1
|
Amruta N, Rahman AA, Pinteaux E, Bix G. Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. J Neuroimmunol 2020; 346:577318. [PMID: 32682140 PMCID: PMC7794086 DOI: 10.1016/j.jneuroim.2020.577318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 02/08/2023]
Abstract
Stroke is the leading cause of death and the main cause of disability in surviving patients. The detrimental interaction between immune cells, glial cells, and matrix components in stroke pathology results in persistent inflammation that progresses to fibrosis. A substantial effort is being directed toward understanding the exact neuroinflammatory events that take place as a result of stroke. The initiation of a potent cytokine response, along with immune cell activation and infiltration in the ischemic core, has massive acute deleterious effects, generally exacerbated by comorbid inflammatory conditions. There is secondary neuroinflammation that promotes further injury, resulting in cell death, but conversely plays a beneficial role, by promoting recovery. This highlights the need for a better understanding of the neuroinflammatory and fibrotic processes, as well as the need to identify new mechanisms and potential modulators. In this review, we summarize several aspects of stroke-induced inflammation, fibrosis, and include a discussion of cytokine inhibitors/inducers, immune cells, and fibro-inflammation signaling inhibitors in order to identify new pharmacological means of intervention.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Abir A Rahman
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Faculty of Biology, Medicine and Health, A.V. Hill Building, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
2
|
McElwain CJ, Tuboly E, McCarthy FP, McCarthy CM. Mechanisms of Endothelial Dysfunction in Pre-eclampsia and Gestational Diabetes Mellitus: Windows Into Future Cardiometabolic Health? Front Endocrinol (Lausanne) 2020; 11:655. [PMID: 33042016 PMCID: PMC7516342 DOI: 10.3389/fendo.2020.00655] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Placental insufficiency and adipose tissue dysregulation are postulated to play key roles in the pathophysiology of both pre-eclampsia (PE) and gestational diabetes mellitus (GDM). A dysfunctional release of deleterious signaling motifs can offset an increase in circulating oxidative stressors, pro-inflammatory factors and various cytokines. It has been previously postulated that endothelial dysfunction, instigated by signaling from endocrine organs such as the placenta and adipose tissue, may be a key mediator of the vasculopathy that is evident in both adverse obstetric complications. These signaling pathways also have significant effects on long term maternal cardiometabolic health outcomes, specifically cardiovascular disease, hypertension, and type II diabetes. Recent studies have noted that both PE and GDM are strongly associated with lower maternal flow-mediated dilation, however the exact pathways which link endothelial dysfunction to clinical outcomes in these complications remains in question. The current diagnostic regimen for both PE and GDM lacks specificity and consistency in relation to clinical guidelines. Furthermore, current therapeutic options rely largely on clinical symptom control such as antihypertensives and insulin therapy, rather than that of early intervention or prophylaxis. A better understanding of the pathogenic origin of these obstetric complications will allow for more targeted therapeutic interventions. In this review we will explore the complex signaling relationship between the placenta and adipose tissue in PE and GDM and investigate how these intricate pathways affect maternal endothelial function and, hence, play a role in acute pathophysiology and the development of future chronic maternal health outcomes.
Collapse
Affiliation(s)
- Colm J. McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
- *Correspondence: Colm J. McElwain
| | - Eszter Tuboly
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Fergus P. McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal M. McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
3
|
Wu CT, Yang TH, Chen MC, Chung YP, Guan SS, Long LH, Liu SH, Chen CM. Low Intensity Pulsed Ultrasound Prevents Recurrent Ischemic Stroke in a Cerebral Ischemia/Reperfusion Injury Mouse Model via Brain-derived Neurotrophic Factor Induction. Int J Mol Sci 2019; 20:ijms20205169. [PMID: 31635269 PMCID: PMC6834125 DOI: 10.3390/ijms20205169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/13/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
The incidence of stroke recurrence is still higher despite the advanced progression of therapeutic treatment and medical technology. Low intensity pulsed ultrasound (LIPUS) has been demonstrated to possess therapeutic effects on neuronal diseases and stroke via brain-derived neurotrophic factor (BDNF) induction. In this study, we hypothesized that LIPUS treatment possessed therapeutic benefits for the improvement of stroke recurrence. Adult male C57BL/6J mice were subjected to a middle cerebral artery occlusion (MCAO) surgery and then followed to secondary MCAO surgery as a stroke recurrence occurred after nine days from the first MCAO. LIPUS was administered continuously for nine days before secondary MCAO. LIPUS treatment not only decreased the mortality but also significantly moderated neuronal function injury including neurological score, motor activity, and brain pathological score in the recurrent stroke mice. Furthermore, the administration of LIPUS attenuated the apoptotic neuronal cells and increased Bax/Bcl-2 protein expression ratio and accelerated the expression of BDNF in the brain of the recurrent stroke mice. Taken together, these results demonstrate for the first time that LIPUS treatment arouses the expression of BDNF and possesses a therapeutic benefit for the improvement of stroke recurrence in a mouse model. The neuroprotective potential of LIPUS may provide a useful strategy for the prevention of a recurrent stroke.
Collapse
Affiliation(s)
- Cheng-Tien Wu
- Department of Nutrition, China Medical University, Taichung 40402, Taiwan.
- Master Program of Food and Drug Safety, China Medical University, Taichung 40402, Taiwan.
| | - Ting-Hua Yang
- Department of Otolaryngology, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Man-Chih Chen
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Yao-Pang Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| | - Siao-Syun Guan
- Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan.
| | - Lin-Hwa Long
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Department of Pediatrics, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| | - Chang-Mu Chen
- Division of Neurosurgery, Department of Surgery, College of Medicine and Hospital, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
4
|
Kim SY, Jin CY, Kim CH, Yoo YH, Choi SH, Kim GY, Yoon HM, Park HT, Choi YH. Isorhamnetin alleviates lipopolysaccharide-induced inflammatory responses in BV2 microglia by inactivating NF-κB, blocking the TLR4 pathway and reducing ROS generation. Int J Mol Med 2018; 43:682-692. [PMID: 30483725 PMCID: PMC6317673 DOI: 10.3892/ijmm.2018.3993] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/09/2018] [Indexed: 12/22/2022] Open
Abstract
Isorhamnetin, which is a flavonoid predominantly found in fruits and leaves of various plants, including Hippophae rhamnoides L. and Oenanthe javanica (Blume) DC, is known to possess various pharmacological effects. However, the anti‑inflammatory potential of isorhamnetin remains poorly studied. Therefore, the present study aimed to investigate the inhibitory potential of isorhamnetin against inflammatory responses in lipopolysaccharide (LPS)‑stimulated BV2 microglia. To measure the effects of isorhamnetin on inflammatory mediators and cytokines, and reactive oxygen species (ROS) generation, the following methods were used: cell viability assay, griess assay, ELISA, reverse transcriptase‑polymerase chain reaction, flow cytometry, western blotting and immunofluorescence staining. The results revealed that isorhamnetin significantly suppressed LPS‑induced secretion of pro‑inflammatory mediators, including nitric oxide (NO) and prostaglandin E2, without exhibiting significant cytotoxicity. Consistent with these results, isorhamnetin inhibited LPS‑stimulated expression of regulatory enzymes, including inducible NO synthase and cyclooxygenase‑2 in BV2 cells. Isorhamnetin also downregulated LPS‑induced production and expression of pro‑inflammatory cytokines, such as tumor necrosis factor‑α and interleukin‑1β. The mechanism underlying the anti‑inflammatory effects of isorhamnetin was subsequently evaluated; this flavonoid inhibited the nuclear factor (NF)‑κB signaling pathway by disrupting degradation and phosphorylation of inhibitor κB‑α in the cytoplasm and blocking translocation of NF‑κB p65 into the nucleus. In addition, isorhamnetin effectively suppressed LPS‑induced expression of Toll‑like receptor 4 (TLR4) and myeloid differentiation factor 88. It also suppressed the binding of LPS with TLR4 in BV2 cells. Furthermore, isorhamnetin markedly reduced LPS‑induced generation of ROS in BV2 cells, thus indicating a strong antioxidative effect. Collectively, these results suggested that isorhamnetin may suppress LPS‑mediated inflammatory action in BV2 microglia through inactivating the NF‑κB signaling pathway, antagonizing TLR4 and eliminating ROS accumulation. Further studies are required to fully understand the anti‑inflammatory effects associated with the antioxidant capacity of isorhamnetin; however, the findings of the present study suggested that isorhamnetin may have potential benefits in inhibiting the onset and treatment of neuroinflammatory diseases.
Collapse
Affiliation(s)
- Shin Young Kim
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Cheng-Yun Jin
- School of Pharmaceutical Sciences, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Cheol Hong Kim
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Young Hyun Yoo
- Department of Anatomy and Cell Biology, Mitochondria Hub Regulation Center, College of Medicine, Dong‑A University, Busan 49201, Republic of Korea
| | - Sung Hyun Choi
- Department of System Management, Korea Lift College, Geochang, South Gyeongsang 50141, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun Min Yoon
- Department of Acupuncture and Moxibustion, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, College of Medicine, Dong‑A University, Busan 49201, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dongeui University College of Korean Medicine, Busan 47227, Republic of Korea
| |
Collapse
|
5
|
Yang Y, Zhang XJ, Zhang C, Chen R, Li L, He J, Xie Y, Chen Y. Loss of neuronal CD200 contributed to microglial activation after acute cerebral ischemia in mice. Neurosci Lett 2018; 678:48-54. [PMID: 29729356 DOI: 10.1016/j.neulet.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/13/2018] [Accepted: 05/01/2018] [Indexed: 01/21/2023]
Abstract
CD200 has been proved to play a role in immuno-inflammatory reaction. However, little information is available on CD200 in the acute stage of cerebral ischemia. We investigated the association between neuronal death and expression of CD200, and explored the relationship between CD200 and microglia in cerebral ischemic mice. Firstly, localization of CD200 expression in the normal brain tissue was detected by immunofluorescent assay. Then, focal cerebral ischemia was induced in mice by permanent middle cerebral artery occlusion (pMCAO) and then cortical tissues were collected at 6, 12, 24 and 48 h after surgery. Changes of CD200 and neuron-specific enolase (NSE) after pMCAO were assessed by western blotting. Meanwhile flow cytometry analysis was implemented to analyze the death of cortical cells. Results of these two parts were analyzed by Pearson correlation analysis. To further study, intracerebroventricular (ICV) injection of recombinant CD200 (rCD200) protein was carried out immediately after pMCAO. Iba-1 was measured by western blotting to evaluate activation of microglia, and inflammatory cytokines including IL-1β, TNF-α and IL-10 were tested by enzyme-linked immuno sorbent assay (ELISA). The results showed that CD200 was expressed in neurons and was not observed on mircroglia in cortex of normal mice. Expression of CD200 was decreased within 48 h after pMCAO, with a concomitant decrease of NSE expression. The rate of neuronal cell death was approximately around 30% and statistical analysis revealed a negative correlation between level of CD200 and the rate of neuronal death. Compared with control, exogenous rCD200 reduced expressions of Iba-1, IL-1β, TNF-α and IL-10. Taking together, our results demonstrated that loss of CD200 was caused by neuronal death and was one of contributing factors in microglial activation after cerebral ischemia. ICV injection of rCD200 protein could suppress activation of microglia in vivo.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Xiang-Jian Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China.
| | - Cong Zhang
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Rong Chen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Li Li
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Junna He
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Yanzhao Xie
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, PR China; Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China
| | - Yanxia Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, PR China; Department of Endocrinology, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, Hebei, PR China
| |
Collapse
|
6
|
Preventive Effect of Low Intensity Pulsed Ultrasound against Experimental Cerebral Ischemia/Reperfusion Injury via Apoptosis Reduction and Brain-derived Neurotrophic Factor Induction. Sci Rep 2018; 8:5568. [PMID: 29615782 PMCID: PMC5882812 DOI: 10.1038/s41598-018-23929-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
Stroke is known as the top 10 causes of death worldwide. Development of effectively neuroprotective or preventive strategies for ischemia stroke is imperative. For the purpose of stroke prevention, we tested the neuroprotective effects of low-intensity pulsed ultrasound (LIPUS) on ischemic stroke. Adult C57BL/6 mice were used to daily treatment with LIPUS for 5 days on left hemisphere before middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injury. Western blotting and immunohistochemistry were performed to assess the protein expressions of signaling molecules. Pretreatment with LIPUS significantly ameliorated the brain ischemic damage, including the reduction of neurological deficit score, infarct area, histopathological score, and showed a better performance in neurological and behavior functions. LIPUS pretreatment could also significantly decrease the neuronal cell apoptosis and upregulation of apoptosis-related signaling molecules and downregulation of brain-derived neurotrophic factor (BDNF) in brain tissues of MCAO-treated mice. Furthermore, LIPUS significantly prevented the decreased cell viability, the increased caspase-3 cleavage, and the decreased BDNF expression in ischemia/reperfusion-treated microglial cells. These results demonstrate that LIPUS effectively prevented the cerebral ischemia/reperfusion injury through apoptosis reduction and BDNF induction in a MCAO mouse model. The neuroprotective potential of LIPUS may provide a novel preventive strategy for ischemic stroke in high-risk patients.
Collapse
|