1
|
Islam MS, Lai CC, Wang LH, Lin HH. Inhibition of NMDA Receptor Activation in the Rostral Ventrolateral Medulla by Amyloid-β Peptide in Rats. Biomolecules 2023; 13:1736. [PMID: 38136607 PMCID: PMC10741979 DOI: 10.3390/biom13121736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors, are important in regulating sympathetic tone and cardiovascular function in the rostral ventrolateral medulla (RVLM). Amyloid-beta peptide (Aβ) is linked to the pathogenesis of Alzheimer's disease (AD). Cerebro- and cardiovascular diseases might be the risk factors for developing AD. The present study examines the acute effects of soluble Aβ on the function of NMDA receptors in rats RVLM. We used the magnitude of increases in the blood pressure (pressor responses) induced by microinjection of NMDA into the RVLM as an index of NMDA receptor function in the RVLM. Soluble Aβ was applied by intracerebroventricular (ICV) injection. Aβ1-40 at a lower dose (0.2 nmol) caused a slight reduction, and a higher dose (2 nmol) showed a significant decrease in NMDA-induced pressor responses 10 min after administration. ICV injection of Aβ1-42 (2 nmol) did not affect NMDA-induced pressor responses in the RVLM. Co-administration of Aβ1-40 with ifenprodil or memantine blocked the inhibitory effects of Aβ1-40. Immunohistochemistry analysis showed a significant increase in the immunoreactivity of phosphoserine 1480 of GluN2B subunits (pGluN2B-serine1480) in the neuron of the RVLM without significant changes in phosphoserine 896 of GluN1 subunits (pGluN1-serine896), GluN1 and GluN2B, 10 min following Aβ1-40 administration compared with saline. Interestingly, we found a much higher level of Aβ1-40 compared to that of Aβ1-42 in the cerebrospinal fluid (CSF) measured using enzyme-linked immunosorbent assay 10 min following ICV administration of the same dose (2 nmol) of the peptides. In conclusion, the results suggest that ICV Aβ1-40, but not Aβ1-42, produced an inhibitory effect on NMDA receptor function in the RVLM, which might result from changes in pGluN2B-serine1480 (regulated by casein kinase II). The different elimination of the peptides in the CSF might contribute to the differential effects of Aβ1-40 and Aβ1-42 on NMDA receptor function.
Collapse
Affiliation(s)
- Md Sharyful Islam
- Master and Ph.D. Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Chih-Chia Lai
- Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Lan-Hui Wang
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hsun-Hsun Lin
- Department of Pharmacy, Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
- Department of Physiology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| |
Collapse
|
2
|
Ye P, Duan W, Leng YQ, Wang YK, Tan X, Wang WZ. DPP3: From biomarker to therapeutic target of cardiovascular diseases. Front Cardiovasc Med 2022; 9:974035. [PMID: 36312232 PMCID: PMC9605584 DOI: 10.3389/fcvm.2022.974035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease is the leading cause of death globally among non-communicable diseases, which imposes a serious socioeconomic burden on patients and the healthcare system. Therefore, finding new strategies for preventing and treating cardiovascular diseases is of great significance in reducing the number of deaths and disabilities worldwide. Dipeptidyl peptidase 3 (DPP3) is the first zinc-dependent peptidase found among DPPs, mainly distributes within the cytoplasm. With the unique HEXXGH catalytic sequence, it is associated with the degradation of oligopeptides with 4 to 10 amino acids residues. Accumulating evidences have demonstrated that DPP3 plays a significant role in almost all cellular activities and pathophysiological mechanisms. Regarding the role of DPP3 in cardiovascular diseases, it is currently mainly used as a biomarker for poor prognosis in patients with cardiovascular diseases, suggesting that the level of DPP3 concentration in plasma is closely linked to the mortality of diseases such as cardiogenic shock and heart failure. Interestingly, it has been reported recently that DPP3 regulates blood pressure by interacting with the renin-angiotensin system. In addition, DPP3 also participates in the processes of pain signaling, inflammation, and oxidative stress. But the exact mechanism by which DPP3 affects cardiovascular function is not clear. Hence, this review summarizes the recent advances in the structure and catalytic activity of DPP3 and its extensive biological functions, especially its role as a therapeutic target in cardiovascular diseases. It will provide a theoretical basis for exploring the potential value of DPP3 as a therapeutic target for cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Ye
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wei Duan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiology Key Lab of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yue-Qi Leng
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Yang-Kai Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Xing Tan
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,Xing Tan
| | - Wei-Zhong Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Medical Center, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Wei-Zhong Wang
| |
Collapse
|
3
|
Ma A, Hong J, Shanks J, Rudebush T, Yu L, Hackfort BT, Wang H, Zucker IH, Gao L. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic Biol Med 2019; 141:84-92. [PMID: 31181253 PMCID: PMC6718296 DOI: 10.1016/j.freeradbiomed.2019.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a key transcription factor that maintains redox homeostasis by governing a broad array of antioxidant genes in response to oxidant stress. We hypothesized that overexpression of Nrf2 in the rostral ventrolateral medulla (RVLM) ameliorates sympatho-excitation in mice with coronary artery ligation-induced chronic heart failure (CHF). To address this, we overexpressed Nrf2 in the RVLM using an HIV-CamKIIa-Nrf2 lenti virus in C57BL/6 mice. In addition, we used a Lenti-Cre virus in Keap1flox/flox mice to upregulate Nrf2 non-selectively in the RVLM. Arterial blood pressure (AP), heart rate (HR), and renal sympathetic nerve activity (RSNA) were recorded under conscious and anesthetized conditions, respectively. Protein expression was assayed using western blotting and immunofluorescence staining. We found that (1) Nrf2 and two target proteins, NQO1 and HO-1 in the RVLM were significantly lower in CHF compared to Sham mice. Nrf2 viral transfection of the RVLM upregulated Nrf2 protein. (2) Urinary NE excretion in CHF mice was markedly attenuated following Nrf2 upregulation (812 ± 133 vs 1120 ± 271 ng/24hr mean. ±SE, *p < 0.05, n = 8/group). (3) In the conscious state, CHF mice overexpressing Nrf2 exhibited an enhancement in spontaneous baroreflex gain and in phenylephrine-induced baroreflex control of HR. (4) Acute experiments under anesthetisa revealed a significant decrease in basal RSNA (44.0 ± 6.5 vs 64.7 ± 8.3% of Max. *P < 0.05 n = 8/group) and enhancement in baroreflex sensitivity (Maximal gain -1.8 ± 0.3 vs 1.1 ± 0.2 of mmHg. **p < 0.01. n = 6/group) in CHF mice that were virally transfected with Nrf2 compared with CHF mice transfected with Lenti-GFP. Finally, Lenti-Cre viral overexpression of Nrf2 in Keap1flox/flox mice reduced Keap1 protein and increased Nrf2, NQO1, and HO-1 in the RVLM of Sham and CHF mice. CHF-Cre mice exhibited a significant decrease in baseline RSNA and plasma NE concentration (8.9 ± 1.1 vs 12.7 ± 0.9 ng/mL *P < 0.05 n = 6/group) as compared with CHF-GFP mice. Based on the above data, we conclude that upregulating Nrf2 selectively in the RVLM attenuates sympatho-excitation in CHF mice. Nrf2 may be an important central target for autonomic modulation in cardiovascular disease and during stress.
Collapse
Affiliation(s)
- Anyun Ma
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Juan Hong
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Julia Shanks
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Tara Rudebush
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Li Yu
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| | - Lie Gao
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, 985850 Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
| |
Collapse
|
4
|
Yuan J, Wu H, Chen N, Shen F, Jiao P, Lan Z, Yang W, Zhang X, Li Q, He Z. Combined hyperactive dysfunction syndrome of the cranial nerves complicated by essential hypertension: A case report. Medicine (Baltimore) 2019; 98:e16849. [PMID: 31415413 PMCID: PMC6831425 DOI: 10.1097/md.0000000000016849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
RATIONALE Combined hyperactive dysfunction syndrome (HDS) refers to a special type of HDS characterized by a combination of trigeminal neuralgia (TN), hemi facial spasm (HFS), and/or gloss pharyngeal neuralgia (GPN). Rostra ventrolateral medulla (RVLM) plays a crucial role in central cardiovascular regulation, and neurovascular compression of the RVLM has been identified as a contributor to essential hypertension. PATIENT CONCERNS A 65-year-old female with a facial tic and pain located in the root of the tongue and throat on the same side; the systolic and diastolic blood pressure was approximately 170 and 100 mmHg. DIAGNOSIS The patient was diagnosed with combined HDS (HFS-GPN) and essential hypertension. Brain magnetic resonance 3-dimensional time-of-flight imaging and digital subtraction angiography revealed vertebrobasilar artery compressed the left RVLM and contacted with the root entry zones of multiple cranial nerves. INTERVENTIONS The patient was treated with microvascular decompression surgery OUTCOMES:: The symptoms were completely relieved, and blood pressure was well-controlled. LESSONS The pathological association of hypertension and HDS should be highlighted, and microvascular decompression is an effective approach for relieving the hypertension.
Collapse
Affiliation(s)
- Jingmin Yuan
- Department of Neurosurgery & Institute of Neurology,
- Department of Pain Management, Lanzhou University Second Hospital,
| | - Haiyang Wu
- Department of Neurosurgery & Institute of Neurology,
| | - Niandong Chen
- Department of Neurosurgery & Institute of Neurology,
| | - Fuhui Shen
- Lanzhou University Second Clinical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Pengfei Jiao
- Department of Neurosurgery & Institute of Neurology,
| | - Zhengbo Lan
- Department of Neurosurgery & Institute of Neurology,
| | - Wenzhen Yang
- Department of Neurosurgery & Institute of Neurology,
| | - Xinding Zhang
- Department of Neurosurgery & Institute of Neurology,
| | - Qiang Li
- Department of Neurosurgery & Institute of Neurology,
| | - Zhenhua He
- Department of Neurosurgery & Institute of Neurology,
| |
Collapse
|
5
|
Deng Y, Tan X, Li ML, Wang WZ, Wang YK. Angiotensin-Converting Enzyme 2 in the Rostral Ventrolateral Medulla Regulates Cholinergic Signaling and Cardiovascular and Sympathetic Responses in Hypertensive Rats. Neurosci Bull 2019; 35:67-78. [PMID: 30318562 PMCID: PMC6357273 DOI: 10.1007/s12264-018-0298-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/07/2018] [Indexed: 02/07/2023] Open
Abstract
The rostral ventrolateral medulla (RVLM) is a key region in cardiovascular regulation. It has been demonstrated that cholinergic synaptic transmission in the RVLM is enhanced in hypertensive rats. Angiotensin-converting enzyme 2 (ACE2) in the brain plays beneficial roles in cardiovascular function in hypertension. The purpose of this study was to determine the effect of ACE2 overexpression in the RVLM on cholinergic synaptic transmission in spontaneously hypertensive rats (SHRs). Four weeks after injecting lentiviral particles containing enhanced green fluorescent protein and ACE2 bilaterally into the RVLM, the blood pressure and heart rate were notably decreased. ACE2 overexpression significantly reduced the concentration of acetylcholine in microdialysis fluid from the RVLM and blunted the decrease in blood pressure evoked by bilateral injection of atropine into the RVLM in SHRs. In conclusion, we suggest that ACE2 overexpression in the RVLM attenuates the enhanced cholinergic synaptic transmission in SHRs.
Collapse
Affiliation(s)
- Yu Deng
- Department of Physiology, Second Military Medical University, Shanghai, 200433, China
- Department of Anesthesiology, Changhai Hospital, Shanghai, 200433, China
| | - Xing Tan
- Department of Physiology, Second Military Medical University, Shanghai, 200433, China
- Institution of Polar Medicine Research Center, Second Military Medical University, Shanghai, 200433, China
| | - Miao-Ling Li
- Institute of Cardiovascular Medical Research, Southwest Medical University, Luzhou, 646000, China
| | - Wei-Zhong Wang
- Department of Physiology, Second Military Medical University, Shanghai, 200433, China
- Institution of Polar Medicine Research Center, Second Military Medical University, Shanghai, 200433, China
| | - Yang-Kai Wang
- Department of Physiology, Second Military Medical University, Shanghai, 200433, China.
- Institution of Polar Medicine Research Center, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
6
|
Effect of substituents on 3(S)-amino-1-hydroxy-3,4-dihydroquinolin-2(1H)-one: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-018-2403-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|