCLUSION Culturing autologous chondrocytes for implantation is not related to cell senescence in terms of telomere length.
Collapse
Affiliation(s)
- Juan Manuel López-Alcorocho
- Research Unit, Clínica Cemtro, Madrid, Spain,Juan Manuel López-Alcorocho, Research Unit, Clínica Cemtro, C/ Ventisquero de la Condesa, 42, 28035 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Onofrillo C, Duchi S, O'Connell CD, Blanchard R, O'Connor AJ, Scott M, Wallace GG, Choong PFM, Di Bella C. Biofabrication of human articular cartilage: a path towards the development of a clinical treatment. Biofabrication 2018; 10:045006. [PMID: 30088479 DOI: 10.1088/1758-5090/aad8d9] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cartilage injuries cause pain and loss of function, and if severe may result in osteoarthritis (OA). 3D bioprinting is now a tangible option for the delivery of bioscaffolds capable of regenerating the deficient cartilage tissue. Our team has developed a handheld device, the Biopen, to allow in situ additive manufacturing during surgery. Given its ability to extrude in a core/shell manner, the Biopen can preserve cell viability during the biofabrication process, and it is currently the only biofabrication tool tested as a surgical instrument in a sheep model using homologous stem cells. As a necessary step toward the development of a clinically relevant protocol, we aimed to demonstrate that our handheld extrusion device can successfully be used for the biofabrication of human cartilage. Therefore, this study is a required step for the development of a surgical treatment in human patients. In this work we specifically used human adipose derived mesenchymal stem cells (hADSCs), harvested from the infra-patellar fat pad of donor patients affected by OA, to also prove that they can be utilized as the source of cells for the future clinical application. With the Biopen, we generated bioscaffolds made of hADSCs laden in gelatin methacrylate, hyaluronic acid methacrylate and cultured in the presence of chondrogenic stimuli for eight weeks in vitro. A comprehensive characterisation including gene and protein expression analyses, immunohistology, confocal microscopy, second harmonic generation, light sheet imaging, atomic force mycroscopy and mechanical unconfined compression demonstrated that our strategy resulted in human hyaline-like cartilage formation. Our in situ biofabrication approach represents an innovation with important implications for customizing cartilage repair in patients with cartilage injuries and OA.
Collapse
Affiliation(s)
- Carmine Onofrillo
- Department of Surgery, St Vincent's Hospital, University of Melbourne, Clinical Sciences Building, 29 Regent Street, 3065 Fitzroy, VIC, Australia. ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Innovation Campus, University of Wollongong, NSW, Australia. BioFab3D, Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Seow D, Yasui Y, Hurley ET, Ross AW, Murawski CD, Shimozono Y, Kennedy JG. Extracellular Matrix Cartilage Allograft and Particulate Cartilage Allograft for Osteochondral Lesions of the Knee and Ankle Joints: A Systematic Review. Am J Sports Med 2018; 46:1758-1766. [PMID: 28800402 DOI: 10.1177/0363546517717494] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Extracellular matrix cartilage allografts (EMCAs) and particulate cartilage allografts (PCAs) are relatively new biologics that may improve the quality of cartilage regeneration after bone marrow stimulation. The increasing popularity of these novel biologics in the treatment of osteochondral lesions (OCLs) of the knee and ankle joints prompts a systematic evaluation of their efficacies. PURPOSE The purpose of this systematic review was to clarify the effectiveness of EMCAs and PCAs on cartilage regeneration. STUDY DESIGN Systematic review; Level of evidence, IV. METHODS Two reviewers searched MEDLINE and Embase in February 2016 based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Predetermined variables from each study were extracted and analyzed. RESULTS For EMCAs, 1 in vitro study and 2 clinical studies for OCLs of the ankle joint were found. For PCAs, 3 in vitro studies, 5 clinical studies for OCLs of the knee joint, and 5 clinical studies for OCLs of the ankle joint were found. For all studies, in vitro chondrogenesis and clinical outcomes favored EMCAs and PCAs. However, the highest level of evidence was IV, and the methodological quality of evidence was indicated to be poor. CONCLUSION Both EMCAs and PCAs have yielded favorable outcomes in both in vitro and clinical studies. However, the available studies were of limited data with significant confounding factors. Therefore, it is unclear whether the effectiveness of these novel biologics is any greater than that of bone marrow stimulation alone in the repair of knee and ankle cartilage.
Collapse
Affiliation(s)
- Dexter Seow
- Hospital for Special Surgery, New York, New York, USA.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Youichi Yasui
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | - Eoghan T Hurley
- Hospital for Special Surgery, New York, New York, USA.,Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Andrew W Ross
- Hospital for Special Surgery, New York, New York, USA
| | - Christopher D Murawski
- Hospital for Special Surgery, New York, New York, USA.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoshiharu Shimozono
- Hospital for Special Surgery, New York, New York, USA.,Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan.,Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
23
|
Čamernik K, Barlič A, Drobnič M, Marc J, Jeras M, Zupan J. Mesenchymal Stem Cells in the Musculoskeletal System: From Animal Models to Human Tissue Regeneration? Stem Cell Rev Rep 2018; 14:346-369. [DOI: 10.1007/s12015-018-9800-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Yang Y, Lin H, Shen H, Wang B, Lei G, Tuan RS. Mesenchymal stem cell-derived extracellular matrix enhances chondrogenic phenotype of and cartilage formation by encapsulated chondrocytes in vitro and in vivo. Acta Biomater 2018; 69:71-82. [PMID: 29317369 DOI: 10.1016/j.actbio.2017.12.043] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/24/2023]
Abstract
Mesenchymal stem cell derived extracellular matrix (MSC-ECM) is a natural biomaterial with robust bioactivity and good biocompatibility, and has been studied as a scaffold for tissue engineering. In this investigation, we tested the applicability of using decellularized human bone marrow derived MSC-ECM (hBMSC-ECM) as a culture substrate for chondrocyte expansion in vitro, as well as a scaffold for chondrocyte-based cartilage repair. hBMSC-ECM deposited by hBMSCs cultured on tissue culture plastic (TCP) was harvested, and then subjected to a decellularization process to remove hBMSCs. Compared with chondrocytes grown on TCP, chondrocytes seeded onto hBMSC-ECM exhibited significantly increased proliferation rate, and maintained better chondrocytic phenotype than TCP group. After being expanded to the same cell number and placed in high-density micromass cultures, chondrocytes from the ECM group showed better chondrogenic differentiation profile than those from the TCP group. To test cartilage formation ability, composites of hBMSC-ECM impregnated with chondrocytes were subjected to brief trypsin treatment to allow cell-mediated contraction, and folded to form 3-dimensional chondrocyte-impregnated hBMSC-ECM (Cell/ECM constructs). Upon culture in vitro in chondrogenic medium for 21 days, robust cartilage formation was observed in the Cell/ECM constructs. Similarly prepared Cell/ECM constructs were tested in vivo by subcutaneous implantation into SCID mice. Prominent cartilage formation was observed in the implanted Cell/ECM constructs 14 days post-implantation, with higher sGAG deposition compared to controls consisting of chondrocyte cell sheets. Taken together, these findings demonstrate that hBMSC-ECM is a superior culture substrate for chondrocyte expansion and a bioactive matrix potentially applicable for cartilage regeneration in vivo. STATEMENT OF SIGNIFICANCE Current cell-based treatments for focal cartilage defects face challenges, including chondrocyte dedifferentiation, need for xenogenic scaffolds, and suboptimal cartilage formation. We present here a novel technique that utilizes adult stem cell-derived extracellular matrix, as a culture substrate and/or encapsulation scaffold for human adult chondrocytes, for the repair of cartilage defects. Chondrocytes cultured in stem cell-derived matrix showed higher proliferation, better chondrocytic phenotype, and improved redifferentiation ability upon in vitro culture expansion. Most importantly, 3-dimensional constructs formed from chondrocytes folded within stem cell matrix manifested excellent cartilage formation both in vitro and in vivo. These findings demonstrate the suitability of stem cell-derived extracellular matrix as a culture substrate for chondrocyte expansion as well as a candidate bioactive matrix for cartilage regeneration.
Collapse
Affiliation(s)
- Yuanheng Yang
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; The Third Xiangya hospital, Central South University, Changsha, Hunan, China
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - He Shen
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Bing Wang
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Guanghua Lei
- Department of Orthopaedic Surgery, Xiangya hospital, Central South University, Changsha, Hunan, China.
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Fahy N, Alini M, Stoddart MJ. Mechanical stimulation of mesenchymal stem cells: Implications for cartilage tissue engineering. J Orthop Res 2018; 36:52-63. [PMID: 28763118 DOI: 10.1002/jor.23670] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/24/2017] [Indexed: 02/04/2023]
Abstract
Articular cartilage is a load-bearing tissue playing a crucial mechanical role in diarthrodial joints, facilitating joint articulation, and minimizing wear. The significance of biomechanical stimuli in the development of cartilage and maintenance of chondrocyte phenotype in adult tissues has been well documented. Furthermore, dysregulated loading is associated with cartilage pathology highlighting the importance of mechanical cues in cartilage homeostasis. The repair of damaged articular cartilage resulting from trauma or degenerative joint disease poses a major challenge due to a low intrinsic capacity of cartilage for self-renewal, attributable to its avascular nature. Bone marrow-derived mesenchymal stem cells (MSCs) are considered a promising cell type for cartilage replacement strategies due to their chondrogenic differentiation potential. Chondrogenesis of MSCs is influenced not only by biological factors but also by the environment itself, and various efforts to date have focused on harnessing biomechanics to enhance chondrogenic differentiation of MSCs. Furthermore, recapitulating mechanical cues associated with cartilage development and homeostasis in vivo, may facilitate the development of a cellular phenotype resembling native articular cartilage. The goal of this review is to summarize current literature examining the effect of mechanical cues on cartilage homeostasis, disease, and MSC chondrogenesis. The role of biological factors produced by MSCs in response to mechanical loading will also be examined. An in-depth understanding of the impact of mechanical stimulation on the chondrogenic differentiation of MSCs in terms of endogenous bioactive factor production and signaling pathways involved, may identify therapeutic targets and facilitate the development of more robust strategies for cartilage replacement using MSCs. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:52-63, 2018.
Collapse
Affiliation(s)
- Niamh Fahy
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | |
Collapse
|
26
|
Taraballi F, Bauza G, McCulloch P, Harris J, Tasciotti E. Concise Review: Biomimetic Functionalization of Biomaterials to Stimulate the Endogenous Healing Process of Cartilage and Bone Tissue. Stem Cells Transl Med 2017; 6:2186-2196. [PMID: 29080279 PMCID: PMC5702525 DOI: 10.1002/sctm.17-0181] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/04/2017] [Indexed: 12/13/2022] Open
Abstract
Musculoskeletal reconstruction is an ongoing challenge for surgeons as it is required for one out of five patients undergoing surgery. In the past three decades, through the close collaboration between clinicians and basic scientists, several regenerative strategies have been proposed. These have emerged from interdisciplinary approaches that bridge tissue engineering with material science, physiology, and cell biology. The paradigm behind tissue engineering is to achieve regeneration and functional recovery using stem cells, bioactive molecules, or supporting materials. Although plenty of preclinical solutions for bone and cartilage have been presented, only a few platforms have been able to move from the bench to the bedside. In this review, we highlight the limitations of musculoskeletal regeneration and summarize the most relevant acellular tissue engineering approaches. We focus on the strategies that could be most effectively translate in clinical practice and reflect on contemporary and cutting‐edge regenerative strategies in surgery. Stem Cells Translational Medicine2017;6:2186–2196
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| | - Patrick McCulloch
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Josh Harris
- Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, Texas, USA.,Department of Orthopedic & Sports Medicine, The Houston Methodist Hospital, Houston, Texas, USA.,Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, United Kingdom
| |
Collapse
|
27
|
Pot MW, van Kuppevelt TH, Gonzales VK, Buma P, IntHout J, de Vries RBM, Daamen WF. Augmented cartilage regeneration by implantation of cellular versus acellular implants after bone marrow stimulation: a systematic review and meta-analysis of animal studies. PeerJ 2017; 5:e3927. [PMID: 29093996 PMCID: PMC5661456 DOI: 10.7717/peerj.3927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022] Open
Abstract
Bone marrow stimulation may be applied to regenerate focal cartilage defects, but generally results in transient clinical improvement and formation of fibrocartilage rather than hyaline cartilage. Tissue engineering and regenerative medicine strive to develop new solutions to regenerate hyaline cartilage tissue. This systematic review and meta-analysis provides a comprehensive overview of current literature and assesses the efficacy of articular cartilage regeneration by implantation of cell-laden versus cell-free biomaterials in the knee and ankle joint in animals after bone marrow stimulation. PubMed and EMBASE (via OvidSP) were systematically searched using tissue engineering, cartilage and animals search strategies. Included were primary studies in which cellular and acellular biomaterials were implanted after applying bone marrow stimulation in the knee or ankle joint in healthy animals. Study characteristics were tabulated and outcome data were collected for meta-analysis for studies applying semi-quantitative histology as outcome measure (117 studies). Cartilage regeneration was expressed on an absolute 0–100% scale and random effects meta-analyses were performed. Implantation of cellular biomaterials significantly improved cartilage regeneration by 18.6% compared to acellular biomaterials. No significant differences were found between biomaterials loaded with stem cells and those loaded with somatic cells. Culture conditions of cells did not affect cartilage regeneration. Cartilage formation was reduced with adipose-derived stem cells compared to other cell types, but still improved compared to acellular scaffolds. Assessment of the risk of bias was impaired due to incomplete reporting for most studies. Implantation of cellular biomaterials improves cartilage regeneration compared to acellular biomaterials.
Collapse
Affiliation(s)
- Michiel W Pot
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Veronica K Gonzales
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Pieter Buma
- Department of Orthopedics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Joanna IntHout
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation), Central Animal Laboratory, Radboud university medical center, Nijmegen, The Netherlands
| | - Willeke F Daamen
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Sanjurjo-Rodríguez C, Castro-Viñuelas R, Hermida-Gómez T, Fuentes-Boquete IM, de Toro FJ, Blanco FJ, Díaz-Prado SM. Human Cartilage Engineering in an In Vitro Repair Model Using Collagen Scaffolds and Mesenchymal Stromal Cells. Int J Med Sci 2017; 14:1257-1262. [PMID: 29104482 PMCID: PMC5666559 DOI: 10.7150/ijms.19835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate cartilage repair of in vitro lesion models using human bone marrow mesenchymal stromal cells (hBMSCs) with different collagen (Col) scaffolds. Lesions were made in human cartilage biopsies. Injured samples were pre-treated with interleukin 1β (IL1β) for 24 h; also, samples were not pre-treated. hBMSCs were seeded on different types of collagen scaffolds. The resulting constructs were placed into the lesions, and the biopsies were cultured for 2 months in chondrogenic medium. Using the modified ICRSII scale, neotissues from the different scaffolds showed ICRS II overall assessment scores ranging from 50% (fibrocartilage) to 100% (hyaline cartilage), except for the Col I +Col II +HS constructs (fibrocartilage/hyaline cartilage, 73%). Data showed that hBMSCs cultured only on Col I +Col II +HS scaffolds displayed a chondrocyte-like morphology and cartilage-like matrix close to native cartilage. Furthermore, IL1β pre-treated biopsies decreased capacity for repair by hBMSCs and decreased levels of chondrogenic phenotype of human cartilage lesions.
Collapse
Affiliation(s)
- Clara Sanjurjo-Rodríguez
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Rocío Castro-Viñuelas
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain
| | - Tamara Hermida-Gómez
- Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Isaac Manuel Fuentes-Boquete
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Francisco Javier de Toro
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Francisco Javier Blanco
- Tisular Bioengineering and Cell Therapy Unit (GBTTC-CHUAC), Rheumatology group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Silvia María Díaz-Prado
- Cell Therapy and Regenerative Medicine Unit, Rheumatology Group, Institute of Biomedical Research of A Coruña (INIBIC), University Hospital Complex A Coruña (CHUAC), Galician Health Service (SERGAS), Department of Medicine, Faculty of Health Sciences, University of A Coruña, A Coruña, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
29
|
Viganò M, Sansone V, d'Agostino MC, Romeo P, Perucca Orfei C, de Girolamo L. Mesenchymal stem cells as therapeutic target of biophysical stimulation for the treatment of musculoskeletal disorders. J Orthop Surg Res 2016; 11:163. [PMID: 27986082 PMCID: PMC5162101 DOI: 10.1186/s13018-016-0496-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 11/28/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Musculoskeletal disorders are regarded as a major cause of worldwide morbidity and disability, and they result in huge costs for national health care systems. Traditional therapies frequently turned out to be poorly effective in treating bone, cartilage, and tendon disorders or joint degeneration. As a consequence, the development of novel biological therapies that can treat more effectively these conditions should be the highest priority in regenerative medicine. Mesenchymal stem cells (MSCs) represent one of the most promising tools in musculoskeletal tissue regenerative medicine, thanks to their proliferation and differentiation potential and their immunomodulatory and trophic ability. Indeed, MSC-based approaches have been proposed for the treatment of almost all orthopedic conditions, starting from different cell sources, alone or in combination with scaffolds and growth factors, and in one-step or two-step procedures. While all these approaches would require cell harvesting and transplantation, the possibility to stimulate the endogenous MSCs to enhance their tissue homeostasis activity represents a less-invasive and cost-effective therapeutic strategy. Nowadays, the role of tissue-specific resident stem cells as possible therapeutic target in degenerative pathologies is underinvestigated. Biophysical stimulations, and in particular extracorporeal shock waves treatment and pulsed electromagnetic fields, are able to induce proliferation and support differentiation of MSCs from different origins and affect their paracrine production of growth factors and cytokines. SHORT CONCLUSIONS The present review reports the attempts to exploit the resident stem cell potential in musculoskeletal pathologies, highlighting the role of MSCs as therapeutic target of currently applied biophysical treatments.
Collapse
Affiliation(s)
- Marco Viganò
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Valerio Sansone
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Biomedical Science for Health, University of Milan, Milan, Italy
| | | | - Pietro Romeo
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy
| | - Carlotta Perucca Orfei
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.,Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Laura de Girolamo
- IRCCS Galeazzi Orthopaedic Institute, Via R. Galeazzi 4, 20161, Milan, Italy.
| |
Collapse
|