1
|
Ouyang Y, Hu S, Chang M, Xu J, Tian G, Kong X, Liu J, Zhang D, Zhang F, Yang H, Tang L, Wu H. Catecholamines-based myocardial injury after acute ischemic stroke and effects of Naoxintong capsule therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155697. [PMID: 39053248 DOI: 10.1016/j.phymed.2024.155697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Myocardial injury (MI) after acute ischemic stroke (AIS) poses a significant threat to patient prognosis. However, effective intervention strategies are currently lacking. PURPOSE To elucidate the mechanism of MI after AIS and effects of Naoxintong capsule (NXT) therapy. METHOD In vivo, after a rat model of middle cerebral artery occlusion (MCAO)-induced MI was established and assessed. NXT was administered prophylactically to evaluate its pharmacodynamic effects and mechanisms. In vitro, a noradrenaline (NA)-induced damage cell model was constructed. Subsequently, the NXT was applied to the cell models to examine its cardioprotective effects and potential mechanisms. RESULTS The in vivo findings revealed that following MCAO, there was a notable upregulation of TH expression in the rat brain, which subsequently triggered an increase in serum levels of various biomarkers, including AD, NA, AST, cTnT, CK-MB, and NT-proBNP. Histological analysis employing H&E staining and TUNEL assay disclosed significant pathological alterations and an escalation in apoptotic activity within the myocardial tissue. The myocardial tissue exhibited elevated levels of MDA alongside diminished CAT activity. Additionally, a marked increase in the Bax/Bcl-2 ratio, Cytochrome C release, and Caspase-3 activation was observed, all of which are indicative of heightened apoptotic activity. Administration of the NXT intervention successfully attenuated TH expression in the brains of rats subjected to MCAO, consequently leading to a reduction in circulating levels of catecholamines (CAs). NXT also exhibited significant efficacy at ameliorating cardiac oxidative stress and reducing apoptosis. In vitro, stimulation with NA led to an increase in ROS levels and calcium ion concentration in H9c2 cardiomyocytes. However, the administration of NXT has been found to effectively alleviate these adverse effects, thereby protecting H9c2 cardiomyocytes from the deleterious consequences of oxidative stress and calcium dyshomeostasis. CONCLUSION Overall, this study has demonstrated that increased CAs synthesis in the brain after AIS in experimental rats led to a surge in circulating CAs, ultimately leading to MI. NXT can alleviate MI due to cerebral ischemia by increasing improving brain catecholamine synthesis, cardiac oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Yi Ouyang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Shaowei Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Mengli Chang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Guanghuan Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China; Zunyi Medical University, Zunyi, PR China
| | - Xixian Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Jingtong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Dong Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Fangbo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China
| | - Hongjun Yang
- Experimental Research Center, Chinese Academy of Chinese Medicine, Beijing, PR China.
| | - Liying Tang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, PR China.
| |
Collapse
|
2
|
Zhang WJ, Chen RQ, Tang X, Li PB, Wang J, Wu HK, Xu N, Zou MF, Luo SR, Ouyang ZQ, Chen ZK, Liao XX, Wu H. Naoxintong capsule for treating cardiovascular and cerebrovascular diseases: from bench to bedside. Front Pharmacol 2024; 15:1402763. [PMID: 38994201 PMCID: PMC11236728 DOI: 10.3389/fphar.2024.1402763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Naoxintong Capsule (NXT), a renowned traditional Chinese medicine (TCM) formulation, has been broadly applied in China for more than 30 years. Over decades, accumulating evidences have proven satisfactory efficacy and safety of NXT in treating cardiovascular and cerebrovascular diseases (CCVD). Studies have been conducted unceasingly, while this growing latest knowledge of NXT has not yet been interpreted properly and summarized comprehensively. Hence, we systematically review the advancements in NXT research, from its chemical constituents, quality control, pharmacokinetics, to its profound pharmacological activities as well as its clinical applications in CCVD. Moreover, we further propose specific challenges for its future perspectives: 1) to precisely clarify bioactivities of single compound in complicated mixtures; 2) to evaluate the pharmacokinetic behaviors of NXT feature components in clinical studies, especially drug-drug interactions in CCVD patients; 3) to explore and validate its multi-target mechanisms by integrating multi-omics technologies; 4) to re-evaluate the safety and efficacy of NXT by carrying out large-scale, multicenter randomized controlled trials. In brief, this review aims to straighten out a paradigm for TCM modernization, which help to contribute NXT as a piece of Chinese Wisdom into the advanced intervention strategy for CCVD therapy.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Rui-qi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Tang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pei-bo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery, Foshan Sanshui District People’s Hospital, Foshan, Guangdong, China
| | - Hai-ke Wu
- Department of Neurology, Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, China
| | - Ning Xu
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ming-fei Zou
- Second People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Sen-rong Luo
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zi-qi Ouyang
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhi-kai Chen
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu-xing Liao
- Department of Neurosurgery, First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zheng L, Wan H, Lu Y, Ding Z, Li C, Wan H. Rapid identification and quantitative determination of chemical compositions in Buyang Huanwu decoction based on HPLC-Q-Exactive mass spectrometry. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:534-543. [PMID: 36581570 PMCID: PMC10494249 DOI: 10.3724/zdxbyxb-2022-0347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To establish an analytical method for rapid identification of chemical compositions and quantitative determination of major compositions in Buyang Huanwu decoction (BYHWD) based on high performance liquid chromatography-quadrupole orbitrap mass spectrometry (HPLC-Q-Exactive MS) and high performance liquid chromatography-ultraviolet detection (HPLC-UV). METHODS The mass spectrometry information was collected in Full MS/dd-MS 2 negative ion mode with HPLC-Q-Exactive MS system; the chemical compositions of BYHWD were subsequently annotated with Compound Discoverer 3.0 software and a self-built in-house compound library. Eight major compositions (paeoniflorin, gallic acid, hydroxysafflor yellow A, ferulic acid, calycosin-7-glucoside, ononin, calycosin, formononetin) were picked out and their contents were quantitatively determined with HPLC-UV analysis. RESULTS A total of 178 compounds in BYHWD were tentatively identified. The results of HPLC-UV quantitative analysis showed that 8 compositions had a good linear relationship in their respective concentration range ( R 2≥0.9990), the relative standard deviations (RSD) of precision and stability were all less than 15%, and the recovery rate RSD was between 1.6% and 2.4%. CONCLUSIONS The method established in this study can realize the rapid identification and accurate quantification of the major compositions in BYHWD. Paeoniflorin, hydroxysafflor yellow A and gallic acid may be used as quality control markers.
Collapse
Affiliation(s)
- Liuyan Zheng
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haofang Wan
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yihang Lu
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhishan Ding
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chang Li
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Haitong Wan
- 1. School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
4
|
Cheng L, Maboh RN, Wang H, Mao GW, Wu XY, Chen H. Naoxintong Capsule Activates the Nrf2/HO-1 Signaling Pathway and Suppresses the p38α Signaling Pathway Via Estrogen Receptors to Ameliorate Heart Remodeling in Female Mice With Postmenopausal Hypertension. J Cardiovasc Pharmacol 2022; 80:158-170. [PMID: 35500215 DOI: 10.1097/fjc.0000000000001285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/06/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT Limited treatments are available for alleviating heart remodeling in postmenopausal hypertension. The cardioprotective effect of naoxintong (NXT) has been widely accepted. This study aimed to explore the effects of NXT on pathological heart remodeling in a postmenopausal hypertension mouse model in vivo and H9c2 cardiomyocytes in vitro. In vivo, ovariectomy combined with chronic angiotensin II infusion was used to establish the postmenopausal hypertension animal model. NXT significantly ameliorated cardiac remodeling as indicated by a reduced ratio of heart weight/body weight and left ventricle weight/body weight, left ventricular wall thickness, diameter of cardiomyocytes, and collagen deposition in the heart. NXT also significantly increased the expression of estrogen receptors (ERs) and downregulated the expression of nicotinamide adenine dinucleotide phosphate oxidase 2 (Nox2). In vitro, NXT treatment greatly suppressed angiotensin II-induced cardiac hypertrophy, cardiac fibrosis, and excessive oxidative stress as proven by reducing the diameter of H9c2 cardiomyocytes, expression of hypertrophy and fibrosis markers, intracellular reactive oxygen species, and oxidative enzymes. Mechanistically, NXT significantly upregulated the expression of ERs, which activated the Nrf2/HO-1 signaling pathway and inhibited the phosphorylation of the p38α pathway. Collectively, the results indicated that NXT administration might attenuate cardiac remodeling through upregulating the expression of ERs, which activated the Nrf2/HO-1 signaling pathway, inhibited the phosphorylation of the p38α signaling pathway, and reduced oxidative stress.
Collapse
Affiliation(s)
- Lan Cheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Rene Nfornah Maboh
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Huan Wang
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Gao-Wei Mao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and
| | - Xiao-Ying Wu
- Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| | - Hui Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China ; and.,Hypertension Laboratory, Fujian Provincial Cardiovascular Disease Institute, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
5
|
Rao SW, Duan YY, Pang HQ, Xu SH, Hu SQ, Cheng KG, Liang D, Shi W. Spectrum-Effect Relationship Analysis of Bioactive Compounds in Zanthoxylum nitidum (Roxb.) DC. by Ultra-High Performance Liquid Chromatography Mass Spectrometry Coupled With Comprehensive Filtering Approaches. Front Pharmacol 2022; 13:794277. [PMID: 35355711 PMCID: PMC8959880 DOI: 10.3389/fphar.2022.794277] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 01/13/2023] Open
Abstract
Zanthoxylum nitidum (Roxb.) DC. (ZN), with strong effects of anti-inflammation and antioxidant activities is treated as a core herb in traditional Chinese medicine (TCM) preparation for treating stomachache, toothache, and rheumatoid arthritis. However, the active ingredients of ZN are not fully clarified due to its chemical complexity. In the present study, a double spectrum–effect analysis strategy was developed and applied to explore the bioactive components in herbs, and ZN was used as an example. Here, the chemical components in ZN were rapidly and comprehensively profiled based on the mass defect filtering-based structure classification (MDFSC) and diagnostic fragment-ion-based extension approaches. Furthermore, the fingerprints of 20 batches of ZN samples were analyzed by high-performance liquid chromatography, and the anti-inflammatory and antioxidant activities of the 20 batches of ZN samples were studied. Finally, the partial least squares regression (PLSR), gray relational analysis models, and Spearman’s rank correlation coefficient (SRCC) were applied to discover the bioactive compounds in ZN. As a result, a total of 48 compounds were identified or tentatively characterized in ZN, including 35 alkaloids, seven coumarins, three phenolic acids, two flavonoids, and one lignan. The results achieved by three prediction models indicated that peaks 4, 12, and 17 were the potential anti-inflammatory compounds in ZN, whereas peaks 3, 5, 7, 12, and 13 were involved in the antioxidant activity. Among them, peaks 4, 5, 7, and 12 were identified as nitidine, chelerythrine, hesperidin, and oxynitidine by comparison with the standards and other references. The data in the current study achieved by double spectrum–effect analysis strategy had great importance to improve the quality standardization of ZN, and the method might be an efficiency tool for the discovery of active components in a complex system, such as TCMs.
Collapse
Affiliation(s)
- Si-Wei Rao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Yuan-Yuan Duan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Han-Qing Pang
- Institute of Translational Medicine, Medical College, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, China
| | - Shao-Hua Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Shou-Qian Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Ke-Guang Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, China
| |
Collapse
|
6
|
Zhang Y, Zhang Y, Yang C, Duan Y, Jiang L, Jin D, Lian F, Tong X. Naoxintong capsule delay the progression of diabetic kidney disease: A real-world cohort study. Front Endocrinol (Lausanne) 2022; 13:1037564. [PMID: 36440227 PMCID: PMC9686849 DOI: 10.3389/fendo.2022.1037564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Diabetic kidney disease (DKD) is a severe and growing health problem, associated with a worse prognosis and higher overall mortality rates than non-diabetic renal disease. Chinese herbs possess promising clinical benefits in alleviating the progression of DKD due to their multi-target effect. This real-world retrospective cohort trial aimed to investigate the efficacy and safety of Naoxintong (NXT) capsules in the treatment of DKD. Our study is the first real-world study (RWS) of NXT in the treatment of DKD based on a large database, providing a basis for clinical application and promotion. METHODS The data was collected from Tianjin Healthcare and Medical Big Data Platform. Patients with DKD were enrolled from January 1, 2011, to March 31, 2021. NXT administration was defined as the exposure. The primary outcome was the change in estimated glomerular filtration rate (eGFR). We employed the propensity score matching (PSM) method to deal with confounding factors. RESULTS A total of 1,798 patients were enrolled after PSM, including 899 NXT users (exposed group) and 899 non-users (control group). The eGFR changes from baseline to the end of the study were significantly different in the exposed group compared to the control group (-1.46 ± 21.94 vs -5.82 ± 19.8 mL/(min·1.73m2), P< 0.01). Patients in the NXT group had a lower risk of composite renal outcome event (HR, 0.71; 95%CI, 0.55 to 0.92; P = 0.009) and deterioration of renal function (HR, 0.74; 95% CI, 0.56 to 0.99; P = 0.039). CONCLUSION NXT can significantly slow the decline of eGFR and reduce the risk of renal outcomes. However, large cohort studies and RCTs are needed to further confirm our results.
Collapse
Affiliation(s)
- Yuqing Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Jiang
- Endocrinology Department, Guang’anmen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - De Jin
- Department of Nephrology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Fengmei Lian
- Endocrinology Department, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: De Jin, ; Fengmei Lian, ; Xiaolin Tong,
| |
Collapse
|
7
|
Lv B, Deng L, Xie T, Wei X, Liu X, Tan W, Wang X, Gao X. Evaluation of the anti-inflammatory and antioxidant pharmcodynamic compoents of naoxintong capsules as a basis of broad spectrum effects. PHARMACEUTICAL BIOLOGY 2021; 59:242-251. [PMID: 33874833 PMCID: PMC8079059 DOI: 10.1080/13880209.2020.1870506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/06/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
CONTEXT Naoxintong capsule (NXT) is one of the most prevalent Traditional Chinese Medicine formulations in the treatment of coronary heart disease (CHD), yet the action of pharmacodynamic components remains unclear. OBJECTIVE To determine the basis by which pharmacodynamic components of NXT may be effective in the treatment of CHD. MATERIALS AND METHODS The protective effect of NXT (0.01-100 μg/mL) on 293 T and hy926 cells was determined by MTT assay for 24 h. Afterwards, to investigate the pharmacodynamic material basis of NXT in anti-inflammatory and antioxidant effects, based on previous UPLC/Q-TOF analysis, 293 T and hy926 cells were divided into control (treated with solvent), model (incubated with TNF-α, LPS or H2O2), intervention (treated with UPLC components) and positive groups. After 24 h of treatment, all cells were tested to verify the screening results. MOE software was applied to dock bioactive compounds with phosphoinositide 3-kinase (PI3K), then the protein expression and phosphate levels were determined by western blotting. RESULTS NXT could significantly inhibit the expression of NF-κB, MMP-9 and NO in cells with IC50 values of 0.1178, 0.1182 and 0.1094 μg/mL. Based on the screening results, six components of NXT were identified (calycosin, ferulic acid, salvianolic acid B, ononin, salvianolic acid E, and salvianolic acid F) which can inhibit NF-κB, MMP-9, and NO simultaneously, while exerting cytoprotective effects by inhibiting the activation of the PI3K/AKT pathway under different conditions by virtue of their advantageous interaction with PI3K. CONCLUSIONS These ingredients have outstanding therapeutic potential and may provide a scientific basis for the future application and research of NXT.
Collapse
Affiliation(s)
- Bin Lv
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lina Deng
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tian Xie
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xing Wei
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Liu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wangxiao Tan
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoying Wang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Kong X, Liu C, Lu P, Guo Y, Zhao C, Yang Y, Bo Z, Wang F, Peng Y, Meng J. Combination of UPLC-Q-TOF/MS and Network Pharmacology to Reveal the Mechanism of Qizhen Decoction in the Treatment of Colon Cancer. ACS OMEGA 2021; 6:14341-14360. [PMID: 34124457 PMCID: PMC8190929 DOI: 10.1021/acsomega.1c01183] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/14/2021] [Indexed: 05/29/2023]
Abstract
Traditional Chinese medicine (TCM) has been utilized for the treatment of colon cancer. Qizhen decoction (QZD), a potential compound prescription of TCM, possesses multiple biological activities. It has been proven clinically effective in the treatment of colon cancer. However, the molecular mechanism of anticolon cancer activity is still not clear. This study aimed to identify the chemical composition of QZD. Furthermore, a collaborative analysis strategy of network pharmacology and cell biology was used to further explore the critical signaling pathway of QZD anticancer activity. First, ultraperformance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UPLC-Q-TOF/MS) was performed to identify the chemical composition of QZD. Then, the chemical composition database of QZD was constructed based on a systematic literature search and review of chemical constituents. Moreover, the common and indirect targets of chemical components of QZD and colon cancer were searched by multiple databases. A protein-protein interaction (PPI) network was constructed using the String database (https://www.string-db.org/). All of the targets were analyzed by Gene Oncology (GO) bioanalysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the visual network topology diagram of "Prescription-TCM-Chemical composition-Direct target-Indirect target-Pathway" was constructed by Cytoscape software (v3.7.1). The top molecular pathway ranked by statistical significance was further verified by molecular biology methods. The results of UPLC-Q-TOF/MS showed that QZD had 111 kinds of chemical components, of which 103 were unique components and 8 were common components. Ten pivotal targets of QZD in the treatment of colon cancer were screened by the PPI network. Targets of QZD involve many biological processes, such as the signaling pathway, immune system, gene expression, and so on. QZD may interfere with biological pathways such as cell replication, oxygen-containing compounds, or organic matter by protein binding, regulation of signal receptors or enzyme binding, and affect cytoplasm and membrane-bound organelles. The main antitumor core pathways were the apoptosis metabolic pathway, the PI3K-Akt signal pathway, and so on. Expression of the PI3K-Akt signal pathway was significantly downregulated after the intervention of QZD, which was closely related to the inhibition of proliferation and migration of colon cancer cells by cell biology methods. The present work may facilitate a better understanding of the effective components, therapeutic targets, biological processes, and signaling pathways of QZD in the treatment of colon cancer and provide useful information about the utilization of QZD.
Collapse
Affiliation(s)
- Xianbin Kong
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Chuanxin Liu
- School
of Chinese Materia Medical, Beijing University
of Chinese Medicine, Beijing 102488, China
| | - Peng Lu
- State
Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzhu Guo
- Department
of Radiotherapy, Tianjin Hospital, Tianjin 300211, China
| | - Chenchen Zhao
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yuying Yang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Zhichao Bo
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Fangyuan Wang
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Yingying Peng
- Graduate
School, Tianjin University of Traditional
Chinese Medicine, Tianjin 301617, China
| | - Jingyan Meng
- College
of Traditional Chinese Medicine, Tianjin
University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Chen YH, Bi JH, Xie M, Zhang H, Shi ZQ, Guo H, Yin HB, Zhang JN, Xin GZ, Song HP. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011-2020): Theory, technical route and difficulty. J Chromatogr A 2021; 1651:462307. [PMID: 34161837 DOI: 10.1016/j.chroma.2021.462307] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 02/08/2023]
Abstract
The difficulty of traditional Chinese medicine (TCM) researches lies in the complexity of components, metabolites, and bioactivities. For a long time, there has been a lack of connections among the three parts, which is not conducive to the systematic elucidation of TCM effectiveness. To overcome this problem, a classification-based methodology for simplifying TCM researches was refined from literature in the past 10 years (2011-2020). The theoretical basis of this methodology is set theory, and its core concept is classification. Its starting point is that "although TCM may contain hundreds of compounds, the vast majority of these compounds are structurally similar". The methodology is composed by research strategies for components, metabolites and bioactivities of TCM, which are the three main parts of the review. Technical route, key steps and difficulty are introduced in each part. Two perspectives are highlighted in this review: set theory is a theoretical basis for all strategies from a conceptual perspective, and liquid chromatography-mass spectrometry (LC-MS) is a common tool for all strategies from a technical perspective. The significance of these strategies is to simplify complex TCM researches, integrate isolated TCM researches, and build a bridge between traditional medicines and modern medicines. Potential research hotspots in the future, such as discovery of bioactive ingredients from TCM metabolites, are also discussed. The classification-based methodology is a summary of research experience in the past 10 years. We believe it will definitely provide support and reference for the following TCM researches.
Collapse
Affiliation(s)
- Yue-Hua Chen
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jing-Hua Bi
- Shanxi Medical University, Taiyuan 030001, China
| | - Ming Xie
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hui Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Zi-Qi Shi
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Hua Guo
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Hai-Bo Yin
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Jia-Nuo Zhang
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China
| | - Gui-Zhong Xin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Hui-Peng Song
- Key Laboratory for Identification and Quality Evaluation of Traditional Chinese Medicine of Liaoning Province, Liaoning University of Traditional Chinese Medicine, Dalian 116600, China.
| |
Collapse
|
10
|
Ye X, Wu J, Zhang D, Lan Z, Yang S, Zhu J, Yang M, Gong Q, Zhong L. How Aconiti Radix Cocta can Treat Gouty Arthritis Based on Systematic Pharmacology and UPLC-QTOF-MS/MS. Front Pharmacol 2021; 12:618844. [PMID: 33995019 PMCID: PMC8121251 DOI: 10.3389/fphar.2021.618844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 04/13/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Gouty arthritis (GA) is a common metabolic disease caused by a long-term disorder of purine metabolism and increased serum levels of uric acid. The processed product of dried root of Aconitum carmichaeli Debeaux (Aconiti Radix cocta, ARC) is used often in traditional Chinese medicine (TCM) to treat GA, but its specific active components and mechanism of action are not clear. Methods: First, we used ultra-performance liquid chromatography-quadrupole/time-of-flight tandem mass spectrometry to identify the chemical spectrum of ARC. Based on this result, we explored the active components of ARC in GA treatment and their potential targets and pathways. Simultaneously, we used computer simulations, in vitro cell experiments and animal experiments to verify the prediction results of systems pharmacology. In vitro, we used aurantiamide acetate (AA) to treat monosodium urate (MSU)-stimulated THP-1 cells and demonstrated the reliability of the prediction by western blotting and real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR). ELISAs kit were used to measure changes in levels of proinflammatory factors in rats with GA induced by MSU to demonstrate the efficacy of ARC in GA treatment. Results: Forty-three chemical constituents in ARC were identified. ARC could regulate 65 targets through 29 active components, and then treat GA, which involved 1427 Gene Ontology (GO) terms and 146 signaling pathways. Signaling pathways such as proteoglycans in cancer, C-type lectin receptor signaling pathway, and TNF signaling pathway may have an important role in GA treatment with ARC. In silico results showed that the active components songoramine and ignavine had high binding to mitogen-activated protein kinase p38 alpha (MAPK14) and matrix metallopeptidase (MMP)9, indicating that ARC treatment of GA was through multiple components and multiple targets. In vitro experiments showed that AA in ARC could effectively reduce expression of MAPK14, MMP9, and cyclooxygenase2 (PTGS2) in THP-1 cells stimulated by MSU, whereas it could significantly inhibit the mRNA expression of Caspase-1, spleen tyrosine kinase (SYK), and PTGS2. Animal experiments showed that a ARC aqueous extract could significantly reduce expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and intereleukin (IL)-18 in the serum of GA rats stimulated by MSU. Hence, ARC may inhibit inflammation by regulating the proteoglycans in cancer-associated signaling pathways. Conclusion: ARC treatment of GA may have the following mechanisms, ARC can reduce MSU crystal-induced joint swelling, reduce synovial tissue damage, and reduce the expression of inflammatory factors in serum. AA in ARC may inhibit inflammation by regulating the protein expression of MAPK14, MMP9, and PTGS2 and the mRNA expression of caspase-1, SYK, and PTGS2.
Collapse
Affiliation(s)
- Xietao Ye
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jianxiong Wu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Dayong Zhang
- Sichuan New Lotus Chinese Herbal Medicine, Chengdu, China
| | - Zelun Lan
- Sichuan New Lotus Chinese Herbal Medicine, Chengdu, China
| | - Songhong Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jing Zhu
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ming Yang
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Qianfeng Gong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lingyun Zhong
- Pharmacy College, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
11
|
Zhang WJ, Su WW, Lin QW, He Y, Yan ZH, Wang YG, Li PB, Wu H, Liu H, Yao HL. Protective effects of Naoxintong capsule alone and in combination with ticagrelor and atorvastatin in rats with Qi deficiency and blood stasis syndrome. PHARMACEUTICAL BIOLOGY 2020; 58:1006-1022. [PMID: 32985308 PMCID: PMC7534269 DOI: 10.1080/13880209.2020.1821066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/17/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
CONTEXT Naoxintong Capsule (NXT), a Chinese medicine, has been widely used for the treatment of coronary heart disease (CHD) in clinics. OBJECTIVE This study evaluated the cardioprotective effects of NXT alone and in combination with ticagrelor (TIC) and atorvastatin (ATO). MATERIALS AND METHODS Qi deficiency and blood stasis rats were established by 8 weeks high fat diet feeding and 16 days exhaustive swimming and randomly divided into seven groups, that is, NXT (250, 500 and 1000 mg/kg/d), TIC (20 mg/kg/d), ATO (8 mg/kg/d), NXT (500 mg/kg/d)+TIC (20 mg/kg/d) and NXT (500 mg/kg/d)+ATO (8 mg/kg/d) group, with oral administration for 12 weeks. The contents of TC, TG, LDL-C, HDL-C, IL-1β, IL-6, IL-8, TNF-α, AST, ALT, SOD, MDA, CK-MB, LDH, TXA2, PGI2, IgA, IgG, IgM and C3 in serum were measured. RESULTS NXT + TIC group was significantly superior to the TIC group in decreasing the levels of TC (4.34 vs. 5.54), TG (3.37 vs. 4.66), LDL-C (1.21 vs. 1.35), LDH (4919.71vs. 5367.19) and elevating SOD level (248.54 vs. 192.04). NXT + ATO group was significantly superior to the ATO group in decreasing the levels of AST (195.931 vs. 241.63), ALT (71.26 vs. 83.16), LDH (4690.05 vs. 5285.82), TXA2 (133.73 vs. 158.67), IgG (8.08 vs. 9.80), C3 (2.03 vs. 2.35) and elevating the levels of HDL-C (1.19 vs. 0.91), SOD (241.91vs. 209.49). CONCLUSIONS The present findings demonstrate that the combined use of NXT with TIC and ATO had better integrated regulating effects than TIC and ATO, respectively. The mechanism of action requires further research.
Collapse
Affiliation(s)
- Wei-jian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Wei-wei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Qing-wei Lin
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yan He
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Zeng-hao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Yong-gang Wang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Pei-bo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hao Wu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
| | - Hong-liang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P. R. China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, P. R. China
| |
Collapse
|
12
|
Wang H, Wu R, Xie D, Ding L, Lv X, Bian Y, Chen X, Nisma Lena BA, Wang S, Li K, Chen W, Ye G, Sun M. A Combined Phytochemistry and Network Pharmacology Approach to Reveal the Effective Substances and Mechanisms of Wei-Fu-Chun Tablet in the Treatment of Precancerous Lesions of Gastric Cancer. Front Pharmacol 2020; 11:558471. [PMID: 33381024 PMCID: PMC7768900 DOI: 10.3389/fphar.2020.558471] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/21/2020] [Indexed: 01/30/2023] Open
Abstract
Wei-Fu-Chun (WFC) tablet is a commercial medicinal product approved by China Food and Drug Administration, which is made of Panax ginseng C.A.Mey., Citrus aurantium L., and Isodon amethystoides (Benth.). WFC has been popularly used for the treatment of precancerous lesions of gastric cancer (PLGC) in clinical practice. In this study, a UHPLC-ESI-Q-TOF/MS method in both positive and negative ion mode was employed to rapidly survey the major constituents of WFC. 178 compounds including diterpenoids, triterpenes, sesquiterpenes, flavonoids, saponins, phenylpropanoids, lignans, coumarins, organic acids, fatty acids, quinones, and sterols, were identified by comparing their retention times, accurate mass within 5 ppm error, and MS fragmentation ions. In addition, 77 absorbed parent molecules and nine metabolites in rat serum were rapidly characterized by UHPLC-ESI-Q-TOF/MS. The network pharmacology method was used to predict the active components, corresponding therapeutic targets, and related pathways of WFC in the treatment of PLGC. Based on the main compounds in WFC and their metabolites in rat plasma and existing databases, 13 active components, 48 therapeutic targets, and 61 pathways were found to treat PLGC. The results of PLGC experiment in rats showed that WFC could improve the weight of PLGC rats and the histopathological changes of gastric mucosa partly by inhibiting Mitogen-activated protein kinase (MAPK) signaling pathway to increase pepsin secretion. This study offers an applicable approach to identify chemical components, absorbed compounds, and metabolic compounds in WFC, and provides a method to explore bioactive ingredients and action mechanisms of WFC.
Collapse
Affiliation(s)
- Huijun Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China.,The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ruoming Wu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Dong Xie
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liqin Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Xing Lv
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Yanqin Bian
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xi Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bahaji Azami Nisma Lena
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kun Li
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Wei Chen
- Huqingyutang Chinese Medicine Modernization Research Institute of Zhejiang Province, Hangzhou, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co., Ltd., Shanghai, China
| | - Mingyu Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Yan Z, Wu H, Zhou H, Chen S, He Y, Zhang W, Chen T, Yao H, Su W. Integrated metabolomics and gut microbiome to the effects and mechanisms of naoxintong capsule on type 2 diabetes in rats. Sci Rep 2020; 10:10829. [PMID: 32616735 PMCID: PMC7331749 DOI: 10.1038/s41598-020-67362-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Naoxintong Capsule (NXT) is a Traditional Chinese Medicine formulation which has been widely applied in treating cardiovascular and cerebrovascular diseases. Previous studies also reported the potential effects of NXT against diabetes and certain complications, yet its mechanisms remain largely obscured. Herein, in this study, we investigated the anti-diabetic effects of NXT as well as its potential mechanisms. Type 2 diabetes (T2D) was induced in rats by 10-week high-fat diet in companion with a low-dose streptozotocin injection. NXT was administrated for additional 8 weeks. The results showed that NXT exerted potent efficacy against T2D by alleviating hyperglycemia and hyperlipidemia, ameliorating insulin resistance, mitigating inflammation, relieving hypertension, and reducing myocardial injuries. To investigate its mechanisms, by integrating sequencing of gut microbiota and serum untargeted metabolomics, we showed that NXT could significantly recover the disturbances of gut microbiota and metabolic phenotypes in T2D rats. Several feature pathways, such as arachidonic acid metabolism, fatty acid β-oxidation and glycerophospholipid metabolism, were identified as the potential mechanisms of NXT in vivo. In summary, our study has comprehensively revealed the anti-diabetic effects of NXT which could be considered as a promising strategy for treating metabolic disorders, T2D and diabetic related complications in clinical practice.
Collapse
Affiliation(s)
- Zenghao Yan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| | - Haokui Zhou
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Shuo Chen
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yan He
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Weijian Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Taobin Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangdong, 510260, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| |
Collapse
|
14
|
Li Q, Zhao C, Zhang Y, Du H, Xu T, Xu X, Zhang J, Kuang T, Lai X, Fan G, Zhang Y. 1H NMR-Based Metabolomics Coupled With Molecular Docking Reveal the Anti-Diabetic Effects and Potential Active Components of Berberis vernae on Type 2 Diabetic Rats. Front Pharmacol 2020; 11:932. [PMID: 32636751 PMCID: PMC7317004 DOI: 10.3389/fphar.2020.00932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
The dried stem bark of Berberis vernae C.K.Schneid., known as “Xiao-bo-pi” in Chinese, is a representative anti-diabetic herb in traditional Tibetan medical system. However, its anti-diabetic mechanisms and active components remain unclear. In this study, 1H NMR-based metabolomics, biochemistry assay, molecular docking, and network analysis were integrated to evaluate the anti-diabetic effects of B. vernae extract on type 2 diabetic rats, and to explore its active components and underlying mechanisms. Diabetes was induced by high-fat diet and streptozotocin. After 30 days of treatment, B. vernae extract significantly decreased the serum levels of fasting blood glucose, insulin, insulin resistance index, glycated serum protein, TNF-α, IL-1β, and IL-6, whereas significantly increased the serum levels of insulin sensitivity index in type 2 diabetic rats. A total of 28 endogenous metabolites were identified by 1H NMR-based metabolomics, of which 9 metabolites that were changed by diabetes were significantly reversed by B. vernae extract. The constructed compound-protein-metabolite-disease (CPMD) interaction network revealed the correlation between chemical constituents, target proteins, differential metabolites, and type 2 diabetes. Ferulic acid 4-O-β-D-glucopyranoside, bufotenidine, jatrorrhizine, and berberine showed good hit rates for both the 30 disease-related proteins and 14 differential metabolites-related proteins, indicating that these four compounds might be the active ingredients of B. vernae against type 2 diabetes. Moreover, pathway analysis revealed that the anti-diabetic mechanisms of B. vernae might be related to its regulation of several metabolic pathways (e.g., butanoate metabolism) and disease-related signal pathways (e.g., adipocytokine signaling pathway). In summary, B. vernae exerts a significant anti-diabetic effect and has potential as a drug candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunsen Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Du
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tong Xu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinmei Xu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Kuang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianrong Lai
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Fan
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Li Z, Zuo L, Shi Y, Tian D, Liu L, Yang Y, Zhou L, Zhang X, Kang J, Hao X, Yuan C, Sun Z. Combination of high-resolution accurate mass spectrometry and network pharmacology provides a new method for the chemical constituents' study and target prediction in vivo of Garcinia multiflora. J Sep Sci 2019; 43:978-986. [PMID: 31867785 DOI: 10.1002/jssc.201900755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Garcinia multiflora is a kind of evergreen tree which is widely distributed in the south of China. However, few researches focused on the constituents in different parts of G. multiflora as well as their potential targets and pathways in vivo. To clarify the chemical constituents of G. multiflora rapidly and predict the potential targets as well as pathways in vivo that this plant may have effects on, a feasible and accurate strategy was developed to identify the chemical constituents in fruits, leaves, and branches of G. multiflora by ultra-high performance liquid chromatography with Q-Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry. Network pharmacology was then employed and a "compounds-targets-diseases" network was established. Sixty-one compounds including polycyclic polyprenylated acylphloroglucinols, xanthones, and flavonoids were finally identified in different parts of G. multiflora, and the contents of seven constituents were quantified, respectively. On the basis of the network pharmacology analysis results, compounds in this plant were speculated to have potential pharmacodynamic effect on cancer, inflammatory, respiratory diseases, cardiovascular diseases, and metabolic diseases. This research will provide a new method for the advanced study on the pharmacodynamic materials basis of G. multiflora, and offer valuable evidences for medicinal purpose of this plant.
Collapse
Affiliation(s)
- Zhuolun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lihua Zuo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yingying Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Dongsong Tian
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Liwei Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Yantao Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Lin Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Jian Kang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| | - Xiaojiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Chunmao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, P. R. China
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou, P. R. China
| |
Collapse
|
16
|
Zhang WJ, Su WW, Li PB, Rao HY, Lin QW, Zeng X, Chen TB, Yan ZH, Liu H, Yao HL. Naoxintong Capsule Inhibits the Development of Cardiovascular Pathological Changes in Bama Minipig Through Improving Gut Microbiota. Front Pharmacol 2019; 10:1128. [PMID: 31632272 PMCID: PMC6785636 DOI: 10.3389/fphar.2019.01128] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Naoxintong capsule (NXT), a Chinese medicine, has performed excellent effects on the prevention and treatment against cardiovascular diseases. NXT is a fine powder mixture without any herb extraction, and there must be lots of ingredients hard to be absorbed. However, little is known about the correlation between the NXT’s cardioprotective effects and gut microbiota. Herein, we report the effect of NXT on the development of cardiovascular diseases and clarify the correlation between NXT’s cardioprotective effects and gut microbiota. In the current study, minipigs were selected and fed with high-fat diet and NXT daily for successive 8 months. During the process, up to 18 biomedical parameters were monthly determined to observe the dynamic changes after NXT treatment. At the end of experimental process, pathological examinations of heart, coronary artery, carotid artery, thoracic aorta, and abdominal aorta were conducted by HE staining and 16SrDNA sequencing, and analyzing of gut microbiota were conducted. Our results showed that NXT’s effects against cardiovascular diseases were through regulating blood lipid profiles, inhibiting vascular inflammation, enhancing antioxidant capacity, and alleviating myocardial injury, without damages on liver and kidney particularly. Concurrently, we also found that long-term administration of NXT increased the diversity of gut microbiota, influenced the microbiome structure and composition stably, and revered the increase of the ratio of the Firmicutes to Bacteroidetes (F/B ratio) in relative abundance. Specifically, our results revealed some key bacterium of Caproiciproducens (enhanced), Sutterella (enhanced), Erysipelotrichaceae (enhanced), and Romboutsia (decreased) that were closely involved in NXT’s effects. Taken together, our study demonstrates that NXT can inhibit the development of cardiovascular diseases by ameliorating high-fat diet–induced metabolic disorders and partly through improving gut microbiota.
Collapse
Affiliation(s)
- Wei-Jian Zhang
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Wei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Traditional Chinese Medicine Quality Standards, Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, China
| | - Pei-Bo Li
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Yu Rao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wei Lin
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao-Bin Chen
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zeng-Hao Yan
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong-Liang Yao
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-market Traditional Chinese Medicine, Guangdong Key Laboratory of Plant Resources, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Drug Synthesis and Evaluation Center, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
17
|
Zhang JY, Hong CL, Chen HS, Zhou XJ, Zhang YJ, Efferth T, Yang YX, Li CY. Target Identification of Active Constituents of Shen Qi Wan to Treat Kidney Yang Deficiency Using Computational Target Fishing and Network Pharmacology. Front Pharmacol 2019; 10:650. [PMID: 31275142 PMCID: PMC6593161 DOI: 10.3389/fphar.2019.00650] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Kidney yang deficiency syndrome (KYDS) is one of the most common syndromes treated with traditional Chinese medicine (TCM) among elderly patients. Shen Qi Wan (SQW) has been effectively used in treating various diseases associated with KYDS for hundreds of years. However, due to the complex composition of SQW, the mechanism of action remains unknown. Purpose: To identify the mechanism of the SQW in the treatment of KYDS and determine the molecular targets of SQW. Methods: The potential targets of active ingredients in SQW were predicted using PharmMapper. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were carried out using the Molecule Annotation System (MAS3.0). The protein–protein interaction (PPI) network of these potential targets and “components-targets-pathways” interaction networks were constructed using Cytoscape. We also established a KYDS rat model induced by adenine to investigate the therapeutic effects of SQW. Body weight, rectal temperature, holding power, water intake, urinary output, blood urea nitrogen (BUN), serum creatinine (Scr), adrenocorticotrophic hormone (ACTH), cortisol (CORT), urine total protein (U-TP), and 17-hydroxy-corticosteroid (17-OHCS) were measured. Additionally, the mRNA expression levels of candidates were detected by qPCR. Results: KYDS-caused changes in body weight, rectal temperature, holding power, water intake, urinary output, BUN, Scr, ACTH, CORT, U-TP, and 17-OHCS were corrected to the baseline values after SQW treatment. We selected the top 10 targets of each component and obtained 79 potential targets, which were mainly enriched in the proteolysis, protein binding, transferase activity, T cell receptor signaling pathway, and focal adhesion. SRC, MAPK14, HRAS, HSP90AA1, F2, LCK, CDK2, and MMP9 were identified as targets of SQW in the treatment of KYDS. The administration of SQW significantly suppressed the expression of SRC, HSP90AA1, LCK, and CDK2 and markedly increased the expression of MAPK14, MMP9, and F2. However, HRAS levels remained unchanged. Conclusion: These findings demonstrated that SQW corrected hypothalamic–pituitary–target gland axis disorder in rats caused by KYDS. SRC, MAPK14, HRAS, HSP90AA1, F2, LCK, CDK2, and MMP9 were determined to the therapeutic target for the further investigation of SQW to ameliorate KYDS.
Collapse
Affiliation(s)
- Jie Ying Zhang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun Lan Hong
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Hong Shu Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Jie Zhou
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Jia Zhang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| | - Yuan Xiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Chang Yu Li
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
18
|
The cardioprotective properties and the involved mechanisms of NaoXinTong Capsule. Pharmacol Res 2019; 141:409-417. [DOI: 10.1016/j.phrs.2019.01.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/06/2019] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
|
19
|
Systems Pharmacology-Based Approach to Comparatively Study the Independent and Synergistic Mechanisms of Danhong Injection and Naoxintong Capsule in Ischemic Stroke Treatment. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1056708. [PMID: 30863452 PMCID: PMC6378776 DOI: 10.1155/2019/1056708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/04/2018] [Accepted: 01/06/2019] [Indexed: 12/26/2022]
Abstract
To provide evidence for the better clinical use of traditional Chinese medicine preparations (TCMPs), comparison of the pharmacological mechanisms between TCMPs with similar therapeutic effect is necessary. However, methodology for dealing with this issue is still scarce. Danhong injection (DHI) and Naoxintong capsule (NXT) are representative TCMPs for ischemic stroke (IS) treatment, which are also frequently used in combination. Here they were employed as research objects to demonstrate the feasibility of systems pharmacology approach in elucidation of the independent and combined effect of TCMPs. By incorporating chemical screening, target prediction, and network construction, a feasible systems pharmacology model has been established to systematically uncover the underlying action mechanisms of DHI, NXT, or their pair in IS treatment. Systematic analysis of the created TCMP-Compound-Target-Disease network revealed that DHI and NXT shared common targets such as PTGS2, F2, ADRB1, IL6, ALDH2, and CCL2, which were involved in the vasomotor system regulation, blood-brain barrier disruption, redox imbalance, neurotrophin activity, and brain inflammation. In comparative mechanism study, the merged DHI/NXT-IS PPI network and pathway enrichment analysis indicated that DHI and NXT exerted the therapeutic effects mainly through immune system and VEGF signaling pathways. Meanwhile, they had their own unique pathways, e.g., calcium signaling pathway for DHI and gap junction for NXT. While for their synergistic mechanism, DHI and NXT participated in chemokine signaling pathway, T cell receptor signaling pathway, VEGF signaling pathway, gap junction, and so on. Our study provided an optimized strategy for dissecting the different and combined effect of TCMPs with similar actions.
Collapse
|
20
|
He Y, Li Z, Wang W, Sooranna SR, Shi Y, Chen Y, Wu C, Zeng J, Tang Q, Xie H. Chemical Profiles and Simultaneous Quantification of Aurantii fructus by Use of HPLC-Q-TOF-MS Combined with GC-MS and HPLC Methods. Molecules 2018; 23:molecules23092189. [PMID: 30200226 PMCID: PMC6225099 DOI: 10.3390/molecules23092189] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/22/2023] Open
Abstract
Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract. There were 104 compounds belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones, 14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as four other compounds that were systematically identified as the basic components from AF, and among them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity, precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to the simultaneous determination of 12 chemical markers in different samples of AF. This study could be applied to the identification of multiple bioactive substances and improve the quality control of AF.
Collapse
Affiliation(s)
- Yingjie He
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Zongkai Li
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 565006, China.
| | - Wei Wang
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Suren R Sooranna
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London SW10 9NH, UK.
| | - Yiting Shi
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Yun Chen
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Changqiao Wu
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Qi Tang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| | - Hongqi Xie
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China.
- National and Local Union Engineering Research Center for the Veterinary Herbal Medicine Resources and Initiative, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
21
|
NaoXinTong Capsules inhibit the development of diabetic nephropathy in db/db mice. Sci Rep 2018; 8:9158. [PMID: 29904053 PMCID: PMC6002396 DOI: 10.1038/s41598-018-26746-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
NaoXinTong Capsule (NXT), a Chinese medicine, is currently used to treat patients with cardiovascular and cerebrovascular diseases. Clinical observations indicate its anti-diabetic functions with unclear mechanisms. Herein, we report the effect of NXT on diabetic nephropathy (DN). Type 2 diabetic db/db mice were treated with NXT for 14 weeks. In the course of treatment, NXT reduced diabetes-increased glucose levels and improved renal functions. At the end of treatment, we found that NXT ameliorated serum lipid profiles and other biochemical parameters. In the kidney, NXT inhibited mesangial matrix expansion, expression of vascular endothelial growth factor A, fibronectin, advanced glycation end product and its receptor. Meanwhile, it reduced the diabetes-induced podocyte injury by increasing WT1 and nephrin expression. In addition, NXT inhibited accumulation of extracellular matrix proteins by increasing MMP2/9 expression through inactivation of TGFβ/Smad pathway and CTGF expression. Mechanically, NXT activated insulin signaling pathway by increasing expression of INSR, IRS and FGF21, phosphorylation of Akt and AMPKα in the liver, INSR phosphorylation in the kidney, and FGF21 and GLUT4 expression in adipose tissue and skeletal muscle. Taken together, our study demonstrates that NXT inhibits DN by ameliorating glucose/lipid metabolism, maintaining tissue structure integrity, and correcting diabetes-induced renal dysfunctions.
Collapse
|
22
|
Pereira ASP, Bester MJ, Apostolides Z. Exploring the anti-proliferative activity of Pelargonium sidoides DC with in silico target identification and network pharmacology. Mol Divers 2017; 21:809-820. [PMID: 28924942 DOI: 10.1007/s11030-017-9769-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/19/2017] [Indexed: 01/10/2023]
Abstract
Pelargonium sidoides DC (Geraniaceae) is a medicinal plant indigenous to Southern Africa that has been widely evaluated for its use in the treatment of upper respiratory tract infections. In recent studies, the anti-proliferative potential of P. sidoides was shown, and several phenolic compounds were identified as the bioactive compounds. Little, however, is known regarding their anti-proliferative protein targets. In this study, the anti-proliferative mechanisms of P. sidoides through in silico target identification and network pharmacology methodologies were evaluated. The protein targets of the 12 phenolic compounds were identified using the target identification server PharmMapper and the server for predicting Drug Repositioning and Adverse Reactions via the Chemical-Protein Interactome (DRAR-CPI). Protein-protein and protein-pathway interaction networks were subsequently constructed with Cytoscape 3.4.0 to evaluate potential mechanisms of action. A total of 142 potential human target proteins were identified with the in silico target identification servers, and 90 of these were found to be related to cancer. The protein interaction network was constructed from 86 proteins involved in 209 interactions with each other, and two protein clusters were observed. A pathway enrichment analysis identified over 80 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched with the protein targets and included several pathways specifically related to cancer as well as various signaling pathways that have been found to be dysregulated in cancer. These results indicate that the anti-proliferative activity of P. sidoides may be multifactorial and arises from the collective regulation of several interconnected cell signaling pathways.
Collapse
Affiliation(s)
- A S P Pereira
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - M J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa
| | - Z Apostolides
- Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hillcrest, Pretoria, 0083, South Africa.
| |
Collapse
|
23
|
Wang H, Qiu L, Ma Y, Zhang L, Chen L, Li C, Geng X, You X, Gao X. Naoxintong inhibits myocardial infarction injury by VEGF/eNOS signaling-mediated neovascularization. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:13-23. [PMID: 28669772 DOI: 10.1016/j.jep.2017.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Naoxintong capsules (NXT), a traditional Chinese Medical preparation, are widely used for treatment of cardiovascular diseases, while the mechanism is still unclear. MATERIALS AND METHODS Myocardial infarction (MI) was induced by ligation of the left coronary artery in mice. Echocardiographic measurements were performed to do physiological assessments of left ventricle (LV) function. Histological and immunohistochemical staining was used to determine infarct size, capillary density, tissue endothelial nitric oxide synthase (eNOS) expression. Bone Marrow Transplantation (BMT) model and flow cytometric (FCM) analyses were applied to assay endothelial progenitor cells (EPCs) mobilization. Quantitative Real-Time Reverse Transcription Polymerase Chain Reaction (qRT-PCR), Western blotting and enzyme-linked immunosorbent assay (ELISA) were performed to detect the expressions of vascular endothelial growth factor (VEGF), kinase domain region (KDR), phosphorylated-Akt (p-Akt), phosphorylated-eNOS (p-eNOS). RESULTS NXT administration reduced myocardium fibrosis and increased myocardium capillary density in response to MI. NXT increased circulating Sca1+/ Fetal liver kinase 1 (Flk1)+ mononuclear cells (MNCs) and soluble Kit ligand (sKitL) of bone marrow (BM) in response to MI. In mice transplanted with green fluorescent protein (GFP) BM cells, NXT increased the numbers of GFP-positive cells at the border zone of the ischemic region in MI-induced mice. NXT increased the numbers of eNOS-expressing BM-derived cells in tissues, which was involved in increased the expressions of VEGF, KDR, p-eNOS, p-Akt in the myocardium. CONCLUSION NXT-mediated recovery in MI-induced mice was involved in mobilization and incorporation of bone marrow-derived EPCs/circulating angiogenic cells (CACs) leading to enhancement of neovascularization via VEGF/eNOS signaling.
Collapse
Affiliation(s)
- Hong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Lizhen Qiu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yake Ma
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lusha Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Chen
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Chinese Medicine Pharmacology, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiao Geng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyu You
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
24
|
Naoxintong/PPAR γ Signaling Inhibits Cardiac Hypertrophy via Activation of Autophagy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3801976. [PMID: 28293264 PMCID: PMC5331281 DOI: 10.1155/2017/3801976] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/01/2016] [Indexed: 01/08/2023]
Abstract
As a traditional Chinese medicine, Naoxintong capsule (NXT) has been approved by China Food and Drug Administration (CFDA), which is used for cardiocerebrovascular disease treatment. Here we found that NXT extract significantly promoted H9c2 cardiomyocyte cell autophagy involved in increased autophagy-associated gene expression leading to inhibition of mTOR signaling. Moreover, NXT extract increased PPARγ protein expression and transcription activity of H9c2 cell. Consistent with this, in PPARγ gene silenced H9c2 cells, NXT had no effect on autophagy and mTOR signaling. Furthermore, NXT/PPARγ-mediated H9c2 autophagy led to inhibition of cardiomyocyte cell hypertrophy. These findings suggest that the extract of NXT inhibited H9c2 cardiomyocyte cell hypertrophy via PPARγ-mediated cell autophagy.
Collapse
|