1
|
Lv S, Wang Q, Zhang X, Ning F, Liu W, Cui M, Xu Y. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155231. [PMID: 38007992 DOI: 10.1016/j.phymed.2023.155231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/07/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND The term "vascular cognitive impairment" (VCI) describes various cognitive conditions that include vascular elements. It increases the risk of morbidity and mortality in the elderly population and is the most common cognitive impairment associated with cerebrovascular disease. Understanding the etiology of VCI may aid in identifying approaches to target its possible therapy for the condition. Treatment of VCI has focused on vascular risk factors. There are no authorized conventional therapies available right now. The medications used to treat VCI are solely approved for symptomatic relief and are not intended to prevent or slow the development of VCI. PURPOSE The function of Chinese medicine in treating VCI has not yet been thoroughly examined. This review evaluates the preclinical and limited clinical evidence to comprehend the "multi-component, multi-target, multi-pathway" mechanism of Traditional Chinese medicine (TCM). It investigates the various multi-omics approaches in the search for the pathological mechanisms of VCI, as well as the new research strategies, in the hopes of supplying supportive evidence for the clinical treatment of VCI. METHODS This review used the Preferred Reporting Items for Preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements. Using integrated bioinformatics and network pharmacology approaches, a thorough evaluation and analysis of 25 preclinical studies published up to July 1, 2023, were conducted to shed light on the mechanisms of TCM for vascular cognitive impairment. The studies for the systematic review were located using the following databases: PubMed, Web of Science, Scopus, Cochrane, and ScienceDirect. RESULTS We discovered that the multi-omics analysis approach would hasten the discovery of the role of TCM in the treatment of VCI. It will explore components, compounds, targets, and pathways, slowing the progression of VCI from the perspective of inhibiting oxidative stress, stifling neuroinflammation, increasing cerebral blood flow, and inhibiting iron deposition by a variety of molecular mechanisms, which have significant implications for the treatment of VCI. CONCLUSION TCM is a valuable tool for developing dementia therapies, and further research is needed to determine how TCM components may affect the operation of the neurovascular unit. There are still some limitations, although several research have offered invaluable resources for searching for possible anti-dementia medicines and treatments. To gain new insights into the molecular mechanisms that precisely modulate the key molecules at different levels during pharmacological interventions-a prerequisite for comprehending the mechanism of action and determining the potential therapeutic value of the drugs-further research should employ more standardized experimental methods as well as more sophisticated science and technology. Given the results of this review, we advocate integrating chemical and biological component analysis approaches in future research on VCI to provide a more full and objective assessment of the standard of TCM. With the help of bioinformatics, a multi-omics analysis approach will hasten the discovery of the role of TCM in the treatment of VCI, which has significant implications for the treatment of VCI.
Collapse
Affiliation(s)
- Shi Lv
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Qian Wang
- Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China
| | - Xinlei Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Fangli Ning
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenxin Liu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
2
|
Analysis of Potential Mechanism of Herbal Formula Taohong Siwu Decoction against Vascular Dementia Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2023; 2023:1235552. [PMID: 36726841 PMCID: PMC9886489 DOI: 10.1155/2023/1235552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/25/2023]
Abstract
Vascular dementia (VaD) is the second most prevalent dementia, which is attributable to neurovascular dysfunction. Currently, no approved pharmaceuticals are available. Taohong Siwu decoction (TSD) is a traditional Chinese medicine prescription with powerful antiapoptosis and anti-inflammatory properties. In this study, a network pharmacology approach together with molecular docking validation was used to explore the probable mechanism of action of TSD against VaD. A total of 44 active components, 202 potential targets of components, and 3,613 VaD-related targets including 161 intersecting were obtained. The potential chemical components including kaempferol, baicalein, beta-carotene, luteolin, quercetin, and beta-sitosterol involved in the inflammatory response, oxidative stress, and apoptosis might have potential therapeutic effects on the treatment of VaD. The potential core targets including AKT1, CASP3, IL1β, JUN, and TP53 associated with cell apoptosis and inflammatory might account for the essential therapeutic effects of TSD in VaD. The results indicated that TSD protected against VaD through multicomponent and multitarget modes. Though the detailed mechanism of action of various active ingredients needs to be further illustrated, TSD still showed a promising therapeutic agent for VaD due to its biological activity.
Collapse
|
3
|
Zhan Y, Al-Nusaif M, Ding C, Zhao L, Dong C. The potential of the gut microbiome for identifying Alzheimer's disease diagnostic biomarkers and future therapies. Front Neurosci 2023; 17:1130730. [PMID: 37179559 PMCID: PMC10174259 DOI: 10.3389/fnins.2023.1130730] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/05/2023] [Indexed: 05/15/2023] Open
Abstract
Being isolated from the peripheral system by the blood-brain barrier, the brain has long been considered a completely impervious tissue. However, recent findings show that the gut microbiome (GM) influences gastrointestinal and brain disorders such as Alzheimer's disease (AD). Despite several hypotheses, such as neuroinflammation, tau hyperphosphorylation, amyloid plaques, neurofibrillary tangles, and oxidative stress, being proposed to explain the origin and progression of AD, the pathogenesis remains incompletely understood. Epigenetic, molecular, and pathological studies suggest that GM influences AD development and have endeavored to find predictive, sensitive, non-invasive, and accurate biomarkers for early disease diagnosis and monitoring of progression. Given the growing interest in the involvement of GM in AD, current research endeavors to identify prospective gut biomarkers for both preclinical and clinical diagnoses, as well as targeted therapy techniques. Here, we discuss the most recent findings on gut changes in AD, microbiome-based biomarkers, prospective clinical diagnostic uses, and targeted therapy approaches. Furthermore, we addressed herbal components, which could provide a new venue for AD diagnostic and therapy research.
Collapse
Affiliation(s)
- Yu Zhan
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Murad Al-Nusaif
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratories for Research on the Pathogenic Mechanism of Neurological Disease, First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Cong Ding
- The Center for Gerontology and Geriatrics, Dalian Friendship Hospital, Dalian, China
| | - Li Zhao
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- *Correspondence: Li Zhao,
| | - Chunbo Dong
- Department of Neurology, First Affiliated Hospital, Dalian Medical University, Dalian, China
- Chunbo Dong,
| |
Collapse
|
4
|
Hussain SA, Aziz TA, Mahwi TO, Ahmed ZA. Gingko biloba extract improves the lipid profile, inflammatory markers, leptin level and the antioxidant status of T2DM patients poorly responding to metformin: A double- blind, randomized, placebo-controlled trial. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e19516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
5
|
GuanXinNing Tablet Attenuates Alzheimer's Disease via Improving Gut Microbiota, Host Metabolites, and Neuronal Apoptosis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9253281. [PMID: 34745305 PMCID: PMC8568547 DOI: 10.1155/2021/9253281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 10/04/2021] [Indexed: 01/27/2023]
Abstract
Based on accumulating evidence, Alzheimer's disease (AD) is related to hypercholesterolemia, gut microbiota, and host metabolites. GuanXinNing Tablet (GXN) is an oral compound preparation composed of two Chinese herbs, Salvia miltiorrhiza Bge. and Ligusticum chuanxiong Hort., both of which exert neuroprotective effects. Nevertheless, the effect of GXN on AD is unknown. In the present study, we investigated whether GXN alters cholesterol, amyloid-beta (Aβ), gut microbiota, serum metabolites, oxidative stress, neuronal metabolism activities, and apoptosis in an AD model rabbit fed a 2% cholesterol diet. Our results suggested that the GXN treatment significantly reduced cholesterol levels and Aβ deposition and improved memory and behaviors in AD rabbits. The 16S rRNA analysis showed that GXN ameliorated the changes in the gut microbiota, decreased the Firmicutes/Bacteroidetes ratio, and improved the abundances of Akkermansia and dgA-11_gut_group. 1H-NMR metabolomics found that GXN regulated 12 different serum metabolites, such as low-density lipoprotein (LDL), trimethylamine N-oxide (TMAO), and glutamate (Glu). In addition, the 1H-MRS examination showed that GXN remarkably increased N-acetyl aspartate (NAA) and Glu levels while reducing myo-inositol (mI) and choline (Cho) levels in AD rabbits, consequently enhancing neuronal metabolism activities. Furthermore, GXN significantly inhibited oxidative stress and neuronal apoptosis. Taken together, these results indicate that GXN attenuates AD via improving gut microbiota, host metabolites, and neuronal apoptosis.
Collapse
|
6
|
Huperzine A and Its Neuroprotective Molecular Signaling in Alzheimer's Disease. Molecules 2021; 26:molecules26216531. [PMID: 34770940 PMCID: PMC8587556 DOI: 10.3390/molecules26216531] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022] Open
Abstract
Huperzine A (HupA), an alkaloid found in the club moss Huperzia serrata, has been used for centuries in Chinese folk medicine to treat dementia. The effects of this alkaloid have been attributed to its ability to inhibit the cholinergic enzyme acetylcholinesterase (AChE), acting as an acetylcholinesterase inhibitor (AChEI). The biological functions of HupA have been studied both in vitro and in vivo, and its role in neuroprotection appears to be a good therapeutic candidate for Alzheimer´s disease (AD). Here, we summarize the neuroprotective effects of HupA on AD, with an emphasis on its interactions with different molecular signaling avenues, such as the Wnt signaling, the pre- and post-synaptic region mechanisms (synaptotagmin, neuroligins), the amyloid precursor protein (APP) processing, the amyloid-β peptide (Aβ) accumulation, and mitochondrial protection. Our goal is to provide an integrated overview of the molecular mechanisms through which HupA affects AD.
Collapse
|
7
|
Zeng X, Zheng Y, Liu Y, Su W. Chemical composition, quality control, pharmacokinetics, pharmacological properties and clinical applications of Fufang Danshen Tablet: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114310. [PMID: 34107328 DOI: 10.1016/j.jep.2021.114310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Fufang Danshen Tablet (FDT) is a traditional Chinese medicine (TCM) formula composed of three Chinese medicinal materials comprising Salviae Miltiorrhizar Radix et Rhizoma (Dan-Shen in Chinese), Notoginseng Radix et Rhizoma (San-Qi), and Borneolum Syntheticum (Bing-Pian). It has been documented to exert significant effects in promoting blood circulation and removing blood stasis, and become a frequently used formula in the treatment of cardiovascular and cerebrovascular diseases. AIM OF THE REVIEW To systematically analyze and summarize the research findings concerning the chemical composition, quality control, pharmacokinetics, pharmacological properties, clinical applications, and toxicity of FDT, so as to point out some typical problems and provides opinions for future study. MATERIALS AND METHODS Literatures involving FDT were collected from online scientific databases including China National Knowledge Infrastructure, WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and Google Scholar up to March 2021. All eligible studies are analyzed and summarized in this review. RESULTS This review summarizes reported results concerning the post-marketing quality and efficacy of FDT. Some problems are pointed out for FDT. Hereon we propose several directions for future study: (a) improvement of quality control based on exact overall chemical profiles, entire production process monitoring, and biopotency-associated multi-index content determination method; (b) clarification of functional mechanisms focused on pharmacokinetic profiles in human, interplay with gut microbiota, and integration of multi-omics technologies; (c) reconfirmation of clinical effectiveness and safety from large-scale clinical studies based on evidence-based medicine. CONCLUSIONS FDT is a typical TCM formula in treating cardiovascular and cerebrovascular diseases, but there are also some troubles. Future studies should focus on the improvement of quality control, the clarification of functional mechanisms, as well as the reconfirmation of clinical effectiveness and safety.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Yuying Zheng
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Yuling Liu
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China
| | - Weiwei Su
- Guangdong Engineering & Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, People's Republic of China.
| |
Collapse
|
8
|
Zhong X, Yan X, Liang H, Xia R, Chen B, Zhao HJ. Evaluation of eight-style Tai chi on cognitive function in patients with cognitive impairment of cerebral small vessel disease: study protocol for a randomised controlled trial. BMJ Open 2021; 11:e042177. [PMID: 33558352 PMCID: PMC7871699 DOI: 10.1136/bmjopen-2020-042177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Cerebral small vessel disease (CSVD) is a critical factor that causes cognitive decline and progresses to vascular dementia and acute cerebrovascular events. Tai chi has been proven to improve nerve plasticity formation and directly improve cognitive function compared with other sports therapy, which has shown its unique advantages. However, more medical evidence needs to be collected in order to verify that Tai chi exercises can improve cognitive impairment due to CSVD. The main purposes of this study are to investigate the effect of Tai chi exercise on neuropsychological outcomes of patients with cognitive impairment related to CSVD and to explore its mechanism of action with neuroimaging, including functional MRI (fMRI) and event-related potential (P300). METHODS AND ANALYSIS The design of this study is a randomised controlled trial with two parallel groups in a 1:1 allocation ratio with allocation concealment and assessor blinding. A total of 106 participants will be enrolled and randomised to the 24-week Tai chi exercise intervention group and 24-week health education control group. Global cognitive function and the specific domains of cognition (memory, processing speed, executive function, attention and verbal learning and memory) will be assessed at baseline and 12 and 24 weeks after randomisation. At the same time, fMRI and P300 will be measured the structure and function of brain regions related to cognitive function at baseline and 24 weeks after randomisation. Recruitment is currently ongoing (recruitment began on 9 November 2020). The approximate completion date for recruitment is in April 2021, and we anticipate to complete the study by December 2021. ETHICS AND DISSEMINATION Ethics approval was given by the Medical Ethics Committee of the Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine (approval number: 2019-058-04). The findings will be disseminated through peer-reviewed publications and at scientific conferences. TRIAL REGISTRATION NUMBER ChiCTR2000033176; Pre-results.
Collapse
Affiliation(s)
- Xiaoyong Zhong
- Department of Neurology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinghui Yan
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hui Liang
- Department of Neurology, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Xia
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Bin Chen
- Department of Rehabilitation, The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hong-Jia Zhao
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
9
|
Endothelium-Independent Vasodilatory Effect of Sailuotong (SLT) on Rat Isolated Tail Artery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8125805. [PMID: 33029174 PMCID: PMC7527950 DOI: 10.1155/2020/8125805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 01/24/2023]
Abstract
Background Sailuotong (SLT) is a standardized three-herb formulation consisting of extracts of Panax ginseng, Ginkgo biloba, and Crocus sativus for the treatment of vascular dementia (VaD). Although SLT has been shown to increase cerebral blood flow, the direct effects of SLT on vascular reactivity have not been explored. This study aims to examine the vasodilatory effects of SLT and the underlying mechanisms in rat isolated tail artery. Methods Male (250-300 g) Wistar Kyoto (WKY) rat tail artery was isolated for isometric tension measurement. The effects of SLT on the influx of calcium through the cell membrane calcium channels were determined in Ca2+-free solution experiments. Results SLT (0.1-5,000 μg/ml) caused a concentration-dependent relaxation in rat isolated tail artery precontracted by phenylephrine. In the contraction experiments, SLT (500, 1,000, and 5,000 μg/mL) significantly inhibited phenylephrine (0.001 to 10 μM)- and KCl (10-80 mM)-induced contraction, in a concentration-dependent manner. In Ca2+-free solution, SLT (500, 1,000, and 5,000 μg/mL) markedly suppressed Ca2+-induced (0.001-3 mM) vasoconstriction in a concentration-dependent manner in both phenylephrine (10 μM) or KCl (80 mM) stimulated tail arteries. L-type calcium channel blocker nifedipine (10 μM) inhibited PE-induced contraction. Furthermore, SLT significantly reduced phenylephrine-induced transient vasoconstriction in the rat isolated tail artery. Conclusion SLT induces relaxation of rat isolated tail artery through endothelium-independent mechanisms. The SLT-induced vasodilatation appeared to be jointly meditated by blockages of extracellular Ca2+ influx via receptor-gated and voltage-gated Ca2+ channels and inhibition of the release of Ca2+ from the sarcoplasmic reticulum.
Collapse
|
10
|
Ahmed A, Zeng G, Azhar M, Lin H, Zhang M, Wang F, Zhang H, Jiang D, Yang S, Farooq AD, Choudhary MI, Liu X, Wang Q. Jiawei Shengmai San herbal formula ameliorates diabetic associate cognitive decline by modulating
AKT
and
CREB
in rats. Phytother Res 2020; 34:3249-3261. [PMID: 32619059 DOI: 10.1002/ptr.6773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/02/2020] [Accepted: 05/24/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ayaz Ahmed
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Guirong Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD) Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Mudassar Azhar
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
| | - Haiying Lin
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Mijia Zhang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing China
| | - Hong Zhang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Dejian Jiang
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs & Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha Changsha China
| | - Sijin Yang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
| | - Ahsana Dar Farooq
- Hamdard Al‐Majeed College of Eastern Medicine Hamdard University Karachi Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences University of Karachi Karachi Pakistan
- Department of Biochemistry, College of Science King Abdulaziz University Jeddah Saudi Arabia
| | - Xinmin Liu
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD) Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Qiong Wang
- Affiliated TCM Hospital/Sino‐Portugal TCM International Cooperation Center/School of Basic Medicine Southwest Medical University Luzhou China
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences (CAAS) Beijing China
| |
Collapse
|
11
|
Zhang J, Zhang Q, Liu G, Zhang N. Therapeutic potentials and mechanisms of the Chinese traditional medicine Danshensu. Eur J Pharmacol 2019; 864:172710. [PMID: 31586468 DOI: 10.1016/j.ejphar.2019.172710] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Danshensu is a pure molecule derived from Danshen, which is the root of the herb Salvia miltiorrhiza. It has a clearly defined chemical structure and demonstrates therapeutic effects in cardiovascular diseases (e.g., myocardial ischemia and reperfusion, atherosclerosis, hypertension), cerebral lesions and disorders (e.g., ischemia, cognitive decline, and anxiety), and other health problems (e.g., thrombosis, tumorigenesis, pancreatitis). The mechanisms behind these effects include antioxidation, anti-apoptosis, vasodilation, inflammation regulation, lipidemia control, etc., through the PI3K/Akt-ERK1/2/Nrf2/HO-1, Bcl-2/Bax, eNOS and other molecular signaling pathways. Both Danshen and Danshensu might be more effective than classical cardiovascular drugs, and their combination yields improved therapeutic efficiency. Here, we provide an overview of these drugs for a better understanding of Danshensu as a promising Chinese traditional medicine.
Collapse
Affiliation(s)
- Jinli Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Qianqian Zhang
- Department of Basic Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, Hebei, 050017, PR China
| | - Guang Liu
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China
| | - Ning Zhang
- Department of Cardiology, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei, 050011, PR China.
| |
Collapse
|
12
|
Tang SW, Tang WH, Leonard BE. Herbal medicine for psychiatric disorders: Psychopharmacology and neuroscience-based nomenclature. World J Biol Psychiatry 2019. [PMID: 28649903 DOI: 10.1080/15622975.2017.1346279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Objectives: Herbs are frequently and concurrently used with prescribed drugs by patients worldwide. While clinical trials have found some herbs to be as useful as standard psychiatric drugs, most clinicians are unaware of their pharmacological mechanisms.Methods: We searched English language and other language literature with English abstracts listed in PubMed website, supplemented by additional through Google Scholar's free academic paper abstract website for publications on herbs, focussing on their clinical use in mental disorders, their neurobiology and their pharmacology.Results: A major reason for herbs remaining outside of mainstream psychiatry is that the terminology and concepts in herbal medicine are not familiar to psychiatrists in general. Many publications regarding the use of herbal medicine for psychiatric disorders are deficient in details regarding diagnosis, criteria for response and the neurobiology details compared with publications on standard psychotropic drugs. Nomenclature for herbal medicine is usually confusing and is not conducive to an easy understanding of their mode of action in psychiatric disorders.Conclusions: The recent neuroscience-based nomenclature (NbN) for psychotropics methodology would be a logical application to herbal medicine in facilitating a better understanding of the use of herbal medicine in psychiatry.
Collapse
Affiliation(s)
- Siu W Tang
- Department of Psychiatry, University of California, Irvine, CA, USA.,Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Wayne H Tang
- Institute of Brain Medicine, Hong Kong, Hong Kong
| | - Brian E Leonard
- Institute of Brain Medicine, Hong Kong, Hong Kong.,Department of Pharmacology, National University of Ireland, Galway, Ireland
| |
Collapse
|
13
|
Li S, Cao G, Deng Q, Zhu D, Yan F. Effect of Pushen capsule for treating vascular mild cognitive impairment: a pilot observational study. J Int Med Res 2019; 47:5483-5496. [PMID: 31407622 PMCID: PMC6862923 DOI: 10.1177/0300060519859766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Objective Traditional Chinese medicine (TCM) may be beneficial for vascular dementia (VaD). We evaluated the efficacy of Pushen capsule, a compound containing several TCM components, for treating vascular mild cognitive impairment (VaMCI). Methods Seventy outpatients with VaMCI were randomized to Pushen capsule or control treatment with Ginkgo biloba. Mini Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Subjective Memory Loss Rating Scale scores; and lipid, lipoprotein, and haemorheological parameters were collected at baseline, week 4, and week 12 of treatment. Results MMSE score at week 12 was significantly higher in the treatment group compared with baseline (t = −2.352) but was not significantly different from week 12 in the control group. The MoCA score at week 12 was higher than that at baseline for both the treatment and control groups (t = −2.619 and −2.582, respectively), as was the “delayed recall” item score. Subjective memory loss score and the cognitive function “forgetting acquaintance's name” were significantly higher in the treatment group at week 12 than at baseline (t = −2.621 and χ2 = 4.419, respectively). Lipid, lipoprotein, and haemorheological parameters were significantly different after treatment in both groups. Conclusion The benefits of Pushen capsule on cognitive function in VaMCI were comparable with that of Ginkgo biloba.
Collapse
Affiliation(s)
- Shuo Li
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Geyin Cao
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qiwen Deng
- Department of Neurology, Nanjing First hospital, Nanjing, China
| | - Dan Zhu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Dewey CW, Davies ES, Xie H, Wakshlag JJ. Canine Cognitive Dysfunction: Pathophysiology, Diagnosis, and Treatment. Vet Clin North Am Small Anim Pract 2019; 49:477-499. [PMID: 30846383 DOI: 10.1016/j.cvsm.2019.01.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Canine cognitive dysfunction (CCD) is the canine analog of human Alzheimer disease (AD). The pathophysiology of CCD/AD is multifaceted. CCD is common in aged (>8 years) dogs, affecting between 14% and 35% of the pet dog population. Apparent confusion, anxiety, disturbance of the sleep/wake cycle, and decreased interaction with owners are all common clinical signs of CCD. Although there is no cure for CCD, several proven effective therapeutic approaches are available for improving cognitive ability and maintaining a good quality of life; instituting such therapies early in the disease course is likely to have the greatest positive clinical effect.
Collapse
Affiliation(s)
- Curtis Wells Dewey
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, C4 169 Clinical Programs Center, Ithaca, NY 14853, USA.
| | - Emma S Davies
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, C4 169 Clinical Programs Center, Ithaca, NY 14853, USA
| | - Huisheng Xie
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Department of Comparative, Diagnostic and Population Medicine, 9700 Highway 318 West, Reddick, FL 32686, USA
| | - Joseph J Wakshlag
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA; Department of Comparative, Diagnostic and Population Medicine
| |
Collapse
|
15
|
Tewari D, Stankiewicz AM, Mocan A, Sah AN, Tzvetkov NT, Huminiecki L, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Front Aging Neurosci 2018; 10:3. [PMID: 29483867 PMCID: PMC5816049 DOI: 10.3389/fnagi.2018.00003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Dementia is a clinical syndrome wherein gradual decline of mental and cognitive capabilities of an afflicted person takes place. Dementia is associated with various risk factors and conditions such as insufficient cerebral blood supply, toxin exposure, mitochondrial dysfunction, oxidative damage, and often coexisting with some neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Although there are well-established (semi-)synthetic drugs currently used for the management of AD and AD-associated dementia, most of them have several adverse effects. Thus, traditional medicine provides various plant-derived lead molecules that may be useful for further medical research. Herein we review the worldwide use of ethnomedicinal plants in dementia treatment. We have explored a number of recognized databases by using keywords and phrases such as “dementia”, “Alzheimer's,” “traditional medicine,” “ethnopharmacology,” “ethnobotany,” “herbs,” “medicinal plants” or other relevant terms, and summarized 90 medicinal plants that are traditionally used to treat dementia. Moreover, we highlight five medicinal plants or plant genera of prime importance and discuss the physiological effects, as well as the mechanism of action of their major bioactive compounds. Furthermore, the link between mitochondrial dysfunction and dementia is also discussed. We conclude that several drugs of plant origin may serve as promising therapeutics for the treatment of dementia, however, pivotal evidence for their therapeutic efficacy in advanced clinical studies is still lacking.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Adrian M Stankiewicz
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Nikolay T Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Sun L. Mitochondrial factor and cell cytokines associate with TCM syndrome scale in vascular dementia patients. Exp Ther Med 2018; 15:131-138. [PMID: 29375680 PMCID: PMC5763673 DOI: 10.3892/etm.2017.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 11/24/2022] Open
Abstract
Mitochondrial factor and cell cytokines play important roles in the incidence of vascular dementia (VD), but their correlations with inflammatory and mitochondrial factors and the role of both in the kidney essence deficiency pattern and phlegm turbidity blocking orifice pattern are not clear. This study was aimed at studying the correlations between the serum mitochondrial factor and cell cytokines with TCM Syndrome Scale in vascular dementia. According to the inclusion criteria we collected 108 vascular dementia patients which were divided into the kidney essence deficiency pattern and phlegm turbidity blocking orifice pattern based on the TCM Syndrome Scale. We measured serum tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-18 (IL-18) concentration using an enzyme-linked immunosorbent assay (ELISA) and serum malondialdelyde (MDA) and superoxide dismutase (SOD) was quantified according to instructions of kits from the 108 patients (45 in kidney essence deficiency pattern, 63 in phlegm turbidity blocking orifice pattern). The scale scores were assessed using TCM Syndrome Scale, MMSE, Hachinski, Barthel, BBS, CDR. There was a significant difference on the scores of CDR and the factors of the memory, judgment, social affairs, personal care, family and hobbies among the two groups, The means of kidney essence deficiency group was higher than that of phlegm turbidity blocking orifice pattern group. IL-18 and SOD in the phlegm turbidity blocking orifice group was higher than those in the kidney essence deficiency pattern; IL-6 in phlegm turbidity blocking orifice pattern group was lower than that in the kidney essence deficiency pattern. By logistic regression analysis, we demonstrated that high concentration of IL-6, TNF-α, and MDA were associated with increased TCM syndrome scores in two groups, while IL-6, IL-18, TNF-α, SOD were associated with decreased MMSE, Barthel. Our study support the notion that IL-6 plays a more important role in the integral of kidney essence deficiency pattern, IL-18 is a more important factor in phlegm turbidity blocking orifice pattern. The results can be used as the theoretical basis of traditional Chinese Medicine prescription and pharmacological research in future, through decrease in IL-6 lever and increase in SOD in integral kidney essence deficiency pattern, and IL-18 as the main anti inflammation index in phlegm turbidity blocking orifice pattern.
Collapse
Affiliation(s)
- Linjuan Sun
- Department of Neurology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Haidian, Beijing 100091, P.R. China
| |
Collapse
|
17
|
Zou S, Zhang M, Feng L, Zhou Y, Li L, Ban L. Protective effects of notoginsenoside R1 on cerebral ischemia-reperfusion injury in rats. Exp Ther Med 2017; 14:6012-6016. [PMID: 29285151 PMCID: PMC5740559 DOI: 10.3892/etm.2017.5268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the protective effect of notoginsenoside R1 (NGR1) on cerebral ischemia-reperfusion injury (CIRI) in rats, and its molecular mechanism, to provide new insights into the diagnosis and treatment of CIRI. Sixty Sprague-Dawley rats were randomly divided into four groups including the sham-operation group (Sham), cerebral ischemia-reperfusion model group (CIR), NGR1 treatment group (NGR1), and nimodipine positive control group (NDC) with 15 rats each. Bilateral common carotid arteries occlusion was used to establish the rat CIRI model. The area of cerebral infarction at the end of reperfusion was calculated by triphenyl tetrazolium chloride staining. Apoptosis of hippocampal neurons in each group was detected by Annexin V/propidium iodide double staining. Hippocampal expression of brain-derived neurotrophic factor (BDNF) mRNA, and Bcl-2 and Bax protein at the end of reperfusion were measured by RT-qPCR and western blot analysis, respectively. Data were analyzed by SPSS software analysis to ensure statistical significance. At the end of reperfusion, the area of cerebral infarction in the NGR1 and NDC groups was significantly smaller than that of the CIR group. Apoptosis analysis showed that compared with the CIR group, the apoptosis rate of hippocampal neurons was significantly decreased in the NGR1 and NDC groups. RT-qPCR and western blot analysis showed that at the end of reperfusion, higher levels of BDNF mRNA and the anti-apoptotic factor, Bcl-2, and lower levels of the pro-apoptotic factor, Bax, in the hippocampus were found in the NGR1 and NDC groups compared with the CIR group. The protective effect of NGR1 on CIRI was significantly stronger than that of nimodipine. In conclusion, NGR1 can reduce the area of cerebral infarction, reduce apoptosis of hippocampal neurons, and protect rats from CIRI. Those effects were achieved by activating the expression of BDNF and Bcl-2, and by inhibiting the expression of Bax.
Collapse
Affiliation(s)
- Shun Zou
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Mingxiong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Limei Feng
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yuanfang Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Li Li
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Lili Ban
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|