1
|
Zhao Y, Ye S, Lin J, Liang F, Chen J, Hu J, Chen K, Fang Y, Chen X, Xiong Y, Lin L, Tan X. NmFGF1-Regulated Glucolipid Metabolism and Angiogenesis Improves Functional Recovery in a Mouse Model of Diabetic Stroke and Acts via the AMPK Signaling Pathway. Front Pharmacol 2021; 12:680351. [PMID: 34025437 PMCID: PMC8139577 DOI: 10.3389/fphar.2021.680351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes increases the risk of stroke, exacerbates neurological deficits, and increases mortality. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is a powerful neuroprotective factor that is also regarded as a metabolic regulator. The present study aimed to investigate the effect of nmFGF1 on the improvement of functional recovery in a mouse model of type 2 diabetic (T2D) stroke. We established a mouse model of T2D stroke by photothrombosis in mice that were fed a high-fat diet and injected with streptozotocin (STZ). We found that nmFGF1 reduced the size of the infarct and attenuated neurobehavioral deficits in our mouse model of T2D stroke. Angiogenesis plays an important role in neuronal survival and functional recovery post-stroke. NmFGF1 promoted angiogenesis in the mouse model of T2D stroke. Furthermore, nmFGF1 reversed the reduction of tube formation and migration in human brain microvascular endothelial cells (HBMECs) cultured in high glucose conditions and treated with oxygen glucose deprivation/re-oxygenation (OGD). Amp-activated protein kinase (AMPK) plays a critical role in the regulation of angiogenesis. Interestingly, we found that nmFGF1 increased the protein expression of phosphorylated AMPK (p-AMPK) both in vivo and in vitro. We found that nmFGF1 promoted tube formation and migration and that this effect was further enhanced by an AMPK agonist (A-769662). In contrast, these processes were inhibited by the application of an AMPK inhibitor (compound C) or siRNA targeting AMPK. Furthermore, nmFGF1 ameliorated neuronal loss in diabetic stroke mice via AMPK-mediated angiogenesis. In addition, nmFGF1 ameliorated glucose and lipid metabolic disorders in our mouse model of T2D stroke without causing significant changes in body weight. These results revealed that nmFGF1-regulated glucolipid metabolism and angiogenesis play a key role in the improvement of functional recovery in a mouse model of T2D stroke and that these effects are mediated by the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yeli Zhao
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shasha Ye
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiongjian Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, China
| | - Xianxi Tan
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Fu R, Liu C, Yan Y, Li Q, Huang RL. Bone defect reconstruction via endochondral ossification: A developmental engineering strategy. J Tissue Eng 2021; 12:20417314211004211. [PMID: 33868628 PMCID: PMC8020769 DOI: 10.1177/20417314211004211] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/05/2023] Open
Abstract
Traditional bone tissue engineering (BTE) strategies induce direct bone-like matrix formation by mimicking the embryological process of intramembranous ossification. However, the clinical translation of these clinical strategies for bone repair is hampered by limited vascularization and poor bone regeneration after implantation in vivo. An alternative strategy for overcoming these drawbacks is engineering cartilaginous constructs by recapitulating the embryonic processes of endochondral ossification (ECO); these constructs have shown a unique ability to survive under hypoxic conditions as well as induce neovascularization and ossification. Such developmentally engineered constructs can act as transient biomimetic templates to facilitate bone regeneration in critical-sized defects. This review introduces the concept and mechanism of developmental BTE, explores the routes of endochondral bone graft engineering, highlights the current state of the art in large bone defect reconstruction via ECO-based strategies, and offers perspectives on the challenges and future directions of translating current knowledge from the bench to the bedside.
Collapse
Affiliation(s)
- Rao Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqi Liu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Ismail T, Lunger A, Haumer A, Todorov A, Menzi N, Schweizer T, Bieback K, Bürgin J, Schaefer DJ, Martin I, Scherberich A. Platelet-rich plasma and stromal vascular fraction cells for the engineering of axially vascularized osteogenic grafts. J Tissue Eng Regen Med 2020; 14:1908-1917. [PMID: 33049123 DOI: 10.1002/term.3141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 12/18/2022]
Abstract
Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. We have previously shown that axially vascularized osteogenic constructs, engineered by combining human stromal vascular fraction (SVF) cells and a ceramic scaffold, can revitalize necrotic bone of clinically relevant size in a rat model of AVN. For a clinical translation, the fetal bovine serum (FBS) used to generate such grafts should be substituted by a nonxenogeneic culture supplement. Human thrombin-activated platelet-rich plasma (tPRP) was evaluated in this context. SVF cells were cultured inside porous hydroxyapatite scaffolds with a perfusion-based bioreactor system for 5 days. The culture medium was supplemented with either 10% FBS or 10% tPRP. The resulting constructs were inserted into devitalized bovine bone cylinders to mimic the treatment of a necrotic bone. A ligated vascular bundle was inserted into the constructs upon subcutaneous implantation in the groin of nude rats. After 1 and 8 weeks, constructs were harvested, and vascularization, host cell recruitment, and bone formation were analyzed. After 1 week in vivo, constructs were densely vascularized, with no difference between tPRP- and FBS-based ones. After 8 weeks, bone formation and vascularization was found in both tPRP- and FBS-precultured constructs. However, the amount of bone and the vessel density were respectively 2.2- and 1.8-fold higher in the tPRP group. Interestingly, the density of M2, proregenerative macrophages was also significantly higher (6.9-fold) following graft preparation with tPRP than with FBS. Our findings indicate that tPRP is a suitable substitute for FBS to generate vascularized, osteogenic grafts from SVF cells and could thus be implemented in protocols for clinical translation of this strategy towards the treatment of bone loss and AVN.
Collapse
Affiliation(s)
- Tarek Ismail
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander Lunger
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Alexander Haumer
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Atanas Todorov
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Nadia Menzi
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Thierry Schweizer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Karen Bieback
- Medical Faculty, University of Mannheim/Experimental Cell Therapy, University of Heidelberg, Heidelberg, Germany
| | - Joel Bürgin
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Dirk J Schaefer
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Plastic, Reconstructive, Aesthetic and Hand Surgery, University Hospital Basel, Basel, Switzerland.,Tissue Engineering Laboratory, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Koç MM, Aslan N, Kao AP, Barber AH. Evaluation of X-ray tomography contrast agents: A review of production, protocols, and biological applications. Microsc Res Tech 2019; 82:812-848. [PMID: 30786098 DOI: 10.1002/jemt.23225] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/02/2019] [Accepted: 01/12/2019] [Indexed: 12/25/2022]
Abstract
X-ray computed tomography is a strong tool that finds many applications both in medical applications and in the investigation of biological and nonbiological samples. In the clinics, X-ray tomography is widely used for diagnostic purposes whose three-dimensional imaging in high resolution helps physicians to obtain detailed image of investigated regions. Researchers in biological sciences and engineering use X-ray tomography because it is a nondestructive method to assess the structure of their samples. In both medical and biological applications, visualization of soft tissues and structures requires special treatment, in which special contrast agents are used. In this detailed report, molecule-based and nanoparticle-based contrast agents used in biological applications to enhance the image quality were compiled and reported. Special contrast agent applications and protocols to enhance the contrast for the biological applications and works to develop nanoparticle contrast agents to enhance the contrast for targeted drug delivery and general imaging applications were also assessed and listed.
Collapse
Affiliation(s)
- Mümin Mehmet Koç
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom.,Department of Physics, Kirklareli University, Kirklareli, Turkey
| | - Naim Aslan
- Department of Metallurgical and Materials Engineering, Munzur University, Tunceli, Turkey
| | - Alexander P Kao
- School of Engineering, University of Portsmouth, Portsmouth, United Kingdom
| | - Asa H Barber
- School of Engineering, London South Bank University, London, United Kingdom
| |
Collapse
|
5
|
Blease A, Das Neves Borges P, Curtinha M, Javaheri B, von Loga IS, Parisi I, Zarebska J, Pitsillides A, Vincent TL, Potter PK. Studying Osteoarthritis Pathogenesis in Mice. ACTA ACUST UNITED AC 2018; 8:e50. [PMID: 30240153 DOI: 10.1002/cpmo.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
With the increasing availability and complexity of mouse models of disease, either spontaneous or induced, there is a concomitant increase in their use in the analysis of pathogenesis. Among such diseases is osteoarthritis, a debilitating disease with few treatment options. While advances in our understanding of the pathogenesis of osteoarthritis has advanced through clinical investigations and genome-wide association studies, there is still a large gap in our knowledge, hindering advances in therapy. Patient samples are available ex vivo, but these are generally in the very late stages of disease. However, with mice, we are able to induce disease at a defined time and track the progression in vivo and ex vivo, from inception to end stage, to delineate the processes involved in disease development. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Andrew Blease
- Disease Model Discovery, Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| | - Patricia Das Neves Borges
- Institute of Physiology and Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Marcia Curtinha
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, United Kingdom
| | - Behzad Javaheri
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Isabell S von Loga
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, United Kingdom
| | - Ida Parisi
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, United Kingdom
| | - Jadwiga Zarebska
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, United Kingdom
| | - Andrew Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, London, United Kingdom
| | - Tonia L Vincent
- Arthritis Research UK Centre for OA Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford, United Kingdom
| | - Paul K Potter
- Disease Model Discovery, Mammalian Genetics Unit, MRC Harwell Institute, Oxfordshire, United Kingdom
| |
Collapse
|
6
|
Parrish J, Lim KS, Baer K, Hooper GJ, Woodfield TBF. A 96-well microplate bioreactor platform supporting individual dual perfusion and high-throughput assessment of simple or biofabricated 3D tissue models. LAB ON A CHIP 2018; 18:2757-2775. [PMID: 30117514 DOI: 10.1039/c8lc00485d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Traditional 2D monolayer cell cultures and submillimeter 3D tissue construct cultures used widely in tissue engineering are limited in their ability to extrapolate experimental data to predict in vivo responses due to their simplistic organization and lack of stimuli. The rise of biofabrication and bioreactor technologies has sought to address this through the development of techniques to spatially organize components of a tissue construct, and devices to supply these tissue constructs with an increasingly in vivo-like environment. Current bioreactors supporting both parenchymal and barrier tissue constructs in interconnected systems for body-on-a-chip platforms have chosen to emphasize study throughput or system/tissue complexity. Here, we report a platform to address this disparity in throughput and both system complexity (by supporting multiple in situ assessment methods) and tissue complexity (by adopting a construct-agnostic format). We introduce an ANSI/SLAS-compliant microplate and docking station fabricated via stereolithography (SLA), or precision machining, to provide up to 96 samples (Ø6 × 10 mm) with two individually-addressable fluid circuits (192 total), loading access, and inspection window for imaging during perfusion. Biofabricated ovarian cancer models were developed to demonstrate the in situ assessment capabilities via microscopy and a perfused resazurin-based metabolic activity assay. In situ microscopy highlighted flexibility of the sample housing to accommodate a range of sample geometries. Utility for drug screening was demonstrated by exposing the ovarian cancer models to an anticancer drug (doxorubicin) and generating the dose-response curve in situ, while achieving an assay quality similar to static wellplate culture. The potential for quantitative analysis of temporal tissue development and screening studies was confirmed by imaging soft- (gelatin) and hard-tissue (calcium chloride) analogs inside the bioreactor via spectral computed tomography (CT) scanning. As a proof-of-concept for particle tracing studies, flowing microparticles were visualized to inform the design of hydrogel constructs. Finally, the ability for mechanistic yet high-throughput screening was demonstrated in a vascular coculture model adopting endothelial and mesenchymal stem cells (HUVEC-MSC), encapsulated in gelatin-norbornene (gel-NOR) hydrogel cast into SLA-printed well inserts. This study illustrates the potential of a scalable dual perfusion bioreactor platform for parenchymal and barrier tissue constructs to support a broad range of multi-organ-on-a-chip applications.
Collapse
Affiliation(s)
- J Parrish
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, Centre for Bioengineering & Nanomedicine, University of Otago Christchurch, Christchurch 8140, New Zealand.
| | | | | | | | | |
Collapse
|
7
|
Ismail T, Osinga R, Todorov A, Haumer A, Tchang LA, Epple C, Allafi N, Menzi N, Largo RD, Kaempfen A, Martin I, Schaefer DJ, Scherberich A. Engineered, axially-vascularized osteogenic grafts from human adipose-derived cells to treat avascular necrosis of bone in a rat model. Acta Biomater 2017; 63:236-245. [PMID: 28893630 DOI: 10.1016/j.actbio.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Avascular necrosis of bone (AVN) leads to sclerosis and collapse of bone and joints. The standard of care, vascularized bone grafts, is limited by donor site morbidity and restricted availability. The aim of this study was to generate and test engineered, axially vascularized SVF cells-based bone substitutes in a rat model of AVN. METHODS SVF cells were isolated from lipoaspirates and cultured onto porous hydroxyapatite scaffolds within a perfusion-based bioreactor system for 5days. The resulting constructs were inserted into devitalized bone cylinders mimicking AVN-affected bone. A ligated vascular bundle was inserted upon subcutaneous implantation of constructs in nude rats. After 1 and 8weeks in vivo, bone formation and vascularization were analyzed. RESULTS Newly-formed bone was found in 80% of SVF-seeded scaffolds after 8weeks but not in unseeded controls. Human ALU+cells in the bone structures evidenced a direct contribution of SVF cells to bone formation. A higher density of regenerative, M2 macrophages was observed in SVF-seeded constructs. In both experimental groups, devitalized bone was revitalized by vascularized tissue after 8 weeks. CONCLUSION SVF cells-based osteogenic constructs revitalized fully necrotic bone in a challenging AVN rat model of clinically-relevant size. SVF cells contributed to accelerated initial vascularization, to bone formation and to recruitment of pro-regenerative endogenous cells. STATEMENT OF SIGNIFICANCE Avascular necrosis (AVN) of bone often requires surgical treatment with autologous bone grafts, which is surgically demanding and restricted by significant donor site morbidity and limited availability. This paper describes a de novo engineered axially-vascularized bone graft substitute and tests the potential to revitalize dead bone and provide efficient new bone formation in a rat model. The engineering of an osteogenic/vasculogenic construct of clinically-relevant size with stromal vascular fraction of human adipose, combined to an arteriovenous bundle is described. This construct revitalized and generated new bone tissue. This successful approach proposes a novel paradigm in the treatment of AVN, in which an engineered, vascularized osteogenic graft would be used as a germ to revitalize large volumes of necrotic bone.
Collapse
|