1
|
Pattanaik DK, Lakshminarayanan V, Sharma NK, Sahu AP. Leading edge of the a-wave of the electroretinogram and sodium iodate-induced age-related macular degeneration: A model. J Theor Biol 2024; 592:111879. [PMID: 38909882 DOI: 10.1016/j.jtbi.2024.111879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/12/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Iron-induced oxidative stress was thought to be the reason why the a-wave amplitude of the electroretinogram (ERG) dropped when iron ions were present. It is assumed that reactive oxygen species (ROS) are generated in the presence of iron ions, and this leads to a decrease in hyperpolarization of the photoreceptor. It is known that in age-related macular degeneration (AMD), sodium iodate can induce oxidative stress, apoptosis, and retinal damage, which mimic the effects of clinical AMD. Here, the reduction of the a-wave amplitude in mice with sodium iodate-induced age-related macular degeneration is explained. METHODS The leading edge of the a-wave is divided into voltages developed by cones and rods. The same oxidative stress model is applied here since sodium iodate causes the creation of ROS in a manner similar to that caused by iron ions, with the exception that the retina is treated as a circuit of various resistances when computing the photoresponse. Moreover, sodium iodate also leads to apoptosis and, hence, may cause misalignment in cones (not in rods) during the initial stage of apoptosis in AMD. To include the effects of apoptosis and shortening in cones and rods, we have used a factor representing the fraction of total cones and rods that are alive. To include the effect of misalignment of cones on the reduction of the a-wave amplitude, we have used the Stiles-Crawford function to calculate the number of photoisomerizations occurring in a photoreceptor misaligned at an angle θ. The results are compared with experimental data. RESULTS In sodium iodate-treated eyes, the ROS produced can attract calcium ions in the photoreceptor, which increases the calcium influx. In the case of the cones, the inclusion of the misalignment angle in the phototransduction process helps in determining the voltage and slope of the voltage vs. time graph.The smaller the fraction of active photoreceptors, the smaller the amplitude of the a-wave. The calcium influx, misaligned photoreceptors, and total photoreceptor loss all cause the amplitude of the a-wave to decrease, and at any time from the beginning of phototransduction cascade, the calcium influx causes the slope of the a-wave to increase. CONCLUSION The reduction in the a-wave amplitude in the eyes of sodium iodate-treated mice is attributed to oxidative stress in both cones and rods and cone misalignment, which ultimately lead to apoptosis and vision loss in AMD.
Collapse
Affiliation(s)
| | - Vasudevan Lakshminarayanan
- School of Optometry and Vision Science and Departments of Physics, Electrical and Computer Engineering and System Design Engineering, University of Waterloo, Waterloo, Canada.
| | | | - Amir Prasad Sahu
- Centurion University of Technology and Management, Bhubaneswar, OR, India.
| |
Collapse
|
2
|
Mondal AK, Gaur M, Advani J, Swaroop A. Epigenome-metabolism nexus in the retina: implications for aging and disease. Trends Genet 2024; 40:718-729. [PMID: 38782642 PMCID: PMC11303112 DOI: 10.1016/j.tig.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024]
Abstract
Intimate links between epigenome modifications and metabolites allude to a crucial role of cellular metabolism in transcriptional regulation. Retina, being a highly metabolic tissue, adapts by integrating inputs from genetic, epigenetic, and extracellular signals. Precise global epigenomic signatures guide development and homeostasis of the intricate retinal structure and function. Epigenomic and metabolic realignment are hallmarks of aging and highlight a link of the epigenome-metabolism nexus with aging-associated multifactorial traits affecting the retina, including age-related macular degeneration and glaucoma. Here, we focus on emerging principles of epigenomic and metabolic control of retinal gene regulation, with emphasis on their contribution to human disease. In addition, we discuss potential mitigation strategies involving lifestyle changes that target the epigenome-metabolome relationship for maintaining retinal function.
Collapse
Affiliation(s)
- Anupam K Mondal
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jayshree Advani
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration, and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Cui X, Buonfiglio F, Pfeiffer N, Gericke A. Aging in Ocular Blood Vessels: Molecular Insights and the Role of Oxidative Stress. Biomedicines 2024; 12:817. [PMID: 38672172 PMCID: PMC11048681 DOI: 10.3390/biomedicines12040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Acknowledged as a significant pathogenetic driver for numerous diseases, aging has become a focal point in addressing the profound changes associated with increasing human life expectancy, posing a critical concern for global public health. Emerging evidence suggests that factors influencing vascular aging extend their impact to choroidal and retinal blood vessels. The objective of this work is to provide a comprehensive overview of the impact of vascular aging on ocular blood vessels and related diseases. Additionally, this study aims to illuminate molecular insights contributing to vascular cell aging, with a particular emphasis on the choroid and retina. Moreover, innovative molecular targets operating within the domain of ocular vascular aging are presented and discussed.
Collapse
Affiliation(s)
- Xiuting Cui
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (N.P.)
| |
Collapse
|
4
|
Velmurugan S, Pauline R, Chandrashekar G, Kulanthaivel L, Subbaraj GK. Understanding the Impact of the Sirtuin 1 (SIRT1) Gene on Age-related Macular Degeneration: A Comprehensive Study. Niger Postgrad Med J 2024; 31:93-101. [PMID: 38826012 DOI: 10.4103/npmj.npmj_9_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/02/2024] [Indexed: 06/04/2024]
Abstract
Age-related macular degeneration (AMD) is a prevalent and incurable condition affecting the central retina and posing a significant risk to vision, particularly in individuals over the age of 60. As the global population ages, the prevalence of AMD is expected to rise, leading to substantial socioeconomic impacts and increased healthcare costs. The disease manifests primarily in two forms, neovascular and non-neovascular, with genetic, environmental and lifestyle factors playing a pivotal role in disease susceptibility and progression. This review article involved conducting an extensive search across various databases, including Google Scholar, PubMed, Web of Science, ScienceDirect, Scopus and EMBASE, to compile relevant case-control studies and literature reviews from online published articles extracted using search terms related to the work. SIRT1, a key member of the sirtuin family, influences cellular processes such as ageing, metabolism, DNA repair and stress response. Its dysregulation is linked to retinal ageing and ocular conditions like AMD. This review discusses the role of SIRT1 in AMD pathology, its association with genetic variants and its potential as a biomarker, paving the way for targeted interventions and personalised treatment strategies. In addition, it highlights the findings of case-control studies investigating the relationship between SIRT1 gene polymorphisms and AMD risk. These studies collectively revealed a significant association between certain SIRT1 gene variants and AMD risk. Further studies with larger sample sizes are required to validate these findings. As the prevalence of AMD grows, understanding the role of SIRT1 and other biomarkers becomes increasingly vital for improving diagnosis, treatment and, ultimately, patient outcomes.
Collapse
Affiliation(s)
- Saranya Velmurugan
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - Rashmi Pauline
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Department of Biomedical Sciences, Alagappa University, Science Campus, Karaikudi, Tamil Nadu, India
| | - Gowtham Kumar Subbaraj
- Medical Genetics Division, Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| |
Collapse
|
5
|
Miller AL, James RE, Harvey AR, Trifunović D, Carvalho LS. The role of epigenetic changes in the pathology and treatment of inherited retinal diseases. Front Cell Dev Biol 2023; 11:1224078. [PMID: 37601102 PMCID: PMC10436478 DOI: 10.3389/fcell.2023.1224078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.
Collapse
Affiliation(s)
- Annie L. Miller
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Rebekah E. James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Alan R. Harvey
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tubingen University, Tübingen, Germany
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Adu-Agyeiwaah Y, Vieira CP, Asare-Bediako B, Li Calzi S, DuPont M, Floyd J, Boye S, Chiodo V, Busik JV, Grant MB. Intravitreal Administration of AAV2-SIRT1 Reverses Diabetic Retinopathy in a Mouse Model of Type 2 Diabetes. Transl Vis Sci Technol 2023; 12:20. [PMID: 37070938 PMCID: PMC10123324 DOI: 10.1167/tvst.12.4.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/24/2023] [Indexed: 04/19/2023] Open
Abstract
Purpose The expression of silent information regulator (SIRT) 1 is reduced in diabetic retinopathy (DR). Previous studies showed that alterations in SIRT1 messenger RNA (mRNA) and protein expression are implicated in progressive inflammation and formation of retinal acellular capillaries. Treatment with the SIRT1 agonist, SRT1720, improved visual response by restoration of a- and b-wave responses on electroretinogram scotopic measurements in diabetic (db/db) mice. In this study, we investigated the effects of intravitreal SIRT1 delivery on diabetic retinal pathology. Methods Nine-month-old db/db mice received one intravitreal injection of either AAV2-SIRT1 or AAV2-GFP control virus, and after 3 months, electroretinography and optomotor responses were measured. Their eyes were then removed and analyzed by immunohistochemistry and flow cytometry. Results SIRT1 mRNA and protein levels were increased following AAV2-SIRT1 administration compared to control virus AAV2-GFP injected mice. IBA1+ and caspase 3 expression were decreased in retinas of db/db mice injected with AAV2-SIRT1, and reductions in scotopic a- and b-waves and high spatial frequency in optokinetic response were prevented. Retinal hypoxia inducible factor 1α (HIF-1α) protein levels were reduced in the AAV2-SIRT1-injected mice compared to control-injected mice. Using flow cytometry to assess changes in intracellular HIF-1α levels, endothelial cells (CD31+) from AAV-2 SIRT1 injected mice demonstrated reduced HIF-1α expression compared to db/db mice injected with the control virus. Conclusions Intravitreal AAV2-SIRT1 delivery increased retina SIRT1 and transduced neural and endothelial cells, thus reversing functional damage and improving overall visual function. Translational Relevance AAV2-SIRT1 gene therapy represents a beneficial approach for the treatment of chronic retinal conditions such as DR.
Collapse
Affiliation(s)
- Yvonne Adu-Agyeiwaah
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cristiano P. Vieira
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bright Asare-Bediako
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariana DuPont
- Department of Vision Science, School of Optometry, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sanford Boye
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Vince Chiodo
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Julia V. Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Kubiliute A, Gedvilaite G, Vilkeviciute A, Kriauciuniene L, Bruzaite A, Zaliuniene D, Liutkeviciene R. The role of SIRT1 level and SIRT1 gene polymorphisms in optic neuritis patients with multiple sclerosis. Orphanet J Rare Dis 2023; 18:64. [PMID: 36949521 PMCID: PMC10031967 DOI: 10.1186/s13023-023-02665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023] Open
Abstract
THE AIM To investigate the role of Sirtuin 1 (SIRT1) level and SIRT1 (rs3818292, rs3758391, rs7895833) gene polymorphisms in patients with optic neuritis (ON) and multiple sclerosis (MS). METHODS 79 patients with ON and 225 healthy subjects were included in the study. ON patients were divided into 2 subgroups: patients with MS (n = 30) and patients without MS (n = 43). 6 ON patients did not have sufficient data for MS diagnosis and were excluded from the subgroup analysis. DNA was extracted from peripheral blood leukocytes and genotyped by real-time polymerase chain reaction. Results were analysed using the program "IBM SPSS Statistics 27.0". RESULTS We discovered that SIRT1 rs3758391 was associated with a twofold increased odds of developing ON under the codominant (p = 0.007), dominant (p = 0.011), and over-dominant (p = 0.008) models. Also, it was associated with a threefold increased odds ofON with MS development under the dominant (p = 0.010), twofold increased odds under the over-dominant (p = 0.032) models and a 1.2-fold increased odds of ON with MS development (p = 0.015) under the additive model. We also discovered that the SIRT1 rs7895833 was significantly associated with a 2.5-fold increased odds of ON development under the codominant (p = 0.001), dominant (p = 0.006), and over-dominant (p < 0.001) models, and a fourfold increased odds of ON with MS development under the codominant (p < 0.001), dominant (p = 0.001), over-dominant (p < 0.001) models and with a twofold increased odds of ON with MS development (p = 0.013) under the additive genetic model. There was no association between SIRT1 levels and ON with/without MS development. CONCLUSIONS SIRT1 rs3758391 and rs7895833 polymorphisms are associated with ON and ON with MS development.
Collapse
Affiliation(s)
- Aleksandra Kubiliute
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania.
| | - Alvita Vilkeviciute
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Akvile Bruzaite
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
| | - Dalia Zaliuniene
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu Str. 2, 50161, Kaunas, Lithuania
- Department of Ophthalmology, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2 Str, 50161, Kaunas, Lithuania
| |
Collapse
|
8
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
9
|
Mitochondrial Open Reading Frame of the 12S rRNA Type-c: Potential Therapeutic Candidate in Retinal Diseases. Antioxidants (Basel) 2023; 12:antiox12020518. [PMID: 36830076 PMCID: PMC9952431 DOI: 10.3390/antiox12020518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mitochondrial open reading frame of the 12S rRNA type-c (MOTS-c) is the most unearthed peptide encoded by mitochondrial DNA (mtDNA). It is an important regulator of the nuclear genome during times of stress because it promotes an adaptive stress response to maintain cellular homeostasis. Identifying MOTS-c specific binding partners may aid in deciphering the complex web of mitochondrial and nuclear-encoded signals. Mitochondrial damage and dysfunction have been linked to aging and the accelerated cell death associated with many types of retinal degenerations. Furthermore, research on MOTS-c ability to revive oxidatively stressed RPE cells has revealed a significant protective role for the molecule. Evidence suggests that senescent cells play a role in the development of age-related retinal disorders. This review examines the links between MOTS-c, mitochondria, and age-related diseases of the retina. Moreover, the untapped potential of MOTS-c as a treatment for glaucoma, diabetic retinopathy, and age-related macular degeneration is reviewed.
Collapse
|
10
|
Choi YK. An Altered Neurovascular System in Aging-Related Eye Diseases. Int J Mol Sci 2022; 23:ijms232214104. [PMID: 36430581 PMCID: PMC9694120 DOI: 10.3390/ijms232214104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
The eye has a complex and metabolically active neurovascular system. Repeated light injuries induce aging and trigger age-dependent eye diseases. Damage to blood vessels is related to the disruption of the blood-retinal barrier (BRB), altered cellular communication, disrupted mitochondrial functions, and exacerbated aggregated protein accumulation. Vascular complications, such as insufficient blood supply and BRB disruption, have been suggested to play a role in glaucoma, age-related macular degeneration (AMD), and Alzheimer's disease (AD), resulting in neuronal cell death. Neuronal loss can induce vision loss. In this review, we discuss the importance of the neurovascular system in the eye, especially in aging-related diseases such as glaucoma, AMD, and AD. Beneficial molecular pathways to prevent or slow down retinal pathologic processes will also be discussed.
Collapse
Affiliation(s)
- Yoon Kyung Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Sirt5-mediated desuccinylation of OPTN protects retinal ganglion cells from autophagic flux blockade in diabetic retinopathy. Cell Death Dis 2022; 8:63. [PMID: 35165261 PMCID: PMC8844082 DOI: 10.1038/s41420-022-00861-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/05/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Retinal neurodegeneration develops early in the course of diabetic retinopathy (DR), and our previous research showed that succinate accumulation results in retinal ganglion cells (RGCs) dysfunction in the retinas of rats with DR. Succinate can enhance lysine succinylation, but the succinylation of DR is not well understood. In this study, we investigated the role of the succinylome in DR and identified the key factor in this process. TMT labeling and LC–MS/MS analysis were combined to quantify the differentially succinylated proteins between vitreous humor (VH) samples from DR and non-DR patients. A total of 74 sites in 35 proteins were differentially succinylated between DR and non-DR vitreous humor samples, among which succinylation of the K108 site of optineurin (OPTN K108su) in the defense response was enriched by GO analysis based on the biological process category. Then, using a streptozotocin (STZ)-induced diabetic rat model, R28 cells and primary rat RGCs (rRGCs), we demonstrated that OPTN underwent lysine succinylation in the retinas of rats with DR and that OPTN K108su mediated autophagic flux blockade under high-glucose (HG) conditions. Sirt5 can desuccinylate OPTN K108su, thus protecting RGCs function from high glucose-induced RGCs autophagic flux blockade in the diabetic retina. Overall, desuccinylation of OPTN is an essential adaptive mechanism for ameliorating autophagic flux blockade in RGCs under DR conditions, and targeting the Sirt5-desuccK108-OPTN axis may thus open an avenue for therapeutic intervention in RCGs dysfunction. ![]()
Collapse
|
12
|
Wei W, Hu P, Qin M, Chen G, Wang F, Yao S, Jin M, Xie Z, Zhang X. SIRT4 Is Highly Expressed in Retinal Müller Glial Cells. Front Neurosci 2022; 16:840443. [PMID: 35185463 PMCID: PMC8854368 DOI: 10.3389/fnins.2022.840443] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuin 4 (SIRT4) is one of seven mammalian sirtuins that possesses ADP-ribosyltransferase, lipoamidase and deacylase activities and plays indispensable role in metabolic regulation. However, the role of SIRT4 in the retina is not clearly understood. The purpose of this study was to explore the location and function of SIRT4 in the retina. Therefore, immunofluorescence was used to analyze the localization of SIRT4 in rat, mouse and human retinas. Western blotting was used to assess SIRT4 and glutamine synthetase (GS) protein expression at different developmental stages in C57BL/6 mice retinas. We further analyzed the retinal structure, electrophysiological function and the expression of GS protein in SIRT4-deficient mice. Excitotoxicity was caused by intravitreal injection of glutamate (50 nmol) in mice with long-term intraperitoneal injection of resveratrol (20 mg/Kg), and then retinas were subjected to Western blotting and paraffin section staining to analyze the effect of SIRT4 on excitotoxicity. We show that SIRT4 co-locates with Müller glial cell markers (GS and vimentin). The protein expression pattern of SIRT4 was similar to that of GS, and both increased with development. There were no significant retinal structure or electrophysiological function changes in 2-month SIRT4-deficient mice, while the expression of GS protein was decreased. Moreover, long-term administration of resveratrol can upregulate the expression of SIRT4 and GS while reducing the retinal injury caused by excessive glutamate. These results suggest that SIRT4 is highly expressed in retinal Müller glial cells and is relevant to the expression of GS. SIRT4 does not appear to be essential in retinal development, but resveratrol, as an activator of SIRT4, can upregulate GS protein expression and protect the retina from excitotoxicity.
Collapse
|
13
|
Bogolepova A, Makhnovich E, Kovalenko E, Osinovskaya N. Potential biomarkers of early diagnosis of Alzheimer’s disease. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:7-14. [DOI: 10.17116/jnevro20221220917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Gulmammadli N, Konukoğlu D, Merve Kurtuluş E, Tezen D, Ibrahim Erbay M, Bozluolçay M. Serum Sirtuin-1, HMGB1-TLR4, NF-KB and IL-6 Levels in Alzheimer's: The Relation Between Neuroinflammatory Pathway and Severity of Dementia. Curr Alzheimer Res 2022; 19:841-848. [PMID: 36573053 DOI: 10.2174/1567205020666221226140721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD), which affects the world's aging population, is a progressive neurodegenerative disease requiring markers or tools to accurately and easily diagnose and monitor the process. OBJECTIVE In this study, serum Sirtuin-1(SIRT-1), High Mobility Group Box 1 (HMGB1), Toll-Like Receptor-4 (TLR4), Nuclear Factor Kappa B (NF-kB), Interleukin-6 (IL-6), Amyloid βeta-42 (Aβ- 42), and p-tau181 levels in patients diagnosed with AD according to NINCS-ADRA criteria were studied. We investigated the inflammatory pathways that lead to progressive neuronal loss and highlight their possible relationship with dementia severity in the systemic circulation. METHODS Patients over 60 years of age were grouped according to their Standard Mini Mental Test results, MRI, and/or Fludeoxyglucose positron emission tomography or according to their CT findings as Control n:20; AD n:32; Vascular Dementia (VD) n:17; AD + VD; n = 21. Complete blood count, Glucose, Vitamin B12, Folic Acid, Enzymes, Urea, Creatinine, Electrolytes, Bilirubin, and Thyroid Function tests were evaluated. ELISA was used for the analysis of serum SIRT1, HMGB1, TLR4, NF-kB, IL-6, Aβ-42, and p-tau181 levels. RESULTS Levels of serum Aβ-42, SIRT1, HMGB1, and IL-6 were significantly higher (p< 0.001, p< 0.01, p< 0.001, and p< 0.001, respectively), and TLR4 levels were significantly lower (p< 0.001) in the dementia group than in the control group. No significant difference was observed between dementia and control groups for serum NF-kB and p-tau181 levels. CONCLUSION Our results show that the levels of the Aβ42, SIRT 1, HMGB1, and TLR4 pathways are altered in AD and VD. SIRT 1 activity plays an important role in the inflammatory pathway of dementia development, particularly in AD.
Collapse
Affiliation(s)
- Nazrin Gulmammadli
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Dildar Konukoğlu
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Eda Merve Kurtuluş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, İstanbul Gelişim University, İstanbul, Turkey
| | - Didem Tezen
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Muhammed Ibrahim Erbay
- Department of Biochemistry, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| | - Melda Bozluolçay
- Department of Neurology, Cerrahpaşa Faculty of Medicine, İstanbul University-Cerrahpaşa, İstanbul, Turkey
| |
Collapse
|
15
|
Pîrvu AS, Andrei AM, Stănciulescu EC, Baniță IM, Pisoschi CG, Jurja S, Ciuluvica R. NAD + metabolism and retinal degeneration (Review). Exp Ther Med 2021; 22:670. [PMID: 33986835 PMCID: PMC8111861 DOI: 10.3892/etm.2021.10102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022] Open
Abstract
The recent years has revealed an intense interest in the study of nicotinamide adenine dinucleotide (NAD+), particularly in regards to its intermediates, such as nicotinamide and nicotinic acid known as niacin, and also nicotinamide riboside. Besides its participation as a coenzyme in the redox transformations of nutrients during catabolism, NAD+ is also involved in DNA repair and epigenetic modification of gene expression and also plays an essential role in calcium homeostasis. Clinical and experimental data emphasize the age-dependent decline in NAD+ levels and its relation with the onset and progression of various age-related diseases. Maintaining optimal levels of NAD+ has aroused a therapeutic interest in such pathological conditions; NAD+ being currently regarded as an important target to extend health and lifespan. Based on a systematic exploration of the experimental data and literature surrounding the topic, this paper reviews some of the recent research studies related to the roles of the pyridine nucleotide family focusing on biosynthesis, NAD+ deficiency-associated diseases, pathobiochemistry related to retinal degeneration and potential therapeutic effects on human vision as well.
Collapse
Affiliation(s)
- Andreea Silvia Pîrvu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ana Marina Andrei
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Camelia Stănciulescu
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Monica Baniță
- Department of Histology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Cătălina Gabriela Pisoschi
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Sanda Jurja
- Department of Ophthalmology, Faculty of Medicine, ‘Ovidius’ University of Constanta, 900527 Constanta, Romania
| | - Radu Ciuluvica
- Faculty of Dentistry, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
16
|
Zha JJ, Tang Y, Wang YL. Role of mono-ADP-ribosylation histone modification (Review). Exp Ther Med 2021; 21:577. [PMID: 33850549 PMCID: PMC8027728 DOI: 10.3892/etm.2021.10009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The current knowledge regarding ADP-ribosylation modifications of histones, particularly mono-ADP-ribosylation modifications, is limited. However, recent studies have identified an increasing number of mono-ADP-ribosyltransferases and the role of mono-ADP-ribosylation has become a hot research topic. In particular, histones that are substrates of several mono-ADP-ribosyltransferases and mono-ADP-ribosylated histones were indicated to be involved in numerous physiological or pathological processes. Compared to poly-ADP-ribosylation histone modification, the use of mono-ADP-ribosylation histone modification is restricted by the limited methods for research into its function in physiological or pathological processes. The aim of the present review was to discuss the details regarding mono-ADP-ribosylation modification of histones and the currently known functions thereof, such as cell physiological and pathological processes, including tumorigenesis.
Collapse
Affiliation(s)
- Jing-Jing Zha
- Pathological Department, First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
17
|
Leite JA, Ghirotto B, Targhetta VP, de Lima J, Câmara NOS. Sirtuins as pharmacological targets in neurodegenerative and neuropsychiatric disorders. Br J Pharmacol 2021; 179:1496-1511. [PMID: 34029375 DOI: 10.1111/bph.15570] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Histone deacetylases (HDACs) are enzymes that regulate several processes, such as transcription, cell proliferation, differentiation and development. HDACs are classified as either Zn2+ -dependent or NAD+ -dependent enzymes. Over the years, experimental and clinical evidence has demonstrated that HDAC modulation is a critical process in neurodegenerative and psychiatric disorders. Nevertheless, most of the studies have focused on the role of Zn2+ -dependent HDACs in the development of these diseases, although there is growing evidence showing that the NAD+ -dependent HDACs, known as sirtuins, are also very promising targets. This possibility has been strengthened by reports of decreased levels of NAD+ in CNS disorders, which can lead to alterations in sirtuin activation and therefore result in increased pathology. In this review, we discuss the role of sirtuins in neurodegenerative and neuropsychiatric disorders as well the possible rationale for them to be considered as pharmacological targets in future therapeutic interventions.
Collapse
Affiliation(s)
- Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruno Ghirotto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vitor P Targhetta
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jean de Lima
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Nephrology, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Ji J, Tao P, Wang Q, Li L, Xu Y. SIRT1: Mechanism and Protective Effect in Diabetic Nephropathy. Endocr Metab Immune Disord Drug Targets 2021; 21:835-842. [PMID: 33121427 DOI: 10.2174/1871530320666201029143606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is referred to as the microvascular complication of the kidneys induced by insufficient production of insulin or an ineffective cellular response to insulin, and is the main cause of end-stage renal disease. Currently, available therapies provide only symptomatic relief and fail to improve the outcome of diabetic nephropathy. Studies on diabetic animals had shown overexpression of SIRT1 in both podocytes and renal tubular cells attenuated proteinuria and kidney injury in the animal model of DN. Sirt1 exerts renoprotective effects in DKD in part through the deacetylation of transcription factors involved in the disease pathogenesis, such as NF-кB, Smad3, FOXO and p53. The purpose of this review is to highlight the protective mechanism of SIRT1 involved in the pathogenesis of diabetic nephropathy.
Collapse
Affiliation(s)
- Jing Ji
- Department of Nephrology, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Pengyu Tao
- Basic Medical School, Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Qian Wang
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
| | - Lingxing Li
- Department of Cardiovascular Medicine, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong Province, China
| | - Yuzhen Xu
- Department of Neurology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
19
|
Kuo S, Chio C, Yeh C, Ma J, Liu W, Lin M, Lin K, Chang C. Mesenchymal stem cell-conditioned medium attenuates the retinal pathology in amyloid-β-induced rat model of Alzheimer's disease: Underlying mechanisms. Aging Cell 2021; 20:e13340. [PMID: 33783931 PMCID: PMC8135003 DOI: 10.1111/acel.13340] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 02/14/2021] [Indexed: 12/11/2022] Open
Abstract
Amyloid‐beta (Aβ) oligomer is known to contribute to the pathophysiology of age‐related macular degeneration. Herein, we aimed to elucidate the in vivo and in vitro effects of Aβ1‐42 application on retinal morphology in rats. Our in vivo studies revealed that intracerebroventricular administration of Aβ1‐42 oligomer caused dysmorphological changes in both retinal ganglion cells and retinal pigment epithelium. In addition, in vitro studies revealed that ARPE‐19 cells following Aβ1‐42 oligomer application had decreased viability along with apoptosis and decreased expression of the tight junction proteins, increased expression of both phosphor‐AKT and phosphor‐GSK3β and decreased expression of both SIRT1 and β‐catenin. Application of conditioned medium (CM) obtained from mesenchymal stem cells (MSC) protected against Aβ1‐42 oligomer‐induced retinal pathology in both rats and ARPE‐19 cells. In order to explore the potential role of peptides secreted from the MSCs, we applied mass spectrometry to compare the peptidomics profiles of the MSC‐CM. Gene ontology enrichment analysis and String analysis were performed to explore the differentially expressed peptides by predicting the functions of their precursor proteins. Bioinformatics analysis showed that 3‐8 out of 155–163 proteins in the MSC‐CM maybe associated with SIRT1/pAKT/pGSK3β/β‐catenin, tight junction proteins, and apoptosis pathway. In particular, the secretomes information on the MSC‐CM may be helpful for the prevention and treatment of retinal pathology in age‐related macular degeneration.
Collapse
Affiliation(s)
- Shu‐Chun Kuo
- Department of Ophthalmology Chi Mei Medical Center Tainan Taiwan
- Department of Optometry Chung Hwa University of Medical Technology Tainan Taiwan
| | - Chung‐Ching Chio
- Division of Neurosurgery Department of Surgery Chi Mei Medical Center Tainan Taiwan
| | - Chao‐Hung Yeh
- Department of Optometry Chung Hwa University of Medical Technology Tainan Taiwan
- Division of Neurosurgery Department of Surgery Chi Mei Medical Center Tainan Taiwan
| | - Jui‐Ti Ma
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Wen‐Pin Liu
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Mao‐Tsun Lin
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| | - Kao‐Chang Lin
- Department of Holistic Care Chi Mei Medical Center Tainan Taiwan
- Department of Neurology Chi Mei Medical Center Tainan Taiwan
| | - Ching‐Ping Chang
- Department of Medical Research Chi Mei Medical Center Tainan Taiwan
| |
Collapse
|
20
|
Ross AG, McDougald DS, Khan RS, Duong TT, Dine KE, Aravand P, Bennett J, Chavali VRM, Shindler KS. Rescue of retinal ganglion cells in optic nerve injury using cell-selective AAV mediated delivery of SIRT1. Gene Ther 2021; 28:256-264. [PMID: 33589779 PMCID: PMC8149296 DOI: 10.1038/s41434-021-00219-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/07/2020] [Accepted: 01/15/2021] [Indexed: 11/25/2022]
Abstract
SIRT1 prevents retinal ganglion cell (RGC) loss in models of optic neuropathy following pharmacologic activation or genetic overexpression. The exact mechanism of loss is not known, prior evidence suggests this is through oxidative stress to either neighboring cells or RGC specifically. We investigated the neuroprotective potential of RGC-selective SIRT1 gene therapy in the optic nerve crush (ONC) model. We hypothesized that AAV-mediated overexpression of SIRT1 in RGCs reduces RGC loss, thereby preserving visual function. Cohorts of C57Bl/6J mice received intravitreal injection of experimental or control AAVs using either a ganglion cell promoter or a constitutive promoter and ONC was performed. Visual function was examined by optokinetic response (OKR) for 7 days following ONC. Retina and optic nerves were harvested to investigate RGC survival by immunolabeling. The AAV7m8-SNCG.SIRT1 vector showed 44% transduction efficiency for RGCs compared with 25% (P > 0.05) by AAV2-CAG.SIRT1, and AAV7m8-SNCG.SIRT1 drives expression selectively in RGCs in vivo. Animals modeling ONC demonstrated reduced visual acuity compared to controls. Intravitreal delivery of AAV7m8-SNCG.SIRT1 mediated significant preservation of the OKR and RGC survival compared to AAV7m8-SNCG.eGFP controls, an effect not seen with the AAV2 vector. RGC-selective expression of SIRT1 offers a targeted therapy for an animal model with significant ganglion cell loss. Over-expression of SIRT1 through AAV-mediated gene transduction suggests a RGC selective component of neuro-protection using the ONC model. This study expands our understanding of SIRT1 mediated neuroprotection in the context of compressive or traumatic optic neuropathy, making it a strong therapeutic candidate for testing in all optic neuropathies.
Collapse
Affiliation(s)
- Ahmara G Ross
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA.
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Devin S McDougald
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Reas S Khan
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thu T Duong
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly E Dine
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
| | - Puya Aravand
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Kenneth S Shindler
- University of Pennsylvania/Ophthalmology, Philadelphia, PA, USA
- Center for Advanced Retinal and Ocular Therapeutics, F. M. Kirby Center for Molecular Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Bazan NG. Overview of how N32 and N34 elovanoids sustain sight by protecting retinal pigment epithelial cells and photoreceptors. J Lipid Res 2021; 62:100058. [PMID: 33662383 PMCID: PMC8058566 DOI: 10.1194/jlr.tr120001137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The essential fatty acid DHA (22:6, omega-3 or n-3) is enriched in and required for the membrane biogenesis and function of photoreceptor cells (PRCs), synapses, mitochondria, etc. of the CNS. PRC DHA becomes an acyl chain at the sn-2 of phosphatidylcholine, amounting to more than 50% of the PRC outer segment phospholipids, where phototransduction takes place. Very long chain PUFAs (n-3, ≥ 28 carbons) are at the sn-1 of this phosphatidylcholine molecular species and interact with rhodopsin. PRC shed their tips (DHA-rich membrane disks) daily, which in turn are phagocytized by the retinal pigment epithelium (RPE), where DHA is recycled back to PRC inner segments to be used for the biogenesis of new photoreceptor membranes. Here, we review the structures and stereochemistry of novel elovanoid (ELV)-N32 and ELV-N34 to be ELV-N32: (14Z,17Z,20R,21E,23E,25Z,27S,29Z)-20,27-dihydroxydo-triaconta-14,17,21,23,25,29-hexaenoic acid; ELV-N34: (16Z,19Z,22R,23E,25E,27Z,29S,31Z)-22,29-dihydroxytetra-triaconta-16,19,23,25,27,31-hexaenoic acid. ELVs are low-abundance, high-potency, protective mediators. Their bioactivity includes enhancing of antiapoptotic and prosurvival protein expression with concomitant downregulation of proapoptotic proteins when RPE is confronted with uncompensated oxidative stress. ELVs also target PRC/RPE senescence gene programming, the senescence secretory phenotype in the interphotoreceptor matrix, as well as inflammaging (chronic, sterile, low-grade inflammation). An important lesson on neuroprotection is highlighted by the ELV mediators that target the terminally differentiated PRC and RPE, sustaining a beautifully synchronized renewal process. The role of ELVs in PRC and RPE viability and function uncovers insights on disease mechanisms and the development of therapeutics for age-related macular degeneration, Alzheimer's disease, and other pathologies.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
22
|
Hadziahmetovic M, Malek G. Age-Related Macular Degeneration Revisited: From Pathology and Cellular Stress to Potential Therapies. Front Cell Dev Biol 2021; 8:612812. [PMID: 33569380 PMCID: PMC7868387 DOI: 10.3389/fcell.2020.612812] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease of the aging retina, in which patients experience severe vision loss. Therapies available to patients are limited and are only effective in a sub-population of patients. Future comprehensive clinical care depends on identifying new therapeutic targets and adopting a multi-therapeutic approach. With this goal in mind, this review examines the fundamental concepts underlying the development and progression of AMD and re-evaluates the pathogenic pathways associated with the disease, focusing on the impact of injury at the cellular level, with the understanding that critical assessment of the literature may help pave the way to identifying disease-relevant targets. During this process, we elaborate on responses of AMD vulnerable cells, including photoreceptors, retinal pigment epithelial cells, microglia, and choroidal endothelial cells, based on in vitro and in vivo studies, to select stressful agents, and discuss current therapeutic developments in the field, targeting different aspects of AMD pathobiology.
Collapse
Affiliation(s)
- Majda Hadziahmetovic
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Goldis Malek
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States.,Department of Pathology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
23
|
Maghbooli Z, Emamgholipour S, Aliakbar S, Amini M, Gorgani-Firuzjaee S, Hossein-Nezhad A. Differential expressions of SIRT1, SIRT3, and SIRT4 in peripheral blood mononuclear cells from patients with type 2 diabetic retinopathy. Arch Physiol Biochem 2020; 126:363-368. [PMID: 30572719 DOI: 10.1080/13813455.2018.1543328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This study investigated the mRNA and protein levels of SIRT1, SIRT3, and SIRT4 in peripheral blood mononuclear cells (PBMCs) from type 2 diabetes patients with retinopathy (diabetic retinopathy (DR) patients) (n = 86) and those without retinopathy (n = 103). The mRNA expression of SIRT1 and SIRT3 was found to be significantly higher in diabetic patients with retinopathy compared to those without retinopathy. Notably, protein levels of SIRT1, SIRT3, and SIRT4 were higher in patients with DR compared with controls after adjusting for diabetes duration and taking metformin (p = .001 for SIRT1; p = .001 for SIRT3; p = .005 for SIRT4). In the logistic model, there was a significant association between SIRT3 and DR (p = .0001) independent of age and sex and hyperglycaemia markers including FBS, HbA1c, and diabetic duration. These findings suggest an emerging role of sirtuins in the pathogenesis of retinopathy, but further studies are necessary to establish this concept.
Collapse
Affiliation(s)
- Zhila Maghbooli
- MS Research Center, Neurosciences Institute of Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Aliakbar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute of Tehran University of Medical Sciences, Tehran, Iran
| | - Manouchehr Amini
- Nephrology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sattar Gorgani-Firuzjaee
- Department of Medical Laboratory Sciences, School of Allied Health Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Arash Hossein-Nezhad
- Department of Medicine, Section of Endocrinology, Nutrition, and Diabetes, Boston University Medical Center, Boston, MA, USA
| |
Collapse
|
24
|
Al Sabaani N. Kaempferol Protects Against Hydrogen Peroxide-Induced Retinal Pigment Epithelium Cell Inflammation and Apoptosis by Activation of SIRT1 and Inhibition of PARP1. J Ocul Pharmacol Ther 2020; 36:563-577. [PMID: 32412821 DOI: 10.1089/jop.2019.0151] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose: This study investigated the protective effect of Kaempferol against hydrogen peroxides (H2O2)-induced retinal pigment epithelium (RPE) cell oxidative stress, inflammation, and apoptosis and investigated if this protection involves modulation of poly(ADP-ribose) polymerase-1 (PARP1)/silent information regulator 1 (SIRT1) signaling pathway. Methods: ARPE-19 cells were pretreated with increasing doses of Kaempferol (10, 25, 50, 100 μM) for 24 h in Dulbecco's modified Eagle's medium/F-12 medium with or without postincubation with H2O2. Control cells remained untreated. Results: Kaempferol, in a dose-dependent manner, significantly increased cell survival and reduced levels of reactive oxygen species, malondialdehyde, single-stranded DNA (ssDNA), and lactate dehydrogenase but increased levels of glutathione (GSH) and manganese-superoxide dismutase (MnSOD) in H2O2-treated ARPE-19 cells. It also increased GSH and MnSOD in a dose-dependent manner in control + Kaempferol treated cells. At a dose of 50 μM, the most effective dose, Kaempferol also inhibited protein levels of tumor necrosis factor alpha and interleukin-6, nuclear activity and protein levels of total, acetylated, and cleaved PARP1, and increased nuclear levels and activity of SIRT1 in H2O2-treated cells. In parallel, it increased total nuclear levels of Nrf2 but reduced the acetylation of p53, Nrf2, nuclear factor-κB (NF-κB) p65, and forkhead transcriptional factor 1 (FOXO1). Of interest, the stimulatory role of Kaempferol in the nuclear accumulation and activation of SIRT1 and the nuclear levels of Nrf2, as well as in reducing the acetylation of Nrf2, NF-κB p65, and FOXO1, was shown in nuclei of control + Kaempferol-treated cells. Conclusion: Kaempferol protective effect against H2O2-induced ARPE-19 damage involves antioxidant and anti-inflammatory effects mediated, at least, by stimulating the nuclear accumulation, activation, and deacetylase ability of SIRT1 and concurrent inhibition of PARP1.
Collapse
Affiliation(s)
- Nasser Al Sabaani
- Opthalmology Department, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
25
|
SIRT1 is required for the neuroprotection of resveratrol on retinal ganglion cells after retinal ischemia-reperfusion injury in mice. Graefes Arch Clin Exp Ophthalmol 2020; 258:335-344. [PMID: 31900639 DOI: 10.1007/s00417-019-04580-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Retinal ganglion cells (RGCs) loss is closely related to visual impairment in glaucoma, so the neuroprotection on RGCs is important and novel for glaucoma research. SIRT1, a family member of sirtuins, is implicated in many crucial processes of eye diseases. The purpose of this study is to determine the neuroprotection of SIRT1 on RGCs and to investigate the underlying mechanisms of these effects in an experimental model for acute glaucoma. METHODS Retinal ischemia-reperfusion (IR) injury was induced in C57BL/6J mice. Resveratrol (RSV, activator of SIRT1) and sirtinol (inhibitor of SIRT1) were injected intravitreally 1 day before IR injury. RGCs survival rate was quantified by immunofluorescence staining. RGCs apoptosis was evaluated by the staining of TUNEL and cleaved caspase-3, and SIRT1 level was detected by western blot. Expressions of phospho-Akt, Akt, Bax, and Bcl-2 were further determined by western blot to investigate the neuroprotective mechanisms of SIRT1. RESULTS RGCs survival rates and SIRT1 levels were decreased over time after IR injury. Intravitreal injection of RSV remarkably attenuated RGCs loss in a dose-dependent manner, and the most effective concentration of RSV was 100 μM. Up-regulation of SIRT1 by RSV significantly inhibited RGCs apoptosis, increased p-Akt level, decreased Bax and cleaved caspase-3 expressions, and all these effects were diminished by 100 μM sirtinol. Moreover, there were no significant changes in total Akt and Bcl-2 levels. CONCLUSION SIRT1 activation by RSV confers neuroprotection on RGCs in retinal IR injury through the activation of Akt pathway and subsequent suppression of mitochondrial apoptotic pathway. Determination of the effective concentration of intravitreal injection of RSV also provides a theoretical basis for the clinical application of RSV.
Collapse
|
26
|
Loss of NAMPT in aging retinal pigment epithelium reduces NAD + availability and promotes cellular senescence. Aging (Albany NY) 2019; 10:1306-1323. [PMID: 29905535 PMCID: PMC6046249 DOI: 10.18632/aging.101469] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
Abstract
Retinal pigment epithelium (RPE) performs numerous functions critical to retinal health and visual function. RPE senescence is a hallmark of aging and degenerative retinal disease development. Here, we evaluated the temporal expression of key nicotinamide adenine dinucleotide (NAD+)-biosynthetic genes and associated levels of NAD+, a principal regulator of energy metabolism and cellular fate, in mouse RPE. NAD+ levels declined with age and correlated directly with decreased nicotinamide phosphoribosyltransferase (NAMPT) expression, increased expression of senescence markers (p16INK4a, p21Waf/Cip1, ApoJ, CTGF and β-galactosidase) and significant reductions in SIRT1 expression and activity. We simulated in vitro the age-dependent decline in NAD+ and the related increase in RPE senescence in human (ARPE-19) and mouse primary RPE using the NAMPT inhibitor FK866 and demonstrated the positive impact of NAD+-enhancing therapies on RPE cell viability. This, we confirmed in vivo in the RPE of mice injected sub-retinally with FK866 in the presence or absence of nicotinamide mononucleotide. Our data confirm the importance of NAD+ to RPE cell biology normally and in aging and demonstrate the potential utility of therapies targeting NAMPT and NAD+ biosynthesis to prevent or alleviate consequences of RPE senescence in aging and/or degenerative retinal diseases in which RPE dysfunction is a crucial element.
Collapse
|
27
|
Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4278658. [PMID: 30881591 PMCID: PMC6381575 DOI: 10.1155/2019/4278658] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/14/2022]
Abstract
Radiation-induced fibrosis (RIF) develops months to years after initial radiation exposure. RIF occurs when normal fibroblasts differentiate into myofibroblasts and lay down aberrant amounts of extracellular matrix proteins. One of the main drivers for developing RIF is reactive oxygen species (ROS) generated immediately after radiation exposure. Generation of ROS is known to induce epigenetic changes and cause differentiation of fibroblasts to myofibroblasts. Several antioxidant compounds have been shown to prevent radiation-induced epigenetic changes and the development of RIF. Therefore, reviewing the ROS-linked epigenetic changes in irradiated fibroblast cells is essential to understand the development and prevention of RIF.
Collapse
|
28
|
Liu Y, Li R, Xie J, Hu J, Huang X, Ren F, Li L. Protective Effect of Hydrogen on Sodium Iodate-Induced Age-Related Macular Degeneration in Mice. Front Aging Neurosci 2018; 10:389. [PMID: 30564112 PMCID: PMC6288204 DOI: 10.3389/fnagi.2018.00389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main causes of AMD. Hydrogen has anti-oxidative stress and apoptotic effects on retinal injury. However, the effect of hydrogen on AMD is not clear. In this study, fundus radiography, OCT, and FFA demonstrated that HRW reduced the deposition of drusen-like structures in RPE layer, prevented retina from thinning and leakage of ocular fundus vasculature induced by NaIO3. ERG analysis confirmed that HRW effectively reversed the decrease of a-wave and b-wave amplitude in NaIO3-mice. Mechanistically, HRW greatly reduced the oxidative stress reaction through decreased MDA levels, increased SOD production, and decreased ROS content. The OGG1 expression was downregulated which is a marker of oxidative stress. Involvement of oxidative stress was confirmed using oxidative stress inhibitor ALCAR. Moreover, oxidative stress reaction was associated with expression of Sirt1 level and HRW significantly inhibited the downregulation of Sirt1 expression. This result was further confirmed with AICAR which restore Sirt1 expression and activity. In addition, NaIO3-induced retinal damage was related to apoptosis via caspase 8 and caspase 9, but not the caspase 3 pathways, which led to upregulation of Bax and p53, downregulation of Bcl-2, and increase in Jc-1-positive cells in mice. However, HRW effectively reversed these effects that apoptosis induced. These results suggest that HRW protects retinal functions against oxidative stress injury through inhibiting downregulation of Sirt1 and reducing retinal apoptosis. Therefore, we speculated that hydrogen administration is a promising treatment for AMD therapy.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Ruichan Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jing Xie
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jiehua Hu
- Information Center, Logistics College, Naval University of Engineering, Tianjin, China
| | - Xudong Huang
- Chemistry and Life College, Chengdu Normal University, Chengdu, China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, China
| | - Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| |
Collapse
|
29
|
Kuribayashi H, Baba Y, Iwagawa T, Arai E, Murakami A, Watanabe S. Roles of Nmnat1 in the survival of retinal progenitors through the regulation of pro-apoptotic gene expression via histone acetylation. Cell Death Dis 2018; 9:891. [PMID: 30166529 PMCID: PMC6117278 DOI: 10.1038/s41419-018-0907-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 11/21/2022]
Abstract
Leber congenital amaurosis (LCA) is a severe, genetically heterogeneous dystrophy of the retina and mutations in the nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) gene is one of causal factors of LCA. NMNAT1 is a nuclear enzyme essential for nicotinamide adenine dinucleotide (NAD) biosynthesis pathways, but the mechanisms underlying the LCA pathology and whether NMNAT1 has a role in normal retinal development remain unclear. Thus, we examined the roles of Nmnat1 in retinal development via short hairpin (sh)-RNA-mediated downregulation. Retinal explants expressing sh-Nmnat1 showed large numbers of apoptotic retinal progenitor cells in the inner half of the neuroblastic layer. Decreased intracellular NAD content was observed and the addition of NAD to the culture medium attenuated sh-Nmnat1-induced apoptosis. Of the nuclear Sirtuin (Sirt) family, the expression of sh-Sirt1 and sh-Sirt6 resulted in a phenotype similar to that of sh-Nmnat1. Sirt proteins are histone deacetylases and the expression of sh-Nmnat1 increased the levels of acetylated histones H3 and H4 in the retina. Expression of sh-Nmnat1 resulted in significantly increased expression of Noxa and Fas, two pro-apoptotic genes. Acetylation of the genomic 5′-untranslated regions of Noxa and Fas loci was upregulated by sh-Nmnat1 expression. The co-expression of sh-Fas with sh-Nmnat1 reduced the number of apoptotic cells induced by sh-Nmnat1 expression alone. Taken together, our data suggested that the increased expression of Noxa and Fas explains, at least in part, the phenotype associated with sh-Nmnat1 in the retina. Taken together, these findings demonstrate the importance of the NAD biosynthesis pathway in normal development of the retina.
Collapse
Affiliation(s)
- Hiroshi Kuribayashi
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Yukihiro Baba
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Toshiro Iwagawa
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Eisuke Arai
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akira Murakami
- Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Sumiko Watanabe
- Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| |
Collapse
|
30
|
Li Y, Zhang M, Dorfman RG, Pan Y, Tang D, Xu L, Zhao Z, Zhou Q, Zhou L, Wang Y, Yin Y, Shen S, Kong B, Friess H, Zhao S, Wang L, Zou X. SIRT2 Promotes the Migration and Invasion of Gastric Cancer through RAS/ERK/JNK/MMP-9 Pathway by Increasing PEPCK1-Related Metabolism. Neoplasia 2018; 20:745-756. [PMID: 29925042 PMCID: PMC6005814 DOI: 10.1016/j.neo.2018.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/26/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis is the most important feature of gastric cancer (GC) and the most widely recognized reason for GC-related deaths. Unfortunately, the underlying mechanism behind this metastasis remains unknown. Mounting evidence suggests the dynamic regulatory role of sirtuin2 (SIRT2), a histone deacetylase (HDAC), in cell migration and invasion. The present study aims to evaluate the biological function of SIRT2 in GC and identify the target of SIRT2 as well as evaluate its therapeutic efficacy. We found that SIRT2 was upregulated in GC tissues compared to adjacent normal tissues, and this was correlated with reduced patient survival. Although CCK8 and colony-formation assays showed that SIRT2 overexpression marginally promoted proliferation in GC cell lines, SIRT2 knockdown or treatment with SirReal2 decreased the migration and invasion of GC cells. We demonstrated both in vitro and in vivo that SirReal2 could inhibit the deacetylation activity of SIRT2 and its downstream target PEPCK1, which is related to mitochondrial metabolism and RAS/ERK/JNK/MMP-9 pathway. Taken together, these results demonstrate for the first time that SirReal2 selectively targets SIRT2 and decreases migration as well as invasion in human GC cells. SirReal2 therefore shows promise as a new drug candidate for GC therapy.
Collapse
Affiliation(s)
- Yang Li
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of Gastroenterology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingming Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China; Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD); School of Life Sciences, Fudan University, Shanghai, China
| | - Robert G Dorfman
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yida Pan
- Department of Digestive Diseases of Huashan Hospital, Fudan University, Shanghai, China
| | - Dehua Tang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhenguo Zhao
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Qian Zhou
- School of Life Sciences, Fudan University, Shanghai, China
| | - Lixing Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuming Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Yuyao Yin
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Bo Kong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China; Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of Munich (TUM), Munich, Germany
| | - Shimin Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China; Key laboratory of Reproduction Regulation of NPFPC (SIPPR, IRD); School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Xiaoping Zou
- Department of Gastroenterology, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
31
|
Mohammadi Saravle S, Ahmadi Hedayati M, Mohammadi E, Sheikhesmaeili F, Nikkhou B. Sirt1 Gene Expression and Gastric Epithelial Cells Tumor Stage in Patients with Helicobacter pylori Infection. Asian Pac J Cancer Prev 2018; 19:913-916. [PMID: 29693338 PMCID: PMC6031779 DOI: 10.22034/apjcp.2018.19.4.913] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Introduction: The World Health Organization has categorized Helicobacter pylori as a carcinogen for gastric
cancer, which causes human mortality worldwide. A number of studies have shown that H. pylori affects cell signaling
in gastric epithelial cells and changes the expression of some proteins such as proinflammatory cytokines. Bacterial
infections may alter sirt1 and sirt2 genes expression in inflammatory tissues and cancer cells. In this study, sirt1 and
sirt2 genes expression in gastric cancers was surveyed with reference to H. pylori status. Methods: Stomach biopsies
were collected from 50 gastric cancer patients, 25 H. pylori-positive and 25 H. pylori-negative as determined by the
urea rapid test. Tumor grade was determined by a pathologist. After total RNA extraction from gastric cancer biopsy
samples and cDNA synthesis, sirt1 and sirt2 genes expression levels were determined by Real Time PCR and ΔΔCT
methods. Results: There was no statistically significant link between H. pylori infection and sirt1 (P<0.899) and sirt2
(P<0.169) genes expression in gastric epithelial cells. However, pathologic findings showed that there is a statistically
significant relationship between sirt1 gene expression and the tumor grade (P<0.024). Discussion: A statistically
significant association was found between sirt1 gene expression and tumor grade of gastric cancers that could be due
to effects on progression of cancer cells infected with H. pylori.
Collapse
Affiliation(s)
- Saman Mohammadi Saravle
- Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | | | | | | | | |
Collapse
|
32
|
Zhou M, Luo J, Zhang H. Role of Sirtuin 1 in the pathogenesis of ocular disease (Review). Int J Mol Med 2018; 42:13-20. [PMID: 29693113 DOI: 10.3892/ijmm.2018.3623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/29/2018] [Indexed: 11/06/2022] Open
Abstract
Sirtuin (SIRT)1, a member of the SIRT family, is a highly conserved NAD+‑dependent histone deacetylase, which has a regulatory role in numerous physiological and pathological processes by removing acetyl groups from various proteins. SIRT1 controls the activity of numerous transcription factors and cofactors, which impacts the downstream gene expression, and eventually alleviates oxidative stress and associated damage. Numerous studies have revealed that dysfunction of SIRT1 is linked with ocular diseases, including cataract, age‑associated macular degeneration, diabetic retinopathy and glaucoma, while ectopic upregulation of SIRT1 protects against various ocular diseases. In the present review, the significant role of SIRT1 and the potential therapeutic value of modulating SIRT1 expression in ocular development and eye diseases is summarized.
Collapse
Affiliation(s)
- Mengwen Zhou
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jing Luo
- Department of Ophthalmology, Hunan Clinical Research Center of Ophthalmic Disease, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huiming Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
33
|
Wang C, Wang F, Li Z, Cao Q, Huang L, Chen S. MeCP2-mediated epigenetic regulation in senescent endothelial progenitor cells. Stem Cell Res Ther 2018; 9:87. [PMID: 29615114 PMCID: PMC5883541 DOI: 10.1186/s13287-018-0828-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 03/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cellular aging may be associated with epigenetics. Methyl-CpG-binding protein 2 (MeCP2) and sirtuin 1 (SIRT1) are two important epigenetic factors. Our former work demonstrated that MeCP2 expression increased and SIRT1 expression decreased in senescent endothelial progenitor cells (EPCs). This article aims to reveal the epigenetic regulation caused by MeCP2 in EPCs and discuss its mechanism. METHODS Tube formation assay and cell apoptosis detection were used to evaluate the function of senescent EPCs induced by MeCP2 overexpression. Western blot analysis was used to testify the relative protein expression changed by MeCP2. Bisulfite sequencing methylation assay and chromatin immunoprecipitation assay were used to assess the degree of methylation and the relation of MeCP2 and SIRT1. RESULTS MeCP2 reduced angiogenesis of senescent EPCs, promoted apoptosis, and caused senescent EPC dysfunction through SIRT1 promoter hypermethylation and histone modification. CONCLUSIONS MeCP2 mediated senescent EPC dysfunction through epigenetic regulation.
Collapse
Affiliation(s)
- Chunli Wang
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Wang
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Li
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Cao
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liya Huang
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuyan Chen
- Department of Geriatrics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
SIRT3: A New Regulator of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7293861. [PMID: 29643974 PMCID: PMC5831850 DOI: 10.1155/2018/7293861] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 01/13/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide, and defects in mitochondrial function contribute largely to the occurrence of CVDs. Recent studies suggest that sirtuin 3 (SIRT3), the mitochondrial NAD+-dependent deacetylase, may regulate mitochondrial function and biosynthetic pathways such as glucose and fatty acid metabolism and the tricarboxylic acid (TCA) cycle, oxidative stress, and apoptosis by reversible protein lysine deacetylation. SIRT3 regulates glucose and lipid metabolism and maintains myocardial ATP levels, which protects the heart from metabolic disturbances. SIRT3 can also protect cardiomyocytes from oxidative stress-mediated cell damage and block the development of cardiac hypertrophy. Recent reports show that SIRT3 is involved in the protection of several heart diseases. This review discusses the progress in SIRT3-related research and the role of SIRT3 in the prevention and treatment of CVDs.
Collapse
|
35
|
Zhu W, Meng YF, Xing Q, Tao JJ, Lu J, Wu Y. Identification of lncRNAs involved in biological regulation in early age-related macular degeneration. Int J Nanomedicine 2017; 12:7589-7602. [PMID: 29089757 PMCID: PMC5655033 DOI: 10.2147/ijn.s140275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is one of the most common causes of adult blindness in developed countries. However, the role of long noncoding RNAs (lncRNAs) in the development and progression of early AMD is unclear. Methods We established the lncRNA profile of early AMD by reannotation of microarrays from the gene expression omnibus database. Quantitative real-time polymerase chain reaction was used to determine the expression of selected lncRNAs. Results The expression profiles of 9 cases of AMD and 7 controls were studied. A total of 266 differentially expressed genes (DEGs) were detected (94 upregulated and 172 downregulated). Among all the DEGs, 64 were lncRNAs. Advanced bioinformatics analyses demonstrated that differentially expressed lncRNAs could play significant roles in visual perception, sensory perception of light stimulus, and cognition. The pathway analyses showed that the two most significantly influenced Kyoto Encyclopedia of Genes and Genomes pathways were those of phototransduction and purine metabolism. By the analyses of the key lncRNAs, it was found that RP11-234O6.2 was downregulated in the aging retinal pigment epithelium (RPE) cellular model. Exogenous RP11-234O6.2 treatment led to increased cell viability and improved apoptosis but it did not affect the cell migration ability of aging RPE cells. Conclusion This study indicated that lncRNAs are differentially expressed in early AMD and may produce important regulative effects. An lncRNA, RP11-234O6.2, might be involved in the biological regulation of early AMD and have therapeutic potential.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yi-Fang Meng
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Qian Xing
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jian-Jun Tao
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Jiong Lu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, China
| | - Yan Wu
- Department of Ophthalmology, First Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
36
|
Fang X, Han Q, Li S, Zhao Y, Luo A. Chikusetsu saponin IVa attenuates isoflurane-induced neurotoxicity and cognitive deficits via SIRT1/ERK1/2 in developmental rats. Am J Transl Res 2017; 9:4288-4299. [PMID: 28979702 PMCID: PMC5622271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Inhalation anesthetics isoflurane may increase the risk of neurotoxicity and cognitive deficiency at postnatal and childhood. Chikusetsu saponin IVa (chIV) is a plant extract compound, which could possessed extensive pharmacological actions of central nervous system, cardia-cerebrovascular system, immunologic system and treatment and prevention of tumor. In our study, we investigated the neuroprotective effect of chIV on isoflurane-induced hippocampal neurotoxicity and cognitive function impairment in neonatal rats. ChIV or saline intraperitoneal injected into seven-day old rats 30 min prior to isoflurane exposure. We found that, anesthesia with 1.8% isoflurane for 6 h significantly decreased the expression of SIRT1 in hippocampus. ChIV increased SIRT1, p-ERK1/2, PSD95 level in hippocampus, decreased hippocampal neuron apoptosis and lactate dehydrogenase (LDH) release after isoflurane exposure. Furthermore, chIV improved adolescent spatial memory of rats after their neonatal exposure to isoflurane by Morris Water Maze (MWM) test. In addition, SIRT1 inhibitor sirtinol decreased the expression of SIRT1 and its downstream of p-ERK1/2. Taken together, our date suggested that chIV could ameliorate isoflurane-induced neurotoxicity and cognitive impairment. The neuroprotective effect of chIV might be associated with up-regulation of SIRT1/ERK1/2. Moreover, chIV appeared to be a potential therapeutic target for isoflurane induced developmental neurotoxicity as well as subsequent cognitive impairment.
Collapse
Affiliation(s)
- Xi Fang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Qiang Han
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Shiyong Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Yilin Zhao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology1095 Jiefang Avenue, Wuhan 430030, Hubei, China
| |
Collapse
|
37
|
Elovanoids are novel cell-specific lipid mediators necessary for neuroprotective signaling for photoreceptor cell integrity. Sci Rep 2017; 7:5279. [PMID: 28706274 PMCID: PMC5509689 DOI: 10.1038/s41598-017-05433-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022] Open
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) is abundant in the retina and is enzymatically converted into pro-homeostatic docosanoids. The DHA- or eicosapentaenoic acid (EPA)-derived 26 carbon fatty acid is a substrate of elongase ELOVL4, which is expressed in photoreceptor cells and generates very long chain (≥C28) polyunsaturated fatty acids including n-3 (VLC-PUFAs,n-3). While ELOVL4 mutations are linked to vision loss and neuronal dysfunctions, the roles of VLC-PUFAs remain unknown. Here we report a novel class of lipid mediators biosynthesized in human retinal pigment epithelial (RPE) cells that are oxygenated derivatives of VLC-PUFAs,n-3; we termed these mediators elovanoids (ELV). ELVs have structures reminiscent of docosanoids but with different physicochemical properties and alternatively-regulated biosynthetic pathways. The structures, stereochemistry, and bioactivity of ELVs were determined using synthetic materials produced by stereo-controlled chemical synthesis. ELVs enhance expression of pro-survival proteins in cells undergoing uncompensated oxidative stress. Our findings unveil a novel autocrine/paracrine pro-homeostatic RPE cell signaling that aims to sustain photoreceptor cell integrity and reveal potential therapeutic targets for retinal degenerations.
Collapse
|
38
|
Miller JW, Bagheri S, Vavvas DG. Advances in Age-related Macular Degeneration Understanding and Therapy. ACTA ACUST UNITED AC 2017; 10:119-130. [PMID: 29142592 PMCID: PMC5683729 DOI: 10.17925/usor.2017.10.02.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the development of anti-vascular endothelial growth factor (anti-VEGF) as a therapy for neovascular age-related macular degeneration (AMD) was a great success, the pathologic processes underlying dry AMD that eventually leads to photoreceptor dysfunction, death, and vision loss remain elusive to date, with a lack of effective therapies and increasing prevalence of the disease. There is an overwhelming need to improve the classification system of AMD, to increase our understanding of cell death mechanisms involved in both neovascular and non-neovascular AMD, and to develop better biomarkers and clinical endpoints to eventually be able to identify better therapeutic targets—especially early in the disease process. There is no doubt that it is a matter of time before progress will be made and better therapies will be developed for non-neovascular AMD.
Collapse
Affiliation(s)
- Joan W Miller
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Saghar Bagheri
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| | - Demetrios G Vavvas
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, US
| |
Collapse
|