1
|
van Blokland IV, Oelen R, Groot HE, Benjamins JW, Pekayvaz K, Losert C, Knottenberg V, Heinig M, Nicolai L, Stark K, van der Harst P, Franke L, van der Wijst MG. Single-Cell Dissection of the Immune Response After Acute Myocardial Infarction. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004374. [PMID: 38752343 PMCID: PMC11188632 DOI: 10.1161/circgen.123.004374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/17/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND The immune system's role in ST-segment-elevated myocardial infarction (STEMI) remains poorly characterized but is an important driver of recurrent cardiovascular events. While anti-inflammatory drugs show promise in reducing recurrence risk, their broad immune system impairment may induce severe side effects. To overcome these challenges, a nuanced understanding of the immune response to STEMI is needed. METHODS For this, we compared peripheral blood mononuclear single-cell RNA-sequencing (scRNA-seq) and plasma protein expression over time (hospital admission, 24 hours, and 6-8 weeks post-STEMI) in 38 patients and 38 controls (95 995 diseased and 33 878 control peripheral blood mononuclear cells). RESULTS Compared with controls, classical monocytes were increased and CD56dim natural killer cells were decreased in patients with STEMI at admission and persisted until 24 hours post-STEMI. The largest gene expression changes were observed in monocytes, associating with changes in toll-like receptor, interferon, and interleukin signaling activity. Finally, a targeted cardiovascular biomarker panel revealed expression changes in 33/92 plasma proteins post-STEMI. Interestingly, interleukin-6R, MMP9 (matrix metalloproteinase-9), and LDLR (low-density lipoprotein receptor) were affected by coronary artery disease-associated genetic risk variation, disease status, and time post-STEMI, indicating the importance of considering these aspects when defining potential future therapies. CONCLUSIONS Our analyses revealed the immunologic pathways disturbed by STEMI, specifying affected cell types and disease stages. Additionally, we provide insights into patients expected to benefit most from anti-inflammatory treatments by identifying the genetic variants and disease stage at which these variants affect the outcome of these (drug-targeted) pathways. These findings advance our knowledge of the immune response post-STEMI and provide guidance for future therapeutic studies.
Collapse
Affiliation(s)
- Irene V. van Blokland
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Roy Oelen
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Hilde E. Groot
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Jan Walter Benjamins
- Department of Cardiology (I.V.B., H.E.G., J.W.B.), University Medical Center Groningen, Groningen, the Netherlands
| | - Kami Pekayvaz
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Corinna Losert
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
| | - Viktoria Knottenberg
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Matthias Heinig
- Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany (C.L., M.H.)
- Department of Computer Science, TUM School of Computation, Information & Technology, Garching, Germany (C.L., M.H.)
- Department of Informatics, Ludwig-Maximilians Universität München, Munich, Germany (M.H.)
| | - Leo Nicolai
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Konstantin Stark
- Medizinische Klinik und Poliklinik I, University Hospital, Ludwig-Maximilian University, Munich, Germany (K.P., V.K., L.N., K.S.)
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich, Germany (K.P., V.K., L.N., K.S.)
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands (P.v.d.H.)
| | - Lude Franke
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| | - Monique G.P. van der Wijst
- Department of Genetics (I.V.B., R.O., L.F., M.G.P.v.d.W.), University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
2
|
Li M, Li H, Liu H, Lai X, Xing W. Efficacy and safety of eight types Salvia miltiorrhiza injections in the treatment of unstable angina pectoris: A network meta-analysis. Front Pharmacol 2022; 13:972738. [PMID: 36263128 PMCID: PMC9574204 DOI: 10.3389/fphar.2022.972738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Salvia miltiorrhiza Bunge. [Lamiaceae, danshen] injection classes (SMIC) is widely used in the treatment of unstable angina (UA). However, it is uncertain which SMIC is more effective in terms of UA efficacy. The purpose of this Network Meta-analysis (NMA) was to compare the treatment effects of various SMIC to determine the best SMIC for the treatment of UA. Methods: The China National Knowledge Infrastructure (CNKI), Wanfang Database, China Science and Technology Journal Database (VIP), Chinese Biomedical Literature Database (CBM), PubMed, Web of Science, and Cochrane Library databases were searched to screen randomized controlled trials (RCTs) of SMIC for UA. The search time frame was all from the establishment of the database to May 2022. RevMan 5.3 and Stata 14.0 software were used for NMA. Results: A total of 148 studies including 14,979 patients, including 7,584 cases in the experimental group and 7,395 cases in the control group were included, and eight SMIC were extracted, namely:Danshen injection, Fufang Danshen injection, Guanxinning injection, Danshenchuanxiongqin injection, Danhong injection, Danshentong IIA Huangsuanna injection, Shenxiong Putaotang injection, and Danshenduofensuanyan injection. The results of NMA showed that, in terms of total effective rate, Shenxiong Putaotang injection and Danshenchuanxiongqin injection have the advantage; In terms of ECG efficiency, Danshentong IIA Huangsuanna injection and Danshen injection have an advantage; Danshenchuanxiongqin injection and Danshenduofensuanyan injection were more effective than other SMIC in improving angina pectoris attacks; Shenxiong Putaotang injection has an advantage in improving hs-CRP; Shenxiong Putaotang injection and Danshentong IIA Huangsuanna injection have advantages in improving TC and TG, respectively. Conclusion: The eight SMIC included in the current study were effective in treating UA, Shenxiong Putaotang injection and Danshentong IIA Huangsuanna injection were both superior in improving all outcome indicators. However, there is still a need for larger samples and high-quality randomized controlled trials for more refined comparisons of various SMIC. Systematic Review Registration: [PROSPERO], identifier [CRD42022350872].
Collapse
Affiliation(s)
- Mingxuan Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongdian Li
- Beijing University of Chinese Medicine, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Koschitzky M, Navrazhina K, Garshick MS, Gonzalez J, Han J, Garcet S, Krueger JG. Ustekinumab reduces serum protein levels associated with cardiovascular risk in psoriasis vulgaris. Exp Dermatol 2022; 31:1341-1351. [PMID: 35474520 PMCID: PMC9869081 DOI: 10.1111/exd.14582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 01/26/2023]
Abstract
Psoriasis increases the risk of cardiovascular disease (CVD). Biomarkers for cardiovascular (CV) risk stratification in psoriasis are lacking, and the effects of psoriasis biologics on CV risk reduction remain unclear. The goal of this study was to identify biomarkers of CV risk in psoriasis blood that are reduced by ustekinumab. We quantified 276 inflammatory and CV-related serum proteins with Olink's multiplex assay in 10 psoriasis patients (vs. 18 healthy controls) and after 12 weeks of ustekinumab treatment. For each protein down-regulated after treatment, the literature was reviewed for studies assessing the protein's association with CVD. Data were collected from each study to calculate CV risk thresholds for each protein, which were compared with protein levels in psoriasis patients before and after treatment. Our results showed that 43 out of 276 proteins were down-regulated after treatment, 25 of which were initially up-regulated at baseline (vs. controls, all p-values ≤0.1). 8 down-regulated proteins were initially elevated above thresholds associated with enhanced CV risk in the literature (myeloperoxidase, C-X-C motif chemokine 10, E-selectin, interleukin-6, cystatin B, von Willebrand factor, tumor necrosis factor receptor 1 and N-terminal prohormone brain natriuretic peptide). Treatment lowered these proteins to below their risk thresholds, except for IL-6, which was lowered but remained at its risk threshold despite successful psoriasis skin treatment. In summary, 12 weeks of ustekinumab treatment reduced serum proteins present at levels associated with CV risk in psoriasis patients. Further studies can evaluate these proteins as potential ustekinumab-modulated biomarkers of CV risk in psoriasis and the impact of ustekinumab on CV risk reduction.
Collapse
Affiliation(s)
- Merav Koschitzky
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA,Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, New York, USA
| | - Michael S. Garshick
- Center for the Prevention of Cardiovascular Disease and Leon H. Charney Division of Cardiology, Department of Medicine, Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Joseph Han
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - James G. Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
4
|
Raygan F, Etminan A, Mohammadi H, Akbari H, Nikoueinejad H. Serum Levels of Growth Differentiation Factor-15 as an Inflammatory Marker in Patients with Unstable Angina Pectoris. J Tehran Heart Cent 2022; 16:15-19. [PMID: 35082862 PMCID: PMC8728865 DOI: 10.18502/jthc.v16i1.6595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/19/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Growth differentiation factor-15 (GDF-15), a member of transforming growth factors, is a stress-responsive marker whose levels may significantly increase in response to pathological stresses associated with inflammatory tissue injuries such as unstable angina pectoris (USAP). This study evaluated the diagnostic value of GDF-15 in patients with USAP. Methods: The present cross-sectional study recruited 39 patients with USAP criteria and 30 patients with stable angina pectoris (SAP), referred to Shahid Beheshti Hospital, Kashan, Iran. All the patients with USAP had at least 1 coronary artery stenosis (>50%) in angiography. The control group comprised 42 healthy individuals. The serum levels of GDF-15 were measured in all the participants by ELISA. Also analyzed were the relationship between GDF-15 levels and thrombolysis in myocardial infarction (TIMI) and the Global Registry of Acute Coronary Events (GRACE) risk scores in the patients with USAP to determine the severity of the disease. Result: The study population consisted of 111 subjects, 62 women and 49 men, divided into 3 groups of USAP (n=39, mean age=60.07±14.10 y), SAP (n=30, mean age=67.56±9.88 y), and control (n=42, mean age=61.21±7.76 y). The mean serum level of GDF-15 in the USAP group was significantly different from the other 2 groups (P<0.001), while no significant difference was observed in this regard between the SAP and control groups (P=0.797). No correlation was found between the mean GDF-15 serum level and the GRACE (P=0.816) and TIMI (P=0.359) risk scores in the USAP group. Conclusion: The mean serum level of GDF-15 exhibited a rise in our patients with USAP. GDF-15 may be a diagnostic biomarker of USAP and its severity.
Collapse
Affiliation(s)
- Fariba Raygan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Aniseh Etminan
- Students' Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hanieh Mohammadi
- Students' Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Nikoueinejad
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
The Effect of Diabetes Mellitus on IGF Axis and Stem Cell Mediated Regeneration of the Periodontium. Bioengineering (Basel) 2021; 8:bioengineering8120202. [PMID: 34940355 PMCID: PMC8698546 DOI: 10.3390/bioengineering8120202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Periodontitis and diabetes mellitus (DM) are two of the most common and challenging health problems worldwide and they affect each other mutually and adversely. Current periodontal therapies have unpredictable outcome in diabetic patients. Periodontal tissue engineering is a challenging but promising approach that aims at restoring periodontal tissues using one or all of the following: stem cells, signalling molecules and scaffolds. Mesenchymal stem cells (MSCs) and insulin-like growth factor (IGF) represent ideal examples of stem cells and signalling molecules. This review outlines the most recent updates in characterizing MSCs isolated from diabetics to fully understand why diabetics are more prone to periodontitis that theoretically reflect the impaired regenerative capabilities of their native stem cells. This characterisation is of utmost importance to enhance autologous stem cells based tissue regeneration in diabetic patients using both MSCs and members of IGF axis.
Collapse
|
6
|
Tang X, Jiang H, Lin P, Zhang Z, Chen M, Zhang Y, Mo J, Zhu Y, Liu N, Chen X. Insulin-like growth factor binding protein-1 regulates HIF-1α degradation to inhibit apoptosis in hypoxic cardiomyocytes. Cell Death Discov 2021; 7:242. [PMID: 34531382 PMCID: PMC8445926 DOI: 10.1038/s41420-021-00629-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/22/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is important in ischemic heart disease. Excessive Insulin-like growth factor binding protein-1 (IGFBP-1) amounts are considered to harm cardiomyocytes in acute myocardial infarction. However, the mechanisms by which IGFBP-1 affects cardiomyocytes remain undefined. The present study demonstrated that hypoxia up-regulates IGFBP-1 and HIF-1α protein expression in cardiomyocytes. Subsequent assays showed that IGFBP-1 suppression decreased HIF-1α expression and inhibited hypoxia-induced apoptosis in cardiomyocytes, which was reversed by HIF-1α overexpression, indicating that HIF-1α is essential to IGFBP-1 function in cellular apoptosis. In addition, we showed that IGFBP-1 regulated HIF-1α stabilization through interacting with VHL. The present findings suggest that IGFBP-1–HIF-1α could be targeted for treating ischemic heart disease.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Huilin Jiang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Peiyi Lin
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Zhenhui Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Meiting Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yi Zhang
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Junrong Mo
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Yongcheng Zhu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China
| | - Ningning Liu
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China. .,Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, China.
| | - Xiaohui Chen
- Department of Emergency, the Second Affiliated Hospital, Guangzhou Medical University, 510260, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
He H, Del Duca E, Diaz A, Kim HJ, Gay-Mimbrera J, Zhang N, Wu J, Beaziz J, Estrada Y, Krueger JG, Pavel AB, Ruano J, Guttman-Yassky E. Mild atopic dermatitis lacks systemic inflammation and shows reduced nonlesional skin abnormalities. J Allergy Clin Immunol 2021; 147:1369-1380. [DOI: 10.1016/j.jaci.2020.08.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 11/24/2022]
|
8
|
Schüler R, Markova M, Osterhoff MA, Arafat A, Pivovarova O, Machann J, Hierholzer J, Hornemann S, Rohn S, Pfeiffer AFH. Similar dietary regulation of IGF-1- and IGF-binding proteins by animal and plant protein in subjects with type 2 diabetes. Eur J Nutr 2021; 60:3499-3504. [PMID: 33686453 PMCID: PMC8354897 DOI: 10.1007/s00394-021-02518-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
Increased animal but not plant protein intake has been associated with increased mortality in epidemiological studies in humans and with reduced lifespan in animal species. Protein intake increases the activity of the IGF-1 system which may provide a link to reduced lifespan. We, therefore, compared the effects of animal versus plant protein intake on circulating levels of IGF-1 and the IGF-binding proteins (IGFBP)-1 and IGFBP-2 over a 6-week period. Thirty seven participants with type 2 diabetes consumed isocaloric diets composed of either 30% energy (EN) animal or plant protein, 30% EN fat and 40% EN carbohydrates for 6 weeks. The participants were clinically phenotyped before and at the end of the study. Both diets induced similar and significant increases of IGF-1 which was unaffected by the different amino acid compositions of plant and animal protein. Despite improvements of insulin sensitivity and major reductions of liver fat, IGFBP2 decreased with both diets while IGFBP-1 was not altered. We conclude that animal and plant protein similarly increase IGF-1 bioavailability while improving metabolic parameters and may be regarded as equivalent in this regard.
Collapse
Affiliation(s)
- Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany
| | - Martin A Osterhoff
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Ayman Arafat
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Olga Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany.,German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12200, Berlin, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), 85764, München-Neuherberg, Germany.,Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany.,Section of Experimental Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Johannes Hierholzer
- Diagnostic and Interventional Radiology, Klinikum Ernst von Bergmann, Academic Teaching Hospital, Charité-Universitätsmedizin Berlin, Potsdam, Germany
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558, Nuthetal, Germany
| | - Sascha Rohn
- Institute of Food Chemistry, Hamburg School of Food Science, University of Hamburg, Hamburg, Germany
| | - Andreas F H Pfeiffer
- Department Endocrinology and Metabolism, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
9
|
Early pregnancy serum IGFBP-1 relates to lipid profile in overweight and obese women. Heliyon 2020; 6:e04788. [PMID: 32923723 PMCID: PMC7475181 DOI: 10.1016/j.heliyon.2020.e04788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 06/30/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Lower level of insulin-like growth factor-binding protein (IGFBP-1) has been observed in insulin resistance, while higher level of matrix metalloproteinase-8 (MMP-8) has been linked to obesity. The aim here was to study in overweight and obese women, typically manifesting with insulin resistance, whether IGFBP-1 and MMP-8 are related to and reflect systemic low-grade inflammation, metabolism and diet. Fasting serum from overweight and obese pregnant women (n = 100) in early pregnancy were analysed for IGFBP-1, phosphorylated IGFBP-1 (phIGFBP-1) and MMP-8. High-sensitivity CRP and GlycA were used as markers for low grade inflammation. GlycA and lipids were quantified using NMR. IGFBP-1 associated negatively with GlycA, evidenced by higher concentrations in the lowest quartile (median 1.53 (IQR 1.45–1.72)) compared to the highest (1.46 (1.39–1.55)) (P = 0.03). Several lipid metabolites, particularly HDL-cholesterol, correlated inversely with phIGFBP-1 (FDR<0.1). Nutritional status and diet contributed to the levels of IGFBP-1, demonstrated as an inverse correlation with maternal weight (Spearman r = -0.205, P = 0.04) and dietary intake of vitamin A (r = -0.253, P = 0.014) and a direct correlation with dietary intake of polyunsaturated fatty acids (Spearman r = 0.222, P = 0.03). MMP-8 correlated inversely with pyridoxine (r = -0.321, P = 0.002) and potassium (r = -0.220, P = 0.033). Maternal serum IGFBP-1 may contribute to maternal lipid metabolism in overweight and obese women during early pregnancy. These findings may be of importance in identification of metabolic disturbances preceding the adverse metabolic outcomes in pregnancy.
Collapse
|
10
|
Hoeflich A, David R, Hjortebjerg R. Current IGFBP-Related Biomarker Research in Cardiovascular Disease-We Need More Structural and Functional Information in Clinical Studies. Front Endocrinol (Lausanne) 2018; 9:388. [PMID: 30061864 PMCID: PMC6054974 DOI: 10.3389/fendo.2018.00388] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/25/2018] [Indexed: 01/13/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death around the world and the insulin-like growth factor (IGF)-system has multiple functions for the pathological conditions of atherosclerosis. IGF binding proteins (IGFBPs) are widely investigated as biomarkers for pathological disorders, including those of the heart. At the tissue level, IGFBP-1 to -6 decrease bioactivity of IGF-I and -II due to their high affinity IGF-binding sites. By contrast, in the circulation, the IGFBPs increase biological half-life of the IGFs and may therefore be regarded as positive regulators of IGF-effects. The IGFBPs may also exert IGF-independent functions inside or outside the cell. Importantly, the circulating IGFBP-concentrations are regulated by trophic, metabolic, and reproductive hormones. In a multitude of studies of healthy subjects and patients with coronary heart diseases, various significant associations between circulating IGFBP-levels and defined parameters have been reported. However, the complex hormonal and conditional control of IGFBPs may explain the lack of clear associations between IGFBPs and parameters of cardiac failure in broader studies including larger populations. Furthermore, the IGFBPs are subject to posttranslational modifications and proteolytic degradation by proteases, upon which the IGFs are released. In this review, we emphasize that, with the exception of IGFBP-4 and in sharp contrast to the preclinical studies, virtually all clinical studies do not have structural or functional information on their biomarker. The use of analytical systems with no discriminatory potential toward intact vs. fragmented IGFBPs represents a major issue in IGFBP-related biomarker research and an important focus point for the future. Overall, measurements of selected IGFBPs or more complex IGFBP-signatures of the family of IGFBPs have potential to identify pathophysiological alterations in the heart or patients with high cardiovascular risk, particularly if defined cohorts are to be assessed. However, a more thorough understanding of the dynamic IGF-IGFBP system as well as its proteases and protease inhibitors in both normal physiology and in cardiovascular diseases is necessary.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Department of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
- Andreas Hoeflich
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy, Rostock University Medical Center, Rostock, Germany
- Department Life, Light and Matter, Interdisciplinary Faculty, Rostock University, Rostock, Germany
| | - Rikke Hjortebjerg
- Medical Research Laboratory, Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
- The Danish Diabetes Academy, Odense, Denmark
- *Correspondence: Rikke Hjortebjerg
| |
Collapse
|