1
|
CHANG F, ZHOU P, LI G, ZHANG W, ZHANG Y, PENG D, CHEN G. Taohong Siwu decoction ameliorates atherosclerosis in rats possibly through toll-like receptor 4/myeloid differentiation primary response protein 88/nuclear factor-κB signal pathway. J TRADIT CHIN MED 2024; 44:103-112. [PMID: 38213245 PMCID: PMC10774721 DOI: 10.19852/j.cnki.jtcm.20231215.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/17/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To investigate the effect of Taohong Siwu decoction (, TSD) on atherosclerosis in rats as well as investigate the underlying mechanism based on molecular docking. METHODS Sixty healthy male Sprague-Dawley rats were randomly divided into 6 groups with 10 rats in each group: control group, model group, atorvastatin group (AT, 2.0 mg/kg), and TSD groups (20, 10, 5 g/kg) after 7 d of acclimation. The model of atherosclerosis was successfully established except the control group by high fat diet (HFD) and vitamin D2. Biochemical analyzers were used to detect the levels of triglyceride (TG), total cholestero (TC), low density lipoprotein-cholesterol (LDL-C) and high density lipid-cholesterol (HDL-C) in blood lipid. The levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) were determined by enzyme-linked immunosorbent assay. Sudan IV staining and Hematoxylin and eosin staining (HE staining) were performed to observe the pathological changes in aortic tissue. Molecular docking technology was used to predict the best matching between the main components of TSD and the target proteins. The expression of target proteins was further detected by quantitative real time polymerase chain reaction (qRT-PCR) and Western blot analysis. RESULTS The results showed that TSD restricted atherosclerosis development and decreased the inflammatory cytokines in plasma. Molecular docking results predicted that the main components of TSD showed a strong binding ability with toll-like receptor (TLR4), myeloid differentiation primary response protein 88 (MyD88), and nuclear factor kappa-B (NF-κB). The results of qRT-PCR and Western blot analysis showed that the mRNA and protein expressions of TLR4, MyD88 and NF-κB p65 in the aorta were reduced in atorvastatin group and TSD group. CONCLUSIONS TSD can ameliorate atherosclerosis in rats, and the underlying mechanism is supposed be related to the suppression of inflammatory response by regulating TLR4/MyD88/NF-κB signal pathway.
Collapse
Affiliation(s)
- Fengjin CHANG
- 1 Department of Pharmacy, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Peng ZHOU
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guoying LI
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Weizhi ZHANG
- 2 School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yanyan ZHANG
- 1 Department of Pharmacy, the First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230031, China
| | - Daiyin PENG
- 3 Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Guangliang CHEN
- 3 Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, China; School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
2
|
Chandrasekaran P, Weiskirchen R. The Role of SCAP/SREBP as Central Regulators of Lipid Metabolism in Hepatic Steatosis. Int J Mol Sci 2024; 25:1109. [PMID: 38256181 PMCID: PMC10815951 DOI: 10.3390/ijms25021109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing worldwide at an alarming pace, due to an increase in obesity, sedentary and unhealthy lifestyles, and unbalanced dietary habits. MASLD is a unique, multi-factorial condition with several phases of progression including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Sterol element binding protein 1c (SREBP1c) is the main transcription factor involved in regulating hepatic de novo lipogenesis. This transcription factor is synthesized as an inactive precursor, and its proteolytic maturation is initiated in the membrane of the endoplasmic reticulum upon stimulation by insulin. SREBP cleavage activating protein (SCAP) is required as a chaperon protein to escort SREBP from the endoplasmic reticulum and to facilitate the proteolytic release of the N-terminal domain of SREBP into the Golgi. SCAP inhibition prevents activation of SREBP and inhibits the expression of genes involved in triglyceride and fatty acid synthesis, resulting in the inhibition of de novo lipogenesis. In line, previous studies have shown that SCAP inhibition can resolve hepatic steatosis in animal models and intensive research is going on to understand the effects of SCAP in the pathogenesis of human disease. This review focuses on the versatile roles of SCAP/SREBP regulation in de novo lipogenesis and the structure and molecular features of SCAP/SREBP in the progression of hepatic steatosis. In addition, recent studies that attempt to target the SCAP/SREBP axis as a therapeutic option to interfere with MASLD are discussed.
Collapse
Affiliation(s)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
3
|
Lin J, Wang Q, Zhong D, Zhang J, Yuan T, Wu H, Li B, Li S, Xie X, An D, Deng Y, Xian S, Xiong X, Yao K. Efficacy and safety of Qiangli Dingxuan tablet combined with amlodipine besylate for essential hypertension: a randomized, double-blind, placebo-controlled, parallel-group, multicenter trial. Front Pharmacol 2023; 14:1225529. [PMID: 37492087 PMCID: PMC10363978 DOI: 10.3389/fphar.2023.1225529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/30/2023] [Indexed: 07/27/2023] Open
Abstract
Background: Hypertension, a major cardiovascular risk factor, severely impacts patients' quality of life. Qiangli Dingxuan tablet (QDT) is a formally approved Chinese patent medicine, which has been widely used as an adjunctive treatment for hypertension. This study aimed to investigate the antihypertensive efficacy and safety of QDT combined with amlodipine besylate in patients with essential hypertension. Methods: In this randomized, double-blind, placebo-controlled, parallel-group, multicenter trial conducted in China, patients diagnosed with grade 1 to 2 essential hypertension were randomly assigned in a 1:1 to the treatment of QDT or placebo for 12 weeks, alongside their ongoing treatment with amlodipine besylate. The primary outcome was the change in office blood pressure (BP) from baseline to 12 weeks. In addition, safety analysis included the assessment of vital signs and laboratory values. Results: At baseline, 269 patients were randomly assigned to the QDT group (n = 133) or the placebo group (n = 136), and there were no significant differences in baseline characteristics between the two groups. The primary outcome based on the full analysis set from baseline to 12 weeks showed that the mean difference in the change of office systolic BP reduction between the two groups was 6.86 mmHg (95%CI, 4.84 to 8.88, p < 0.0001), for office diastolic BP, the mean difference in the change of office diastolic BP reduction between the two groups was 4.64 mmHg (95%CI, 3.10 to 6.18, p < 0.0001). In addition, traditional Chinese medicine symptom scores were significantly decreased in the QDT group compared with the placebo group. No severe adverse events attributable to QDT were reported. Conclusion: The combination of QDT and amlodipine besylate demonstrates superior efficacy compared to amlodipine besylate monotherapy in the management of essential hypertension. QDT shows potential as an adjunctive treatment for essential hypertension. However, further rigorous clinical trials are warranted to validate these findings. Clinical Trial Registration: [https://clinicaltrials.gov/study/NCT05521282?cond=NCT05521282&rank=1]; Identifier: [NCT05521282].
Collapse
Affiliation(s)
- Jianguo Lin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingqing Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongsheng Zhong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinju Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianhui Yuan
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Wu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Li
- First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuangdi Li
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiaoliu Xie
- Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dongqing An
- Traditional Chinese Medicine Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yue Deng
- Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Shaoxiang Xian
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingjiang Xiong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Song X, Wang X, Wang D, Zheng Z, Li J, Li Y. Natural drugs targeting inflammation pathways can be used to treat atherosclerosis. Front Pharmacol 2022; 13:998944. [PMID: 36386165 PMCID: PMC9663817 DOI: 10.3389/fphar.2022.998944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is the chronic gradual degradation of arteries in combination with inflammation. Currently, the main research focus has been on interactions between inflammatory cells, inflammatory mediators, and immune mechanisms, while some studies have reported natural drugs were exerting a critical role against AS, whereas the usage of natural drugs was always limited by various factors such as poor penetration across biological barriers, low bioavailability, and unclear mechanisms. Herein, we reviewed the potential targets for inflammation against AS, discussed the underlying mechanisms of natural drugs for AS, particularly highlighted the dilemma of current research, and finally, offered perspectives in this field.
Collapse
Affiliation(s)
- Xiayinan Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| |
Collapse
|
5
|
Tetramethylpyrazine: A review on its mechanisms and functions. Biomed Pharmacother 2022; 150:113005. [PMID: 35483189 DOI: 10.1016/j.biopha.2022.113005] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Ligusticum chuanxiong Hort (known as Chuanxiong in China, CX) is one of the most widely used and long-standing medicinal herbs in China. Tetramethylpyrazine (TMP) is an alkaloid and one of the active components of CX. Over the past few decades, TMP has been proven to possess several pharmacological properties. It has been used to treat a variety of diseases with excellent therapeutic effects. Here, the pharmacological characteristics and molecular mechanism of TMP in recent years are reviewed, with an emphasis on the signal-regulation mechanism of TMP. This review shows that TMP has many physiological functions, including anti-oxidant, anti-inflammatory, and anti-apoptosis properties; autophagy regulation; vasodilation; angiogenesis regulation; mitochondrial damage suppression; endothelial protection; reduction of proliferation and migration of vascular smooth muscle cells; and neuroprotection. At present, TMP is used in treating cardiovascular, nervous, and digestive system conditions, cancer, and other conditions and has achieved good curative effects. The therapeutic mechanism of TMP involves multiple targets, multiple pathways, and bidirectional regulation. TMP is, thus, a promising drug with great research potential.
Collapse
|
6
|
The role and mechanism of tetramethylpyrazine for atherosclerosis in animal models: A systematic review and meta-analysis. PLoS One 2022; 17:e0267968. [PMID: 35500001 PMCID: PMC9060352 DOI: 10.1371/journal.pone.0267968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/20/2022] [Indexed: 12/09/2022] Open
Abstract
Background Atherosclerosis(AS) is widely recognized as a risk factor for incident cardiovascular and cerebrovascular diseases. Tetramethylpyrazine (TMP) is the active ingredient of Ligusticum wallichii that possesses a variety of biological activities against atherosclerosis. Objective This systematic review and meta-analysis sought to study the impact of and mechanism of tetramethylpyrazine for atherosclerosis in animal models. Methods A systematic search was conducted of PubMed, Embase, Cochrane Library, Web of Science database, Chinese Biomedical (CBM) database, China National Knowledge Infrastructure (CNKI), WanFang data, and Vip Journal Integration Platform, covering the period from the respective start date of each database to December 2021. We used SYRCLE’s 10-item checklist and Rev-Man 5.3 software to analyze the data and the risk of bias. Results Twelve studies, including 258 animals, met the inclusion criteria. Compared with the control group, TMP significantly reduced aortic atherosclerotic lesion area, and induced significant decreases in levels of TC (SMD = ‐2.67, 95% CI -3.68 to -1.67, P < 0.00001), TG (SMD = ‐2.43, 95% CI -3.39 to -1.47, P < 0.00001), and LDL-C (SMD = ‐2.87, 95% CI -4.16 to -1.58, P < 0.00001), as well as increasing HDL-C (SMD = 2.04, 95% CI 1.05 to 3.03, P = 0.001). TMP also significantly modulated plasma inflammatory responses and biological signals associated with atherosclerosis. In subgroup analysis, the groups of high-dose TMP (≥50 mg/kg) showed better results than those of the control group. No difference between various durations of treatment groups or various assessing location groups. Conclusion TMP exerts anti-atherosclerosis functions in an animal model of AS mediated by anti-inflammatory action, antioxidant action, ameliorating lipid metabolism disorder, protection of endothelial function, antiplatelet activity, reducing the proliferation and migration of smooth muscle cells, inhibition of angiogenesis, antiplatelet aggregation. Due to the limitations of the quantity and quality of current studies, the above conclusions need to be verified by more high-quality studies. Trial registration number PROSPERO registration no.CRD42021288874.
Collapse
|
7
|
The Traditional Chinese Medicine Hua Tuo Zai Zao Wan Alleviates Atherosclerosis by Deactivation of Inflammatory Macrophages. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2200662. [PMID: 35388302 PMCID: PMC8979684 DOI: 10.1155/2022/2200662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/08/2022] [Indexed: 12/31/2022]
Abstract
Introduction Positive effects have been observed when the traditional Chinese medicine Hua Tuo Zai Zao Wan (HTZZW) has been used for the treatment of atherosclerosis (AS), although with an unclear mechanism. Methods ApoE-/- C57/BALB mice were used to determine the efficacy of HTZZW by blood lipid biochemical analysis and histopathology H&E staining. qPCR and western blot were used to determine the expression of METTL3/14 and NF-κB. Results High-fat diet-fed ApoE-/- mice that consumed HTZZW exhibited significantly smaller plaque areas and significantly decreased unstable collagen areas in the aortic arch as well as significantly lower blood levels of total cholesterol, triglycerides, high-density lipoprotein cholesterol, and low-density lipoprotein cholesterol compared with the control group. Consumption of HTZZW significantly decreased the proportion of Mφ1 in the peripheral blood. HTZZW not only inhibited the expression of m6A methyltransferases METTL14, METTL3, and overall RNA methylation level, but it also decreased the m6A modification level on specific sites of NF-κB mRNA. Conclusion HTZZW significantly alleviated the progression of AS by regulating the expression of the m6A methyltransferases METTL14 and METTL3 in macrophages, eliminating m6A modifications of NF-κB mRNA, influencing the stability of NF-κB mRNA, and ultimately resulting in the deactivation of inflammatory macrophages.
Collapse
|
8
|
The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets. Int J Mol Sci 2022; 23:ijms23020931. [PMID: 35055117 PMCID: PMC8781560 DOI: 10.3390/ijms23020931] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) family, the crucial regulator of angiogenesis, lymphangiogenesis, lipid metabolism and inflammation, is involved in the development of atherosclerosis and further CVDs (cardiovascular diseases). This review discusses the general regulation and functions of VEGFs, their role in lipid metabolism and atherosclerosis development and progression. These functions present the great potential of applying the VEGF family as a target in the treatment of atherosclerosis and related CVDs. In addition, we discuss several modern anti-atherosclerosis VEGFs-targeted experimental procedures, drugs and natural compounds, which could significantly improve the efficiency of atherosclerosis and related CVDs' treatment.
Collapse
|
9
|
Pharmacodynamic Evaluation of the Gexia Zhuyu Decoction in the Treatment of NAFLD and the Molecular Mechanism Underlying the TRPM4 Pathway Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3364579. [PMID: 34887931 PMCID: PMC8651363 DOI: 10.1155/2021/3364579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome of abnormal lipid deposition in the liver mediated by nonalcohol intake. The Gexia Zhuyu decoction, a classic traditional Chinese medicine compound, is widely used in the clinical treatment of NAFLD. However, its specific efficacy and underlying mechanisms have not been elucidated yet. This study aimed to quantitatively evaluate the efficacy of the Gexia Zhuyu decoction using pharmacodynamics and to explore its molecular mechanisms in conjunction with proteomics. High-fat diets and methionine choline-deficient diets were used to induce various NAFLD progression stages in mouse models. The effects of oral Gexia Zhuyu decoction administration on NAFLD were evaluated by measuring the serum and liver indicators of the treated mice before and after drug intervention and by comparing the changes in liver tissue. Liver TRPM4 mRNA and protein levels were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. Experimental data showed that serum ALT, AST, and liver triglyceride (TG) levels in each disease stage group of drug intervention mice decreased, and high-density lipoprotein (HDL) and superoxide dismutase (SOD) levels increased. Liver TG levels decreased after drug intervention in the liver fibrosis mice, but serum TG levels increased. Furthermore, cellular fatty changes, inflammatory changes, and fibrous tissue proliferation were all relieved. The TRPM4 protein and mRNA levels in the liver tissue were decreased, and the microRNA (miRNA)-24 expression was increased. The Gexia Zhuyu decoction has a clear therapeutic effect at each stage of NAFLD. It likely acts by altering miRNA-24 expression and regulating the target TRPM4 protein pathway to achieve NAFLD treatment.
Collapse
|
10
|
Xing K, Liu H, Zhang F, Liu Y, Shi Y, Ding X, Wang C. Identification of key genes affecting porcine fat deposition based on co-expression network analysis of weighted genes. J Anim Sci Biotechnol 2021; 12:100. [PMID: 34419151 PMCID: PMC8379819 DOI: 10.1186/s40104-021-00616-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fat deposition is an important economic consideration in pig production. The amount of fat deposition in pigs seriously affects production efficiency, quality, and reproductive performance, while also affecting consumers' choice of pork. Weighted gene co-expression network analysis (WGCNA) is effective in pig genetic studies. Therefore, this study aimed to identify modules that co-express genes associated with fat deposition in pigs (Songliao black and Landrace breeds) with extreme levels of backfat (high and low) and to identify the core genes in each of these modules. RESULTS We used RNA sequences generated in different pig tissues to construct a gene expression matrix consisting of 12,862 genes from 36 samples. Eleven co-expression modules were identified using WGCNA and the number of genes in these modules ranged from 39 to 3,363. Four co-expression modules were significantly correlated with backfat thickness. A total of 16 genes (RAD9A, IGF2R, SCAP, TCAP, SMYD1, PFKM, DGAT1, GPS2, IGF1, MAPK8, FABP, FABP5, LEPR, UCP3, APOF, and FASN) were associated with fat deposition. CONCLUSIONS RAD9A, TCAP, SMYD1, PFKM, GPS2, and APOF were the key genes in the four modules based on the degree of gene connectivity. Combining these results with those from differential gene analysis, SMYD1 and PFKM were proposed as strong candidate genes for body size traits. This study explored the key genes that regulate porcine fat deposition and lays the foundation for further research into the molecular regulatory mechanisms underlying porcine fat deposition.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Huatao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Fengxia Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yong Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xiangdong Ding
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Chuduan Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
11
|
Recent Molecular Mechanisms and Beneficial Effects of Phytochemicals and Plant-Based Whole Foods in Reducing LDL-C and Preventing Cardiovascular Disease. Antioxidants (Basel) 2021; 10:antiox10050784. [PMID: 34063371 PMCID: PMC8157003 DOI: 10.3390/antiox10050784] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal lipid metabolism leads to the development of hyperlipidemia, a common cause of multiple chronic disorders, including cardiovascular disease (CVD), obesity, diabetes, and cerebrovascular disease. Low-density lipoprotein cholesterol (LDL-C) currently remains the primary target for treatment of hyperlipidemia. Despite the advancement of treatment and prevention of hyperlipidemia, medications used to manage hyperlipidemia are limited to allopathic drugs, which present certain limitations and adverse effects. Increasing evidence indicates that utilization of phytochemicals and plant-based whole foods is an alternative and promising strategy to prevent hyperlipidemia and CVD. The current review focuses on phytochemicals and their pharmacological mode of actions for the regulation of LDL-C and prevention of CVD. The important molecular mechanisms illustrated in detail in this review include elevation of reverse cholesterol transport, inhibition of intestinal cholesterol absorption, acceleration of cholesterol excretion in the liver, and reduction of cholesterol synthesis. Moreover, the beneficial effects of plant-based whole foods, such as fresh fruits, vegetables, dried nuts, flax seeds, whole grains, peas, beans, vegan diets, and dietary fibers in LDL-C reduction and cardiovascular health are summarized. This review concludes that phytochemicals and plant-based whole foods can reduce LDL-C levels and lower the risk for CVD.
Collapse
|
12
|
Li S, Liu H, Li Y, Qin X, Li M, Shang J, Xing W, Gong Y, Liu W, Zhou M. Shen-Yuan-Dan Capsule Attenuates Verapamil-Induced Zebrafish Heart Failure and Exerts Antiapoptotic and Anti-Inflammatory Effects via Reactive Oxygen Species-Induced NF-κB Pathway. Front Pharmacol 2021; 12:626515. [PMID: 33732158 PMCID: PMC7959770 DOI: 10.3389/fphar.2021.626515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Heart failure (HF) is the end stage of ischemic cardiovascular diseases; nonetheless, safe and effective therapeutic agents for HF are still lacking, and their discovery remains challenging. Our previous studies demonstrated that Shen-Yuan-Dan Capsule (SYDC), a hospital preparation of traditional Chinese herbal, effectively protected ischemic injury in cardiovascular diseases. However, its therapeutic effects and possible mechanisms on HF remain unclear. Methods: A zebrafish HF model treated with verapamil was developed to assess the therapeutic effect of SYDC on HF zebrafish. Zebrafish were administered with SYDC and digoxin (positive control) by direct soaking. After drug treatment, zebrafish were randomly assigned to the visual observation and image acquisition using a Zebralab Blood Flow System. The reactive oxygen species (ROS), MDA, and SOD levels were determined by fluorescence signal detection, TBA, and WST-8 methods. RT-PCR determined the mRNA expressions of Caspase-3, Caspase-1, Bcl-2, Bax, IL-1β, NF-κB, and TNF-α. Results: SYDC significantly inhibited the levels of heart dilatation and venous congestion and markedly increased the levels of cardiac output, blood flow dynamics, and heart rates in HF zebrafish (p < 0.05, p < 0.01, and p < 0.001). Moreover, SYDC also significantly decreased the levels of MDA and ROS and increased the level of SOD in HF zebrafish. The RT-PCR results revealed that SYDC decreased the expression of Caspase-1, Caspase-3, Bax, IL-1β, NF-κB, and TNF-α but increased the expression of Bcl-2 in HF zebrafish (p < 0.05, p < 0.01, and p < 0.001). Conclusions: SYDC improved the heart function in verapamil-induced HF zebrafish and alleviated inflammation and apoptosis by inhibiting the ROS-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Sinai Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yue Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xiaomei Qin
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Mengjie Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Juju Shang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yanbing Gong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Weihong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Mingxue Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Zhao Y, Zheng K, Guan B, Guo M, Song L, Gao J, Qu H, Wang Y, Shi D, Zhang Y. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation. J Transl Med 2020; 18:434. [PMID: 33187537 PMCID: PMC7666529 DOI: 10.1186/s12967-020-02602-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/01/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Drug repositioning, the strategy of unveiling novel targets of existing drugs could reduce costs and accelerate the pace of drug development. To elucidate the novel molecular mechanism of known drugs, considering the long time and high cost of experimental determination, the efficient and feasible computational methods to predict the potential associations between drugs and targets are of great aid. METHODS A novel calculation model for drug-target interaction (DTI) prediction based on network representation learning and convolutional neural networks, called DLDTI, was generated. The proposed approach simultaneously fused the topology of complex networks and diverse information from heterogeneous data sources, and coped with the noisy, incomplete, and high-dimensional nature of large-scale biological data by learning the low-dimensional and rich depth features of drugs and proteins. The low-dimensional feature vectors were used to train DLDTI to obtain the optimal mapping space and to infer new DTIs by ranking candidates according to their proximity to the optimal mapping space. More specifically, based on the results from the DLDTI, we experimentally validated the predicted targets of tetramethylpyrazine (TMPZ) on atherosclerosis progression in vivo. RESULTS The experimental results showed that the DLDTI model achieved promising performance under fivefold cross-validations with AUC values of 0.9172, which was higher than the methods using different classifiers or different feature combination methods mentioned in this paper. For the validation study of TMPZ on atherosclerosis, a total of 288 targets were identified and 190 of them were involved in platelet activation. The pathway analysis indicated signaling pathways, namely PI3K/Akt, cAMP and calcium pathways might be the potential targets. Effects and molecular mechanism of TMPZ on atherosclerosis were experimentally confirmed in animal models. CONCLUSIONS DLDTI model can serve as a useful tool to provide promising DTI candidates for experimental validation. Based on the predicted results of DLDTI model, we found TMPZ could attenuate atherosclerosis by inhibiting signal transductions in platelets. The source code and datasets explored in this work are available at https://github.com/CUMTzackGit/DLDTI .
Collapse
Affiliation(s)
- Yihan Zhao
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Kai Zheng
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Baoyi Guan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Cardiovascular Diseases Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Guo
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Lei Song
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Gao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Cardiovascular Diseases Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Cardiovascular Diseases Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences, Health Science Center, Peking University, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Dazhuo Shi
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Cardiovascular Diseases Center, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ying Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Cardiovascular Diseases Center, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Xiang Y, Liu Y, Xiao F, Sun X, Wang X, Wang Y. 2,3,5,6-Tetramethylpyrazine improves diet-induced whole-body insulin resistance via suppressing white adipose tissue lipolysis in mice. Biochem Biophys Res Commun 2020; 532:605-612. [PMID: 32900485 DOI: 10.1016/j.bbrc.2020.08.099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/15/2023]
Abstract
Ectopic lipid accumulation in skeletal muscle and liver arises when nutrient storage systems are exposed to chronic energy surplus, leading to whole-body insulin resistance and metabolic disorders. One recent study has shown 2,3,5,6-tetramethylpyrazine (TMP), highly enriched in roasted foodstuffs, such as cocoa and peanuts, significantly decreases blood lipids levels and ameliorates ApoE-defect induced atherosclerosis suggesting a potent role of TMP in lipid dysregulation improvement. Here, we evaluated the impact of TMP treatment on high fat diet (HFD)-induced insulin resistance. Using hyperinsulinemic-euglycemic mouse clamp, we demonstrated 4-week TMP treatment improved whole-body insulin resistance in HFD-fed mice through suppressing lipolysis in white adipose tissue associated with reduced triglyceride in liver and improved glucose uptake in skeletal muscle. Collectively, our work provides proof-of-concept data to support the development of white adipose tissue-targeted medicine for the treatment of metabolic disorder.
Collapse
Affiliation(s)
- Yuyao Xiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yanyu Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Fan Xiao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaoting Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Xiaofei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | - Yongliang Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China.
| |
Collapse
|
15
|
Revealing the Common Mechanisms of Scutellarin in Angina Pectoris and Ischemic Stroke Treatment via a Network Pharmacology Approach. Chin J Integr Med 2020; 27:62-69. [PMID: 32447519 DOI: 10.1007/s11655-020-2716-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate the shared mechanisms of scutellarin in angina pectoris (AP) and ischemic stroke (IS) treatment. METHODS A network pharmacology approach was used to detect the potential mechanisms of scutellarin in AP and IS treatment by target prediction, protein-protein interaction (PPI) data collection, network construction, network analysis, and enrichment analysis. Furthermore, molecular docking simulation was employed to analyze the interaction between scutellarin and core targets. RESULTS Two networks were established, including a disease-target network and a PPI network of scutellarin targets against AP and IS. Network analysis showed that 14 targets, namely, AKT1, VEGFA, JUN, ALB, MTOR, ESR1, MAPK8, HSP90AA1, NOS3, SERPINE1, FGA, F2, FOXO3, and STAT1, might be the therapeutic targets of scutellarin in AP and IS. Among them, NOS3 and F2 were recognized as the core targets. Additionally, molecular docking simulation confifirmed that scutellarin exhibited a relatively high potential for binding to the active sites of NOS3 and F2. Furthermore, enrichment analysis indicated that scutellarin might exert a therapeutic role in both AP and IS by regulating several important pathways, such as coagulation cascades, mitogen-activated protein kinase (MAPK) signaling pathway, phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway, Toll-like receptor signaling pathway, hypoxia inducible factor-1 (HIF-1) signaling pathway, forkhead box O (FoxO) signaling pathway, tumor necrosis factor (TNF) signaling pathway, adipocytokine signaling pathway, insulin signaling pathway, insulin resistance, and estrogen signaling pathway. CONCLUSIONS The shared underlying mechanisms of scutellarin on AP and IS treatment might be strongly associated with its vasorelaxant, anticoagulant, anti-inflammatory, and antioxidative effects as well as its effect on improving lipid metabolism.
Collapse
|
16
|
Lei L, Ling ZN, Chen XL, Hong LL, Ling ZQ. Characterization of the Golgi scaffold protein PAQR3, and its role in tumor suppression and metabolic pathway compartmentalization. Cancer Manag Res 2020; 12:353-362. [PMID: 32021448 PMCID: PMC6970510 DOI: 10.2147/cmar.s210919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/02/2019] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is critical in the compartmentalization of signaling cascades originating from the cytoplasmic membrane and various organelles. Scaffold proteins, such as progestin and adipoQ receptor (PAQR)3, specifically regulate this process, and have recently been identified in the Golgi apparatus. PAQR3 belongs to the PAQR family, and was recently described as a tumor suppressor. Accumulating evidence demonstrates PAQR3 is downregulated in different cancers to suppress its inhibitory effects on malignant potential. PAQR3 functions biologically through the pathological regulation of altered signaling pathways. Significant cell proliferation networks, including Ras proto-oncogene (Ras)/mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), insulin, and vascular endothelial growth factor, are closely controlled by PAQR3 for physiologically relevant effects. Meanwhile, genetic/epigenetic susceptibility and environmental factors, may have functions in the downregulation of PAQR3 in human cancers. This study aimed to assess the subcellular localization of PAQR3 and determine its topological features and functional domains, summarizing its effects on cell signaling compartmentalization. The pathophysiological functions of PAQR3 in cancer pathogenesis, metabolic diseases, and developmental ailments were also highlighted.
Collapse
Affiliation(s)
- Lan Lei
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China.,The Second Clinical Medical College of Zhejiang Chinese Medicine University, Hangzhou 310053, People's Republic of China
| | - Zhe-Nan Ling
- Department of Clinical Medicine, Medical College, Zhejiang University City College, Hangzhou 310015, People's Republic of China
| | - Xiang-Liu Chen
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Lian-Lian Hong
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| | - Zhi-Qiang Ling
- Department of Molecular Oncology, Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Gongshu District, Hangzhou, 310022, People's Republic of China
| |
Collapse
|
17
|
Tetramethylpyrazine and Paeoniflorin Inhibit Oxidized LDL-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells via VEGF and Notch Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3082507. [PMID: 30584451 PMCID: PMC6280302 DOI: 10.1155/2018/3082507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 02/01/2023]
Abstract
Atherosclerotic plaque angiogenesis is key factor in plaque instability and vulnerability, and low concentrations of oxidized low density lipoprotein (ox-LDL) promote the in vitro angiogenesis of endothelial cells and play an important role in plaque angiogenesis. Ligusticum chuanxiong Hort. and Radix Paeoniae Rubra herb pair in Chinese medicine obtains the optimum therapeutic efficacy in atherosclerosis, and their major active ingredients tetramethylpyrazine (TMP) and paeoniflorin (PF) are reported to alleviate atherosclerosis. The aim of this study was to investigate the effects of TMP and PF on ox-LDL-induced angiogenesis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were incubated with ox-LDL and were then treated with TMP, PF, or a combination of TMP and PF. Cell proliferation, migration, tube formation, and the expression of angiogenesis-related proteins were measured. Synergism was evaluated using the combination index in cell proliferation. We found that TMP and PF attenuated the in vitro angiogenesis in ox-LDL-induced HUVECs. In addition, the combination of TMP and PF not only inhibited the ox-LDL-induced expression of CD31, vascular endothelial growth factor (VEGF), and VEGF receptor 2 (VEGFR2) but also decreased the ox-LDL-induced expression of Notch1, Jagged1, and Hes1. In summary, the combination of TMP and PF suppresses ox-LDL-induced angiogenesis in HUVECs by inhibiting both the VEGF/VEGFR2 and the Jagged1/Notch1 signaling pathways, which might contribute to the stability of plaques in atherosclerosis.
Collapse
|
18
|
Lee B, Shim I, Lee H, Hahm DH. Tetramethylpyrazine reverses anxiety-like behaviors in a rat model of post-traumatic stress disorder. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:525-538. [PMID: 30181699 PMCID: PMC6115350 DOI: 10.4196/kjpp.2018.22.5.525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a trauma-induced psychiatric disorder characterized by impaired fear extermination, hyperarousal, and anxiety that may involve the release of monoamines in the fear circuit. The reported pharmacological properties of tetramethylpyrazine (TMP) include anti-cancer, anti-diabetic, anti-atherosclerotic, and neuropsychiatric activities. However, the anxiolytic-like effects of TMP and its mechanism of action in PTSD are unclear. This study measured several anxiety-related behavioral responses to examine the effects of TMP on symptoms of anxiety in rats after single prolonged stress (SPS) exposure by reversing the serotonin (5-HT) and hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Rats were given TMP (10, 20, or 40 mg/kg, i.p.) for 14 days after SPS exposure. Administration of TMP significantly reduced grooming behavior, increased the time spent and number of visits to the open arm in the elevated plus maze test, and significantly increased the number of central zone crossings in the open field test. TMP administration significantly reduced the freezing response to contextual fear conditioning and significantly restored the neurochemical abnormalities and the SPS-induced decrease in 5-HT tissue levels in the prefrontal cortex and hippocampus. The increased 5-HT concentration during TMP treatment might be partially attribute to the tryptophan and 5-hydroxyindoleacetic acid mRNA level expression in the hippocampus of rats with PTSD. These findings support a role for reducing the altered serotonergic transmission in rats with PTSD. TMP simultaneously attenuated the HPA axis dysfunction. Therefore, TMP may be useful for developing an agent for treating psychiatric disorders, such those observed in patients with PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea.,Center for Converging Humanities, Kyung Hee University, Seoul 02447, Korea
| | - Insop Shim
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul 02447, Korea
| | - Dae-Hyun Hahm
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
19
|
Zou Y, Chen Z, Li J, Gong W, Zhang L, Xu F, Chen L, Liu P, Huang H. Progestin and AdipoQ Receptor 3 Upregulates Fibronectin and Intercellular Adhesion Molecule-1 in Glomerular Mesangial Cells via Activating NF-κB Signaling Pathway Under High Glucose Conditions. Front Endocrinol (Lausanne) 2018; 9:275. [PMID: 29930535 PMCID: PMC5999916 DOI: 10.3389/fendo.2018.00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/09/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Progestin and adipoQ receptor 3 (PAQR3), is a Golgi-anchored membrane protein containing seven transmembrane helices. It has been demonstrated that PAQR3 mediates insulin resistance, glucose and lipid metabolism, and inflammation. In addition, kidney inflammatory fibrosis is an important pathological feature of diabetic nephropathy (DN). Therefore, we aimed to investigate the role of PAQR3 in diabetic kidney fibrosis as well as inflammation in DN. OBJECT The effect of PAQR3 on NF-κB signaling pathway, expressions of fibronectin (FN) and intercellular adhesion molecule-1 (ICAM-1) in glomerular mesangial cells (GMCs) cultured by high glucose (HG) were examined. METHOD Diabetic mouse and rat models were induced by streptozotocin (STZ). GMCs were treated with HG and transfected with PAQR3 plasmids or small-interfering RNA targeting PAQR3 or NF-κB. The protein levels of FN and ICAM-1 were examined by Western blotting, and the transcriptional activity and DNA binding activity of NF-κB were measured by dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The interaction between PAQR3 and IKKβ (inhibitor of nuclear factor κB kinase β) was analyzed by co-immunoprecipitation. RESULTS PAQR3 was increased in both STZ-induced diabetic models and HG-treated GMCs. PAQR3 overexpression further increased HG-induced FN and ICAM-1 upregulation. In contrast, silencing of PAQR3 suppressed the expressions of FN and ICAM-1. PAQR3 overexpression promoted the nuclear accumulation, DNA binding activity, and transcriptional activity of NF-κB. Mechanically, PAQR3 directly interacted with IKKβ. The upregulation effect of PAQR3 overexpression on the expressions of FN and ICAM-1 was abolished by the treatment of NF-κB siRNA or PDTC (ammonium pyrrolidinedithiocarbamate) in HG-treated GMCs. CONCLUSION PAQR3 promotes the expressions of FN and ICAM-1 via activating NF-κB signaling pathway. Mechanistically, PAQR3 activates NF-κB signaling pathway to mediate kidney inflammatory fibrosis through direct interaction with IKKβ in DN.
Collapse
Affiliation(s)
- Yezi Zou
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiquan Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jie Li
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wenyan Gong
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Futian Xu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lihao Chen
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Liu
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Heqing Huang
- Laboratory of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Heqing Huang,
| |
Collapse
|