1
|
Zheng X, Wang Q, Xu X, Huang X, Chen J, Huo X. Associations of insulin sensitivity and immune inflammatory responses with child blood lead (Pb) and PM 2.5 exposure at an e-waste recycling area during the COVID-19 lockdown. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:296. [PMID: 38980420 DOI: 10.1007/s10653-024-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.
Collapse
Affiliation(s)
- Xiangbin Zheng
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Qihua Wang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, The Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xiaofan Huang
- Center for Reproductive Medicine, Clinical Research Center, Shantou Central Hospital, Shantou, 515041, Guangdong, China
| | - Jiaxue Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou, 511443, Guangdong, China.
| |
Collapse
|
2
|
Shared metabolic and neuroimmune mechanisms underlying Type 2 Diabetes Mellitus and Major Depressive Disorder. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110351. [PMID: 34000290 DOI: 10.1016/j.pnpbp.2021.110351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022]
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic disease with symptoms that go beyond the domain of glucose metabolism. In fact, research has shown that T2DM is accompanied by neurodegeneration and neuroinflammation. Interestingly, Major Depressive Disorder (MDD), a mood disorder characterized mainly by depressed mood and anhedonia is a key feature of T2DM. A body of evidence demonstrates that there are many shared neuroimmune mechanisms underlying the pathophysiology of T2DM and MDD. Therefore, here we review the state-of-art regarding the underlying factors common to both T2DM and MDD. Furthermore, we briefly discuss how depressive symptoms in diabetic patients could be tackled by using novel therapeutic approaches uncovered by these shared mechanisms. Understanding the comorbidity of depression in diabetic patients is essential to fully address T2DM pathophysiology and treatment.
Collapse
|
3
|
Moradi N, Najafi M, Sharma T, Fallah S, Koushki M, Peterson JM, Meyre D, Fadaei R. Circulating levels of CTRP3 in patients with type 2 diabetes mellitus compared to controls: A systematic review and meta-analysis. Diabetes Res Clin Pract 2020; 169:108453. [PMID: 32949652 DOI: 10.1016/j.diabres.2020.108453] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence suggests that adipokines may be therapeutic targets for cardiometabolic diseases such as type 2 diabetes mellitus (T2DM). C1q TNF Related Protein 3 (CTRP3) is a newly discovered adipokine which shares properties with adiponectin. The literature about the association between circulating levels of CTRP3 and T2DM has been conflicting. The present study reassessed the data on circulating CTRP3 levels in T2DM patients compared to controls through a systematic review and meta-analysis. A literature search was performed in Medline, Embase, Scopus, and Web of science to identify studies that measured circulating CTRP3 levels in T2DM patients and controls. The search identified 124 studies of which 59 were screened for title and abstract and 13 were subsequently screened at the full text stage and 12 studies included into the meta-analysis. Subgroup analyses, depending on the presence of T2DM complications, matching for BMI, age, and cut off value of fasting blood sugar and HOMA-IR, were performed. The results show that circulating CTRP3 levels are negatively associated with T2DM status (SMD: -0.837; 95% CI: (-1.656 to -0.017); p = 0.045). No publication bias was identified using the Begg's rank correlation and Egger's linear regression tests (P = 1 and P = 0.44, respectively). Meta-regression demonstrated significant association between CRTP3 levels with BMI (slope: 0.11; 95% CI: 0.04-0.19; p = 0.001) and sex (slope: -0.07; 95% CI: -0.12 to -0.01; p = 0.008). The present systematic review and meta-analysis evidences a negative association between circulating level of CTRP3 and T2DM status. BMI and sex may modify this association.
Collapse
Affiliation(s)
- Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Najafi
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Tanmay Sharma
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jonathan M Peterson
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, United States; Quillen College of Medicine, Department of Biomedical Sciences, East Tennessee State University, Johnson City, TN, United States
| | - David Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Shanaki M, Shabani P, Goudarzi A, Omidifar A, Bashash D, Emamgholipour S. The C1q/TNF-related proteins (CTRPs) in pathogenesis of obesity-related metabolic disorders: Focus on type 2 diabetes and cardiovascular diseases. Life Sci 2020; 256:117913. [DOI: 10.1016/j.lfs.2020.117913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
|
5
|
C1q/TNF-Related Protein-3 (CTRP-3) and Pigment Epithelium-Derived Factor (PEDF) Concentrations in Patients with Gestational Diabetes Mellitus: A Case-Control Study. J Clin Med 2020; 9:jcm9082587. [PMID: 32785102 PMCID: PMC7465884 DOI: 10.3390/jcm9082587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is the most common metabolic disorder in pregnant women, defined as any degree of glucose intolerance with onset or first detected during pregnancy. Explanation of its pathogenesis is extremely important due to the possibility of preventing serious maternal and fetal complications. The aim of the study was to evaluate the concentrations of two molecules: C1q/tumor necrosis factor-related protein-3 (CTRP-3) and pigment epithelium-derived factor (PEDF) which may possibly participate in GDM development. To our knowledge, this is the first study in pregnant women with GDM evaluating CTRP-3 level. Methods: Serum CTRP-3 and PEDF concentration and clinical characteristics were detected in 172 pregnant women. These women were divided into two groups: normal glucose tolerance group (NGT, n = 54) and gestational diabetes mellitus group (GDM, n = 118). This second group was further divided into two subgroups depending on the treatment used: GDM 1—diet only (n = 75) and GDM 2—insulin treatment (n = 43). Results: Our study did not reveal any statistically significant difference between the concentration of PEDF in the control and GDM group. In our study there was a significantly higher concentration of CTRP-3 evaluated in the peripheral blood serum in patients with gestational diabetes (GDM) compared to those in the control group (8.84 vs. 4.79 ng/mL). Significantly higher values of CTRP-3 were observed in both the diet-treated subgroup and the group with insulin therapy when compared to control group (8.40 and 10.96, respectively vs. 4.79 ng/mL). Conclusion: PEDF concentration does not change in GDM, whereas an increased level of CTRP-3 may point to the key role of this adipokine in the development of GDM.
Collapse
|
6
|
Hill AV, Menon R, Perez-Patron M, Carrillo G, Xu X, Taylor BD. High-mobility group box 1 at the time of parturition in women with gestational diabetes mellitus. Am J Reprod Immunol 2019; 82:e13175. [PMID: 31353785 DOI: 10.1111/aji.13175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 12/14/2022] Open
Abstract
PROBLEM High-mobility group box 1 (HMGB1), a danger-associated molecular pattern marker, may indicate sterile inflammation through innate immune pathways. HMGB1 is implicated in hyperglycemia and excess glucose in trophoblast. Metabolic dysfunction and dyslipidemia are associated with gestational diabetes mellitus (GDM), but few studies examined associations between HMGB1 and GDM. We determined HMGB1 levels, and the ratio of HMGB1 to innate immune markers, in women with GDM at parturition. METHOD OF STUDY This case-control study of 50 GDM pregnancies and 100 healthy controls utilized data and plasma samples from PeriBank. HMGB1, pentraxin-3, and interleukin (IL)-6 were measured by ELISA. Logistic regression calculated odds ratios (OR) and 95% confidence intervals (CI) adjusting for age, pre-pregnancy body mass index, and type of labor. RESULTS There were no significant associations between HMGB1 and GDM. The ratio of HMGB1 to pentraxin-3 and IL-6 did not alter the odds of GDM. There was a significant statistical interaction between HMGB1 and maternal age (P = .02). When associations were examined by age groups, HMGB1 was associated with reduced odds of HMGB1 among women ≤25 (AOR = 0.007 CI 95% <0.001-0.3). Odds ratios increased as age increased (AOR range 1.2-3.8) but results were not statistically significant. CONCLUSION High-mobility group box 1 was not associated with GDM. However, we found evidence that maternal age was a potential effect modifier of the relationship between HMGB1 and GDM. As there is growing evidence that HMGB1 may play important roles in reproduction, future studies should explore maternal factors that may alter HMGB1 levels.
Collapse
Affiliation(s)
- Ashley V Hill
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA.,Division of Adolescent and Young Adult Medicine, Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Maria Perez-Patron
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA
| | - Genny Carrillo
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, USA
| | - Xiaohui Xu
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA
| | - Brandie D Taylor
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX, USA.,Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Chen T, Wang F, Chu Z, Shi X, Sun L, Lv H, Zhou W, Shen J, Chen L, Hou M. Serum CTRP3 Levels In Obese Children: A Potential Protective Adipokine Of Obesity, Insulin Sensitivity And Pancreatic β Cell Function. Diabetes Metab Syndr Obes 2019; 12:1923-1930. [PMID: 31571966 PMCID: PMC6759286 DOI: 10.2147/dmso.s222066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023] Open
Abstract
PURPOSE CTRP3 is a novel peptide that has recently emerged as an important regulatory adipokine of obesity and related metabolic disease. Little is known about its role in children. The current study aimed to investigate the potential role of CTRP3 in obese children and explore its relationships with insulin sensitivity, pancreatic β cell function, and obesity-related markers. PATIENTS AND METHODS We studied the levels of serum CTRP3 in 48 obese and 36 normal weight pre-puberty children. The levels of blood pressure, lipids, glucose, and insulin were measured, and the values of HOMA-IR, HOMA-β and insulinogenic index were calculated. The correlations of these measurements with CTRP3 levels were analyzed. RESULTS In this study, we found that CTRP3 serum levels significantly decreased in obese children compared to controls, and insulin resistant obese subjects have lower CTRP3 levels in contrast with the non-insulin resistant obese subjects. Moreover, serum CTRP3 concentrations significantly decreased, while glucose and insulin concentrations significantly increased after a 3 hrs oral glucose tolerance test in obese children. Furthermore, Serum CTRP3 levels correlated negatively and significantly with BMI, triglycerides, systolic blood pressure, fasting insulin, glucose, HOMA-IR, HOMA-β and insulinogenic index in obese children. CONCLUSION In summary, serum CTRP3 levels significantly decreased in obese children, and negatively correlated with insulin resistance and pancreatic β cell function indicators. Therefore, CTRP3 may play a protective role in the glucose homeostasis and tightly related to β cell function as well as obesity-related markers in obese children.
Collapse
Affiliation(s)
- Ting Chen
- Department of Endocrinology, Metabolism and Genetic Disorders, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Fengyun Wang
- Department of Endocrinology, Metabolism and Genetic Disorders, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Zhenyu Chu
- Department of Emergency Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Xiaoyan Shi
- Department of Children Health Care, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Ling Sun
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Haitao Lv
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wanping Zhou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Jie Shen
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Linqi Chen
- Department of Endocrinology, Metabolism and Genetic Disorders, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Miao Hou
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, People’s Republic of China
- Correspondence: Miao Hou Department of Cardiology, Children’s Hospital of Soochow University, No. 92 Zhongnan Road, Suzhou, Jiangsu215003, People’s Republic of ChinaTel +86 512 8069 3506Fax +86 512 8069 3506 Email
| |
Collapse
|
8
|
Zhang CL, Chen ZJ, Feng H, Zhao Q, Cao YP, Li L, Wang JY, Zhang Y, Wu LL. C1q/tumor necrosis factor-related protein-3 enhances the contractility of cardiomyocyte by increasing calcium sensitivity. Cell Calcium 2017; 66:90-97. [PMID: 28807153 DOI: 10.1016/j.ceca.2017.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/15/2017] [Accepted: 06/25/2017] [Indexed: 01/24/2023]
Abstract
C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine that protects against myocardial infarction-induced cardiac dysfunction through its pro-angiogenic, anti-apoptotic, and anti-fibrotic effects. However, whether CTRP3 can directly affect the systolic and diastolic function of cardiomyocytes remains unknown. Adult rat cardiomyocytes were isolated and loaded with Fura-2AM. The contraction and Ca2+ transient data was collected and analyzed by IonOptix system. 1 and 2μg/ml CTRP3 significantly increased the contraction of cardiomyocytes. However, CTRP3 did not alter the diastolic Ca2+ content, systolic Ca2+ content, Ca2+ transient amplitude, and L-type Ca2+ channel current. To reveal whether CTRP3 affects the Ca2+ sensitivity of cardiomyocytes, the typical phase-plane diagrams of sarcomere length vs. Fura-2 ratio was performed. We observed a left-ward shifting of the late relaxation trajectory after CTRP3 perfusion, as quantified by decreased Ca2+ content at 50% sarcomere relaxation, and increased mean gradient (μm/Fura-2 ratio) during 500-600ms (-0.163 vs. -0.279), 500-700ms (-0.159 vs. -0.248), and 500-800ms (-0.148 vs. -0.243). Consistently, the phosphorylation level of cardiac troponin I at Ser23/24 was reduced by CTRP3, which could be eliminated by preincubation of okadaic acid, a type 2A protein phosphatase inhibitor. In summary, CTRP3 increases the contraction of cardiomyocytes by increasing the myofilament Ca2+ sensitivity. CTRP3 might be a potential endogenous Ca2+ sensitizer that modulates the contractility of cardiomyocytes.
Collapse
Affiliation(s)
- Cheng-Lin Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Zheng-Ju Chen
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Han Feng
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Qian Zhao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yang-Po Cao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Li Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Jin-Yu Wang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Yan Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|