1
|
Pereira VA, da Silva HNM, Fernandes EM, Minatel E. LED therapy modulates M1/M2 macrophage phenotypes and mitigates dystrophic features in treadmill-trained mdx mice. Photochem Photobiol Sci 2024:10.1007/s43630-024-00626-2. [PMID: 39227554 DOI: 10.1007/s43630-024-00626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/21/2024] [Indexed: 09/05/2024]
Abstract
The mdx mouse phenotype, aggravated by chronic exercise on a treadmill, makes this murine model more reliable for the study of Duchenne muscular dystrophy (DMD) and allows the efficacy of therapeutic interventions to be evaluated. This study aims to investigate the effects of photobiomodulation by light-emitting diode (LED) therapy on functional, biochemical and morphological parameters in treadmill-trained adult mdx animals. Mdx mice were trained for 30 min of treadmill running at a speed of 12 m/min, twice a week for 4 weeks. The LED therapy (850 nm) was applied twice a week to the quadriceps muscle throughout the treadmill running period. LED therapy improved behavioral activity (open field) and muscle function (grip strength and four limb hanging test). Functional benefits correlated with reduced muscle damage; a decrease in the inflammatory process; modulation of the regenerative muscular process and calcium signalling pathways; and a decrease in oxidative stress markers. The striking finding of this work is that LED therapy leads to a shift from the M1 to M2 macrophage phenotype in the treadmill-trained mdx mice, enhancing tissue repair and mitigating the dystrophic features. Our data also imply that the beneficial effects of LED therapy in the dystrophic muscle correlate with the interplay between calcium, oxidative stress and inflammation signalling pathways. Together, these results suggest that photobiomodulation could be a potential adjuvant therapy for dystrophinopathies.
Collapse
Affiliation(s)
- Valéria Andrade Pereira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Evelyn Mendes Fernandes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil
| | - Elaine Minatel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil.
| |
Collapse
|
2
|
He Y, Ye R, Peng Y, Pei Q, Wu L, Wang C, Ni W, Li M, Zhang Y, Yao M. Photobiomodulation ameliorates ovarian aging by alleviating oxidative stress and inflammation damage and improving mitochondrial function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113024. [PMID: 39276447 DOI: 10.1016/j.jphotobiol.2024.113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.
Collapse
Affiliation(s)
- Yu He
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Rongan Ye
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yinbo Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qing Pei
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wu
- Shanghai Institute of Laser Technology, Shanghai 200233, China
| | - Caixia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Ni
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yiqiu Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
3
|
Lim L. Modifying Alzheimer's disease pathophysiology with photobiomodulation: model, evidence, and future with EEG-guided intervention. Front Neurol 2024; 15:1407785. [PMID: 39246604 PMCID: PMC11377238 DOI: 10.3389/fneur.2024.1407785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
This manuscript outlines a model of Alzheimer's Disease (AD) pathophysiology in progressive layers, from its genesis to the development of biomarkers and then to symptom expression. Genetic predispositions are the major factor that leads to mitochondrial dysfunction and subsequent amyloid and tau protein accumulation, which have been identified as hallmarks of AD. Extending beyond these accumulations, we explore a broader spectrum of pathophysiological aspects, including the blood-brain barrier, blood flow, vascular health, gut-brain microbiodata, glymphatic flow, metabolic syndrome, energy deficit, oxidative stress, calcium overload, inflammation, neuronal and synaptic loss, brain matter atrophy, and reduced growth factors. Photobiomodulation (PBM), which delivers near-infrared light to selected brain regions using portable devices, is introduced as a therapeutic approach. PBM has the potential to address each of these pathophysiological aspects, with data provided by various studies. They provide mechanistic support for largely small published clinical studies that demonstrate improvements in memory and cognition. They inform of PBM's potential to treat AD pending validation by large randomized controlled studies. The presentation of brain network and waveform changes on electroencephalography (EEG) provide the opportunity to use these data as a guide for the application of various PBM parameters to improve outcomes. These parameters include wavelength, power density, treatment duration, LED positioning, and pulse frequency. Pulsing at specific frequencies has been found to influence the expression of waveforms and modifications of brain networks. The expression stems from the modulation of cellular and protein structures as revealed in recent studies. These findings provide an EEG-based guide for the use of artificial intelligence to personalize AD treatment through EEG data feedback.
Collapse
Affiliation(s)
- Lew Lim
- Vielight Inc., Toronto, ON, Canada
| |
Collapse
|
4
|
Asgari R, Mehran YZ, Weber HM, Weber M, Golestanha SA, Hosseini Kazerouni SM, Panahi F, Mohammadi P, Mansouri K. Management of oxidative stress for cell therapy through combinational approaches of stem cells, antioxidants, and photobiomodulation. Eur J Pharm Sci 2024; 196:106715. [PMID: 38301971 DOI: 10.1016/j.ejps.2024.106715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Over the recent decades, stem cell-based therapies have been considered as a beneficial approach for the treatment of various diseases. In these types of therapies, the stem cells and their products are used as treating agents. Despite the helpful efficacy of stem cell-based therapies, there may be challenges. Oxidative stress (OS) is one of these challenges that can affect the therapeutic properties of stem cells. Therefore, it seems that employing strategies for the reduction of OS in combination with stem cell therapy can lead to better results of these therapies. Based on the available evidence, antioxidant therapy and photobiomodulation (PBM) are strategies that can regulate the OS in the cells. Antioxidant therapy is a method in which various antioxidants are used in the therapeutic processes. PBM is also the clinical application of light that gained importance in medicine. Antioxidants and PBM can regulate OS by the effect on mitochondria as an important source of OS in the cells. Considering the importance of OS in pathologic pathways and its effect on the treatment outcomes of stem cells, in the present review first the stem cell therapy and effects of OS on this type of therapy are summarized. Then, antioxidant therapy and PBM as approaches for reducing OS with a focus on mitochondrial function are discussed. Also, a novel combination treatment with the hope of achieving better and more stable outcomes in the treatment process of diseases is proposed.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yasaman Zandi Mehran
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hans Michael Weber
- International Society of Medical Laser Applications, Lauenfoerde, Germany
| | | | | | | | - Farzad Panahi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
5
|
Silva LMG, Gouveia VA, Campos GRS, Dale CS, da Palma RK, de Oliveira APL, Marcos RL, Duran CCG, Cogo JC, Silva Junior JA, Zamuner SR. Photobiomodulation mitigates Bothrops jararacussu venom-induced damage in myoblast cells by enhancing myogenic factors and reducing cytokine production. PLoS Negl Trop Dis 2024; 18:e0012227. [PMID: 38814992 PMCID: PMC11192417 DOI: 10.1371/journal.pntd.0012227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 06/21/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Photobiomodulation has exhibited promise in mitigating the local effects induced by Bothrops snakebite envenoming; however, the mechanisms underlying this protection are not yet fully understood. Herein, the effectiveness of photobiomodulation effects on regenerative response of C2C12 myoblast cells following exposure to Bothrops jararacussu venom (BjsuV), as well as the mechanisms involved was investigated. METHODOLOGY/PRINCIPAL FINDINGS C2C12 myoblast cells were exposed to BjsuV (12.5 μg/mL) and irradiated once for 10 seconds with laser light of 660 nm (14.08 mW; 0.04 cm2; 352 mW/cm2) or 780 nm (17.6 mW; 0.04 cm2; 440 mW/ cm2) to provide energy densities of 3.52 and 4.4 J/cm2, and total energies of 0.1408 and 0.176 J, respectively. Cell migration was assessed through a wound-healing assay. The expression of MAPK p38-α, NF-Кβ, Myf5, Pax-7, MyoD, and myogenin proteins were assessed by western blotting analysis. In addition, interleukin IL1-β, IL-6, TNF-alfa and IL-10 levels were measured in the supernatant by ELISA. The PBM applied to C2C12 cells exposed to BjsuV promoted cell migration, increase the expression of myogenic factors (Pax7, MyF5, MyoD and myogenin), reduced the levels of proinflammatory cytokines, IL1-β, IL-6, TNF-alfa, and increased the levels of anti-inflammatory cytokine IL-10. In addition, PBM downregulates the expression of NF-kB, and had no effect on p38 MAKP. CONCLUSION/SIGNIFICANCE These data demonstrated that protection of the muscle cell by PBM seems to be related to the increase of myogenic factors as well as the modulation of inflammatory mediators. PBM therapy may offer a new therapeutic strategy to address the local effects of snakebite envenoming by promoting muscle regeneration and reducing the inflammatory process.
Collapse
Affiliation(s)
| | - Viviane Almeida Gouveia
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | | | - Camila Squarzone Dale
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Renata Kelly da Palma
- Facultad De Ciencias De la Salud de Manresa, Universitat de Vic-Universitat Central De Catalunya (UVic-UCC), Barcelona, Spain
- Tissue Repair and Regeneration Laboratory (TR2Lab), Institute for Research and Innovation in Life and Health Sciences in Central Catalonia (Iris-CC). Vic, Spain
| | | | - Rodrigo Labat Marcos
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Cinthya Cosme Gutierrez Duran
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - José Carlos Cogo
- Programa de Mestrado em Bioengenharia do Instituto de Ciências e Tecnologia da Universidade Brasil, São Paulo, Brazil
| | - José Antônio Silva Junior
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| | - Stella Regina Zamuner
- Postgraduate Program in Medicine, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
- Postgraduate Program in Medicine-Biophotonics, Universidade Nove de Julho, UNINOVE, São Paulo, Brazil
| |
Collapse
|
6
|
das Neves MF, Pinto AP, Maegima LT, Lima FPS, Lopes-Martins RÁB, Lo Schiavo Arisawa EA, Lima MO. Effects of photobiomodulation on pain, lactate and muscle performance (ROM, torque, and EMG parameters) of paretic upper limb in patients with post-stroke spastic hemiparesis-a randomized controlled clinical trial. Lasers Med Sci 2024; 39:88. [PMID: 38453765 DOI: 10.1007/s10103-024-04035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
The objective of the study was to investigate the impact of photobiomodulation (PBM) on the paretic upper limb in post-stroke patients with spastic hemiparesis and to understand the potential of PBM as a long-term non-invasive therapy for reducing the side effects caused by spasticity in the hemiparetic upper limb after a stroke. This is a double-blind randomized clinical trial constituted of 27 participants, being Control group (CG = 12 healthy individuals) and PBM group (PBMG = 15 post-stroke individuals). In the CG, the baseline blood lactate (BL) was evaluated, followed by the evaluation of the IC torque of the biceps and triceps muscles, with the isokinetic dynamometer associated with surface electromyography (EMG) and, subsequently, a new measurement of BL. The PBMG received 10 sessions of treatment with PBM (780 nm, Power: 100 mV, Power Density: 3.18 W/cm2, Energy: 4 J, Fluency: 127.4 J/cm2, Time: 40 s per point and 1.280 s total, Spot: 0.0314 cm2, 32 Points: 16 points (brachial biceps) and 16 points (brachial triceps) applied with contact at 90°, Total Energy: 64 J), which in the pre-treatment evaluation measured BL, the visual analogue scale (VAS) of pain; torque and EMG of the same muscles in the IC, subsequently, a new measurement of VAS and BL, and measurement of range of motion (ROM) during the reaching movement. At the conclusion of the ten sessions, all participants underwent a reassessment, wherein all tests originally administered during the initial evaluation were repeated. Subsequently, the data were analyzed using the Shapiro-Wilk normality test. For related data, the paired t-test was used for normal distributions and the Wilcoxon test for non-normal data. For unrelated data, the t test was used for normal distributions and the Mann-Whitney test for non-normal data. Muscle torque was higher for the CG, with a significant difference (CGxPBMG = p < 0.0001). There was no significant difference between the EMG values of the CG in relation to the Pre-PBM phase and with the Post-PBM phase of the PBMG (p > 0.05). On the other hand, there was a 38% reduction in pain reported by hemiparetic patients (p = 0.0127) and a decrease in BL in the PBMG. Post-PBM ROM increased by 46.1% in the elbow extension of the paretic limb. In conclusion, Photobiomodulation (PBM) demonstrated significant improvements in muscle performance, reducing fatigue and pain levels, and enhancing range of motion in post-stroke patients with spastic hemiparesis. These findings support the potential integration of PBM into rehabilitation protocols, but further research and clinical trials are needed to validate and expand upon these promising outcomes.
Collapse
Affiliation(s)
- Marcele Florêncio das Neves
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil
| | - Ana Paula Pinto
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil
| | - Letícia Tiemi Maegima
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil
| | - Fernanda Pupio Silva Lima
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil.
- Programa de Pós Graduação Em Engenharia Biomédica, Avenida Shishima Hifumi, Urbanova, SP, 2911, Brazil.
| | - Rodrigo Álvaro Brandão Lopes-Martins
- Post-Graduate Program in Human Movement and Rehabilitation, Research Group in Biophotonics and Experimental Therapeutics in Health and Esthetics, Universidade Evangélica de Goiás - UniEVANGÉLICA, Anápolis, Goiás, Brazil
| | - Emilia Angela Lo Schiavo Arisawa
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil
| | - Mário Oliveira Lima
- Laboratório de Engenharia de Reabilitação Sensório Motora, Instituto de Pesquisa E Desenvolvimento, IP&D, Universidade Do Vale Do Paraíba, UNIVAP, Av. Shishima Hifumi, São José Dos Campos, São Paulo, 2911, Brazil
| |
Collapse
|
7
|
da Rocha GL, Guimarães DSPSF, da Cruz MV, Mizobuti DS, da Silva HNM, Pereira ECL, Silveira LR, Minatel E. Antioxidant effects of LEDT in dystrophic muscle cells: involvement of PGC-1α and UCP-3 pathways. Photochem Photobiol Sci 2024; 23:107-118. [PMID: 38057632 DOI: 10.1007/s43630-023-00506-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Reactive oxygen species and mitochondrial dysfunction play a crucial role in the pathophysiology of Duchenne muscular dystrophy (DMD). The light-emitting diode therapy (LEDT) showed beneficial effects on the dystrophic muscles. However, the mechanisms of this therapy influence the molecular pathways in the dystrophic muscles, particularly related to antioxidant effects, which still needs to be elucidated. The current study provides muscle cell-specific insights into the effect of LEDT, 48 h post-irradiation, on oxidative stress and mitochondrial parameters in the dystrophic primary muscle cells in culture. METHODS Dystrophic primary muscle cells were submitted to LEDT, at multiple wavelengths (420 nm, 470 nm, 660 nm and 850 nm), 0.5 J dose, and evaluated after 48 h based on oxidative stress markers, antioxidant enzymatic system and biogenesis, and functional mitochondrial parameters. RESULTS The mdx muscle cells treated with LEDT showed a significant reduction of H2O2 production and 4-HNE, catalase, SOD-2, and GR levels. Upregulation of UCP3 was observed with all wavelengths while upregulation of PGC-1α and a slight upregulation of electron transport chain complexes III and V was only observed following 850 nm LEDT. In addition, the mitochondrial membrane potential and mitochondrial mass mostly tended to be increased following LEDT, while parameters like O2·- production tended to be decreased. CONCLUSION The data shown here highlight the potential of LEDT as a therapeutic agent for DMD through its antioxidant action by modulating PGC-1α and UCP3 levels.
Collapse
Affiliation(s)
- Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Dimitrius Santiago Passos Simões Fróes Guimarães
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Marcos Vinicius da Cruz
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Heloina Nathalliê Mariano da Silva
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
| | - Elaine Cristina Leite Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Faculty of Ceilândia, University of Brasília (UnB), Brasília, Brazil
| | - Leonardo Reis Silveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil
- Obesity and Comorbidities Research Center (OCRC), Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, 13083-970862, Brazil.
| |
Collapse
|
8
|
Wells A, Rigby J, Castel C, Castel D. Pulsed Red and Blue Photobiomodulation for the Treatment of Thigh Contusions and Soft Tissue Injury: A Randomized Controlled Trial. J Sport Rehabil 2024; 33:20-26. [PMID: 37917978 DOI: 10.1123/jsr.2022-0334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/09/2023] [Accepted: 08/19/2023] [Indexed: 11/04/2023]
Abstract
CONTEXT Contusion and soft tissue injuries are common in sports. Photobiomodultion, light and laser therapy, is an effective aid to increase healing rates and improve function after various injury mechanisms. However, it is unclear how well photobiomodulation improves function after a contusion soft tissue injury. This study aimed to determine the effects of a pulsed red and blue photobiomodulation light patch on muscle function following a human thigh contusion injury. DESIGN Single-blinded randomized control trial design. METHODS We enrolled 46 healthy participants. Participants completed 5 visits on consecutive days. On the first visit, participants completed a baseline isokinetic quadriceps strength testing protocol at 60°/s and 180°/s. On the second visit, participants were struck in the rectus femoris of the anterior thigh with a tennis ball from a serving machine. Immediately following, participants were treated for 30 minutes with an active or placebo photobiomodulation patch (CareWear light patch system, CareWear Corp). Following the treatment, participants completed the same isokinetic quadriceps strength testing protocol. Participants completed the treatment and isokinetic quadriceps strength test during the following daily visits. We normalized the data by calculating the percent change from baseline. We used a mixed model analysis of covariance, with sex as a covariate, to determine the difference between treatment groups throughout the acute recovery process. RESULTS We found the active photobiomodulation treatment significantly increased over the placebo group, quadriceps peak torque during the 180°/s test (P = .030), and average power during both the 60°/s (P = .041) and 180°/s (P ≤ .001) assessments. The mean peak torque and average power of 180°/s, at day 4, exceeded the baseline levels by 8.9% and 16.8%, respectively. CONCLUSIONS The red and blue photobiomodulation light patch improved muscle strength and power during the acute healing phase of a human thigh contusion injury model.
Collapse
Affiliation(s)
- Aaron Wells
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA
| | - Justin Rigby
- Department of Physical Therapy and Athletic Training, University of Utah Health, Salt Lake City, UT, USA
| | | | | |
Collapse
|
9
|
Liu J, Xia D, Wei M, Zhou S, Li J, Weng Y. Bibliometric Analysis to Global Research Status Quo on Photobiomodulation. Photobiomodul Photomed Laser Surg 2023; 41:683-693. [PMID: 38011736 DOI: 10.1089/photob.2023.0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Photobiomodulation (PBM) becomes a remedial technology with growing popularity. The primary goal of this article is to conduct a PBM literature review, providing an overall systematic understanding of current and future trends. Methods: A dataset was made with topic retrieval, concerning PBM research retrieved from the Web of Science Core Collection. We analyzed to forecast research frontiers in this field using the softwares: VOSviewer, CiteSpace, and Biblioshiny. Results: Four thousand five hundred thirty pieces of literature were retrieved from our database. Current trends were characterized by keywords of "light," "spinal cord injury," "skeletal muscle," and so on. Future trends were characterized probably by six cutting-edge terms: "wound healing," "pain," "oral mucositis," "Alzheimer's disease," "Parkinson's disease," and "orthodontics." Conclusions: This study finds that the inadequacy of in-depth reliable interpretation of current clinical data calls for molecular biological mechanisms together with well-designed, large-sample, multicenter clinical trials. The study of oral, wound, and neural-related mechanisms and the exploration of therapeutic effects may be the popular trend at present and in the next few years.
Collapse
Affiliation(s)
- Jing Liu
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Dongyun Xia
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Min Wei
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Shaojing Zhou
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Jian Li
- Wound Care Unit, Nanjing Drum Tower Hospital, Nanjing, PR China
| | - Yajuan Weng
- Nursing Department, Nanjing Drum Tower Hospital, Nanjing, PR China
| |
Collapse
|
10
|
Baskerville R, Krijgsveld N, Esser P, Jeffery G, Poulton J. The Effect of Photobiomodulation on the Treatment of Hereditary Mitochondrial Diseases. J Lasers Med Sci 2023; 14:e41. [PMID: 38028882 PMCID: PMC10658120 DOI: 10.34172/jlms.2023.41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023]
Abstract
Introduction: Despite a wide variety of clinical presentations in hereditary Mitochondrial Diseases, muscle fatigue is a common theme and impairs a patient's quality of life and ability to function. Current treatments are only supportive and include nutritional supplementation and physical therapy. Photobiomodulation therapy (PBMT) using low-intensity, narrow spectrum light in the red/near infrared (NIR) range, from a low-level laser or light-emitting diode sources, enhances mitochondrial function in preclinical and clinical studies on a range of conditions. However, little research has been done on the effectiveness of photobiomodulation in hereditary mitochondrial disorders. Methods: We performed a scoping review of the evidence of the beneficial effects of photobiomodulation for treating the muscle-related symptoms of hereditary mitochondrial disease. Results: No studies regarding photobiomodulation in hereditary mitochondrial disease were identified. However, in other clinical conditions featuring acquired mitochondrial impairment, we identified studies that suggested improved function, although sample sizes were small in number and statistical power. Conclusion: There is emerging evidence of efficacy for PBMT for diseases involving acquired mitochondrial insufficiency. We identified no published research on PBMT in hereditary mitochondrial disease, but this review confirms a theoretical rationale for a positive effect and suggests further research.
Collapse
Affiliation(s)
| | | | - Patrick Esser
- Health and Life Sciences, Oxford Brookes University, Oxford, UK
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, UK
| | - Joanna Poulton
- Hospital for Women and Reproductive Health, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Hauck M, Schardong J, Donini G, Normann TC, Plentz RDM. Effects of photobiomodulation therapy (PBMT) over endothelial function in healthy individuals: a preliminary crossover clinical trial. Lasers Med Sci 2023; 38:104. [PMID: 37072603 DOI: 10.1007/s10103-023-03762-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
Photobiomodulation therapy (PBMT) causes stimulatory effects that raise cell metabolism. The study aimed to evaluate the effects of PBMT on the endothelial function of healthy individuals. It was a controlled, randomized, crossover, triple-blind trial with 22 healthy volunteers (female: 77.3%), aged 25.45 years which were randomly divided into three groups. PBMT with gallium-aluminum-arsenide (GaAlAs) diode laser (810 nm, continuous-wave mode, 1000 mW, 0.28 cm2) was applied over the radial and ulnar artery regions in two parallel spots: group 1-30 J (n = 22, 107 J/cm2) per spot; group 2-60 J (n = 22, 214 J/cm2) per spot; and group 3-placebo (n = 22, sham). The endothelial function was measured before and immediately after PBMT by the flow-mediated dilation technique (%FMD) with high-resolution ultrasound. Statistical analysis was made with ANOVA for repeated measures, the effect size was measured by Cohen's d, and results are presented as mean and standard error (or 95% confidence intervals). A p-value < 0.05 was considered statistically significant. The %FMD increases 10.4% with 60 J (mean difference = 0.496 mm, 95% CI = 0.42 to 0.57, p < 0.001), 7.3% with 30 J (mean difference = 0.518 mm, 95% CI = 0.44 to 0.59, p < 0.001), and 4.7% with placebo (mean difference = 0.560 mm, 95% CI = 0.48 to 0.63, p < 0.001). We found a small effect size (p = 0.702; d de Cohen = 0.24) without statistical difference between interventions. PBMT with the energy density of 60 J and 30 J did not improve endothelial function.Trial registration number: NCT03252184 (01/09/2017).
Collapse
Affiliation(s)
- Melina Hauck
- Graduate Programm in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Zip Code: 90050-170, Porto Alegre, Brazil.
- Graduate Programm in Rehabilitation Sciences of Universidade Federal de Santa Catarina (UFSC), Zip Code: 88.905-120, Araranguá, Brazil.
| | - Jociane Schardong
- Complexo Hospitalar Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Zip Code: 90020-090, Brazil
| | - Gabriela Donini
- Graduate in Physiotherapy, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Zip Code: 90050-170, Brazil
| | - Tatiana Coser Normann
- Health Multidisciplinary Residency Programm in Urgency and Emergency, Hospital de Pronto Socorro de Porto Alegre (HPS), Porto Alegre, Zip Code: 90040-192, Brazil
| | - Rodrigo Della Méa Plentz
- Graduate Programm in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Zip Code: 90050-170, Porto Alegre, Brazil
- Complexo Hospitalar Irmandade Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Zip Code: 90020-090, Brazil
- Physiotherapy Department, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Zip Code: 90050-170, Brazil
| |
Collapse
|
12
|
Peng L, Wu F, Cao M, Li M, Cui J, Liu L, Zhao Y, Yang J. Effects of different physical factors on osteogenic differentiation. Biochimie 2023; 207:62-74. [PMID: 36336107 DOI: 10.1016/j.biochi.2022.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Osteoblasts are essential for bone formation and can perceive external mechanical stimuli, which are translated into biochemical responses that ultimately alter cell phenotypes and respond to environmental stimuli, described as mechanical transduction. These cells actively participate in osteogenesis and the formation and mineralisation of the extracellular bone matrix. This review summarises the basic physiological and biological mechanisms of five different physical stimuli, i.e. light, electricity, magnetism, force and sound, to induce osteogenesis; further, it summarises the effects of changing culture conditions on the morphology, structure and function of osteoblasts. These findings may provide a theoretical basis for further studies on bone physiology and pathology at the cytological level and will be useful in the clinical application of bone formation and bone regeneration technology.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
13
|
Shamloo S, Defensor E, Ciari P, Ogawa G, Vidano L, Lin JS, Fortkort JA, Shamloo M, Barron AE. The anti-inflammatory effects of photobiomodulation are mediated by cytokines: Evidence from a mouse model of inflammation. Front Neurosci 2023; 17:1150156. [PMID: 37090796 PMCID: PMC10115964 DOI: 10.3389/fnins.2023.1150156] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/25/2023] Open
Abstract
There is an urgent need for therapeutic approaches that can prevent or limit neuroinflammatory processes and prevent neuronal degeneration. Photobiomodulation (PBM), the therapeutic use of specific wavelengths of light, is a safe approach shown to have anti-inflammatory effects. The current study was aimed at evaluating the effects of PBM on LPS-induced peripheral and central inflammation in mice to assess its potential as an anti-inflammatory treatment. Daily, 30-min treatment of mice with red/NIR light (RL) or RL with a 40 Hz gamma frequency flicker for 10 days prior to LPS challenge showed anti-inflammatory effects in the brain and systemically. PBM downregulated LPS induction of key proinflammatory cytokines associated with inflammasome activation, IL-1β and IL-18, and upregulated the anti-inflammatory cytokine, IL-10. RL provided robust anti-inflammatory effects, and the addition of gamma flicker potentiated these effects. Overall, these results demonstrate the potential of PBM as an anti-inflammatory treatment that acts through cytokine expression modulation.
Collapse
Affiliation(s)
- Shirin Shamloo
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Erwin Defensor
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Peter Ciari
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Gaku Ogawa
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Laura Vidano
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jennifer S. Lin
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
| | - John A. Fortkort
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
| | - Mehrdad Shamloo
- Department of Neurosurgery, School of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Mehrdad Shamloo,
| | - Annelise E. Barron
- Department of Bioengineering, Schools of Medicine and Engineering, Stanford University, Stanford, CA, United States
- Annelise E. Barron,
| |
Collapse
|
14
|
Wang L, Shao J, Su C, Yang J. The application of optical technology in the diagnosis and therapy of oxidative stress-mediated hepatic ischemia-reperfusion injury. Front Bioeng Biotechnol 2023; 11:1133039. [PMID: 36890921 PMCID: PMC9986550 DOI: 10.3389/fbioe.2023.1133039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is defined as liver tissue damage and cell death caused by reperfusion during liver transplantation or hepatectomy. Oxidative stress is one of the important mechanisms of HIRI. Studies have shown that the incidence of HIRI is very high, however, the number of patients who can get timely and efficient treatment is small. The reason is not hard to explain that invasive ways of detection and lack of timely of diagnostic methods. Hence, a new detection method is urgently needed in clinic application. Reactive oxygen species (ROS), which are markers of oxidative stress in the liver, could be detected by optical imaging and offer timely and effective non-invasive diagnosis and monitoring. Optical imaging could become the most potential tool of diagnosis of HIRI in the future. In addition, optical technology can also be used in disease treatment. It found that optical therapy has the function of anti-oxidative stress. Consequently, it has possibility to treat HIRI caused by oxidative stress. In this review, we mainly summarized the application and prospect of optical techniques in oxidative stress-induced by HIRI.
Collapse
Affiliation(s)
- Lijuan Wang
- Department of Medicine, Hengyang Medical School, University of South China, Hengyang, China.,Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Chen Su
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Greben AI, Eremin PS, Kostromina EY, Markov PA, Greben TN, Gilmutdinova IR, Konchugova TV. [Low level laser therapy: molecular mechanisms of anti-inflammatory and regenerative effects]. VOPROSY KURORTOLOGII, FIZIOTERAPII, I LECHEBNOI FIZICHESKOI KULTURY 2023; 100:61-68. [PMID: 37141524 DOI: 10.17116/kurort202310002161] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Laser therapy as a physiotherapeutic method has been successfully used for a long time in the treatment of various pathologies, but the action mechanisms of low level laser therapy (LLLT) remain understudied. OBJECTIVE To perform the analysis of published results of LLLT investigations, to describe the physical principles of photobiomodulation, its action mechanisms on various cells and tissues, therapeutic intervention and efficiency of the technique. MATERIAL AND METHODS The search of articles was done for the period from 2014 to 2022. The preference was given to the articles for the last 5 years in the PubMed database depending on keywords: low level laser therapy, photobiomodulation, exosomes, monocytes, macrophages. RESULTS AND DISCUSSION This article represents the current conceptions about the action mechanisms and reproduced effects of low level laser therapy, the photobiomodulation influence on the inflammation and reparative processes in human body by intervention on cells and their signal pathways. The discussion of research results and probable causes of conflicting data are performed, as well as the efficacy assessment of laser irradiation in different conditions and diseases is made. CONCLUSION Laser therapy has certain variety of advantages, among which: non-invasiveness and availability, long-term service of equipment, stable intensity of light radiation and the ability to use in various wavelength ranges. The technique efficacy was proven for a large number of diseases. However, for the successful application of photobiomodulation in clinical practice in current evidence-based medicine, additional investigations are necessary to determine the best dosimetric radiation parameters, as well as further study of action mechanisms on various human cells and tissues.
Collapse
Affiliation(s)
- A I Greben
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
- N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| | - P S Eremin
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - E Yu Kostromina
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - P A Markov
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - T N Greben
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - I R Gilmutdinova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| | - T V Konchugova
- National Medical Research Center for Rehabilitation and Balneology, Moscow, Russia
| |
Collapse
|
16
|
Ahadi M, Ebrahimi A, Ramin S. Long-Term Outcome of Photobiomodulation for Diabetic Macular Edema: A Case Report. Photobiomodul Photomed Laser Surg 2022; 40:742-746. [DOI: 10.1089/photob.2022.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Masoumeh Ahadi
- Optometry and Vision Science, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Shahrokh Ramin
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Wu C, Yang L, Feng S, Zhu L, Yang L, Liu TCY, Duan R. Therapeutic non-invasive brain treatments in Alzheimer's disease: recent advances and challenges. Inflamm Regen 2022; 42:31. [PMID: 36184623 PMCID: PMC9527145 DOI: 10.1186/s41232-022-00216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is one of the major neurodegenerative diseases and the most common form of dementia. Characterized by the loss of learning, memory, problem-solving, language, and other thinking abilities, AD exerts a detrimental effect on both patients' and families' quality of life. Although there have been significant advances in understanding the mechanism underlying the pathogenesis and progression of AD, there is no cure for AD. The failure of numerous molecular targeted pharmacologic clinical trials leads to an emerging research shift toward non-invasive therapies, especially multiple targeted non-invasive treatments. In this paper, we reviewed the advances of the most widely studied non-invasive therapies, including photobiomodulation (PBM), transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and exercise therapy. Firstly, we reviewed the pathological changes of AD and the challenges for AD studies. We then introduced these non-invasive therapies and discussed the factors that may affect the effects of these therapies. Additionally, we review the effects of these therapies and the possible mechanisms underlying these effects. Finally, we summarized the challenges of the non-invasive treatments in future AD studies and clinical applications. We concluded that it would be critical to understand the exact underlying mechanisms and find the optimal treatment parameters to improve the translational value of these non-invasive therapies. Moreover, the combined use of non-invasive treatments is also a promising research direction for future studies and sheds light on the future treatment or prevention of AD.
Collapse
Affiliation(s)
- Chongyun Wu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luoman Yang
- Department of Anesthesiology, Peking University Third Hospital (PUTH), Beijing, 100083, China
| | - Shu Feng
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Ling Zhu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA. .,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Bikmulina P, Kosheleva N, Shpichka A, Yusupov V, Gogvadze V, Rochev Y, Timashev P. Photobiomodulation in 3D tissue engineering. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220027VRR. [PMID: 36104833 PMCID: PMC9473299 DOI: 10.1117/1.jbo.27.9.090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications. AIM We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering. APPROACH First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids. RESULTS Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined. CONCLUSIONS PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
Collapse
Affiliation(s)
- Polina Bikmulina
- Sechenov First Moscow State Medical University, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Moscow, Russia
| | - Nastasia Kosheleva
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Anastasia Shpichka
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| | - Vladimir Yusupov
- Institute of Photon Technologies of FSRC “Crystallography and Photonics” RAS, Troitsk, Russia
| | - Vladimir Gogvadze
- Lomonosov Moscow State University, Faculty of Medicine, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Division of Toxicology, Stockholm, Sweden
| | - Yury Rochev
- National University of Ireland, Galway, Galway, Ireland
| | - Peter Timashev
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, Moscow, Russia
- Sechenov University, Laboratory of Clinical Smart Nanotechnologies, Moscow, Russia
| |
Collapse
|
19
|
De Marchi T, Ferlito JV, Ferlito MV, Salvador M, Leal-Junior ECP. Can Photobiomodulation Therapy (PBMT) Minimize Exercise-Induced Oxidative Stress? A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2022; 11:antiox11091671. [PMID: 36139746 PMCID: PMC9495825 DOI: 10.3390/antiox11091671] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress induced by exercise has been a research field in constant growth, due to its relationship with the processes of fatigue, decreased production of muscle strength, and its ability to cause damage to the cell. In this context, photobiomodulation therapy (PBMT) has emerged as a resource capable of improving performance, while reducing muscle fatigue and muscle damage. To analyze the effects of PBMT about exercise-induced oxidative stress and compare with placebo therapy. Data Sources: Databases such as PubMed, EMBASE, CINAHL, CENTRAL, PeDro, and Virtual Health Library, which include Lilacs, Medline, and SciELO, were searched to find published studies. Study Selection: There was no year or language restriction; randomized clinical trials with healthy subjects that compared the application (before or after exercise) of PBMT to placebo therapy were included. Study Design: Systematic review with meta-analysis. Level of Evidence: 1. Data Extraction: Data on the characteristics of the volunteers, study design, intervention parameters, exercise protocol and oxidative stress biomarkers were extracted. The risk of bias and the certainty of the evidence were assessed using the PEDro scale and the GRADE system, respectively. Results: Eight studies (n = 140 participants) were eligible for this review, with moderate to excellent methodological quality. In particular, PBMT was able to reduce damage to lipids post exercise (SMD = −0.72, CI 95% −1.42 to −0.02, I2 = 77%, p = 0.04) and proteins (SMD = −0.41, CI 95% −0.65 to −0.16, I2 = 0%, p = 0.001) until 72 h and 96 h, respectively. In addition, it increased the activity of SOD enzymes (SMD = 0.54, CI 95% 0.07 to 1.02, I2 = 42%, p = 0.02) post exercise, 48 and 96 h after irradiation. However, PBMT did not increase CAT activity (MD = 0.18 CI 95% −0.56 to 0.91, I2 = 79%, p = 0.64) post exercise. We did not find any difference in TAC or GPx biomarkers. Conclusion: Low to moderate certainty evidence shows that PBMT is a resource that can reduce oxidative damage and increase enzymatic antioxidant activity post exercise. We found evidence to support that one session of PBMT can modulate the redox metabolism.
Collapse
Affiliation(s)
- Thiago De Marchi
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- Correspondence:
| | - João Vitor Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Marcos Vinicius Ferlito
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Mirian Salvador
- Postgraduate Program in Biotechnology, Oxidative Stress and Antioxidant Laboratory, University of Caxias do Sul, Caxias do Sul 95070-560, Brazil
| | - Ernesto Cesar Pinto Leal-Junior
- Laboratory of Phototherapy and Innovative Technologies in Health (LaPIT), Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo 03155-000, Brazil
- ELJ Consultancy, Scientific Consultants, São Paulo 01153-000, Brazil
| |
Collapse
|
20
|
Rentz LE, Bryner RW, Ramadan J, Rezai A, Galster SM. Full-Body Photobiomodulation Therapy Is Associated with Reduced Sleep Durations and Augmented Cardiorespiratory Indicators of Recovery. Sports (Basel) 2022; 10:sports10080119. [PMID: 36006085 PMCID: PMC9414854 DOI: 10.3390/sports10080119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Research is emerging on the use of Photobiomodulation therapy (PBMT) and its potential for augmenting human performance, however, relatively little research exists utilizing full-body administration methods. As such, further research supporting the efficacy of whole-body applications of PBMT for behavioral and physiological modifications in applicable, real-world settings are warranted. The purpose of this analysis was to observe cardiorespiratory and sleep patterns surrounding the use of full-body PBMT in an elite cohort of female soccer players. Members of a women’s soccer team in a “Power 5 conference” of the National Collegiate Athletic Association (NCAA) were observed across one competitive season while wearing an OURA Ring nightly and a global positioning system (GPS) sensor during training. Within-subject comparisons of cardiorespiratory physiology, sleep duration, and sleep composition were evaluated the night before and after PBMT sessions completed as a standard of care for team recovery. Compared to pre-intervention, mean heart rate (HR) was significantly lower the night after a PBMT session (p = 0.0055). Sleep durations were also reduced following PBMT, with total sleep time (TST) averaging 40 min less the night after a session (p = 0.0006), as well as significant reductions in light sleep (p = 0.0307) and rapid eye movement (REM) sleep durations (p = 0.0019). Sleep durations were still lower following PBMT, even when controlling for daily and accumulated training loads. Enhanced cardiorespiratory indicators of recovery following PBMT, despite significant reductions in sleep duration, suggest that it may be an effective modality for maintaining adequate recovery from the high stress loads experienced by elite athletes.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
- Correspondence:
| | - Randy W. Bryner
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Jad Ramadan
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| | - Ali Rezai
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| | - Scott M. Galster
- Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26506, USA; (J.R.); (A.R.); (S.M.G.)
| |
Collapse
|
21
|
Neshasteh-Riz A, Ramezani F, Kookli K, Moghaddas Fazeli S, Motamed A, Nasirinezhad F, Janzadeh A, Hamblin MR, Asadi M. Optimization of the Duration and Dose of Photobiomodulation Therapy (660 nm Laser) for Spinal Cord Injury in Rats. Photobiomodul Photomed Laser Surg 2022; 40:488-498. [DOI: 10.1089/photob.2022.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Keihan Kookli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedalireza Moghaddas Fazeli
- International Campus, Iran University of Medical Sciences, Tehran, Iran
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Motamed
- Islamic Azad University, College of Veterinary Medicine, Karaj, Iran
| | | | - Atousa Janzadeh
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mohammadreza Asadi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Staelens M, Di Gregorio E, Kalra AP, Le HT, Hosseinkhah N, Karimpoor M, Lim L, Tuszyński JA. Near-Infrared Photobiomodulation of Living Cells, Tubulin, and Microtubules In Vitro. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:871196. [PMID: 35600165 PMCID: PMC9115106 DOI: 10.3389/fmedt.2022.871196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022] Open
Abstract
We report the results of experimental investigations involving photobiomodulation (PBM) of living cells, tubulin, and microtubules in buffer solutions exposed to near-infrared (NIR) light emitted from an 810 nm LED with a power density of 25 mW/cm2 pulsed at a frequency of 10 Hz. In the first group of experiments, we measured changes in the alternating current (AC) ionic conductivity in the 50–100 kHz range of HeLa and U251 cancer cell lines as living cells exposed to PBM for 60 min, and an increased resistance compared to the control cells was observed. In the second group of experiments, we investigated the stability and polymerization of microtubules under exposure to PBM. The protein buffer solution used was a mixture of Britton-Robinson buffer (BRB aka PEM) and microtubule cushion buffer. Exposure of Taxol-stabilized microtubules (~2 μM tubulin) to the LED for 120 min resulted in gradual disassembly of microtubules observed in fluorescence microscopy images. These results were compared to controls where microtubules remained stable. In the third group of experiments, we performed turbidity measurements throughout the tubulin polymerization process to quantify the rate and amount of polymerization for PBM-exposed tubulin vs. unexposed tubulin samples, using tubulin resuspended to final concentrations of ~ 22.7 μM and ~ 45.5 μM in the same buffer solution as before. Compared to the unexposed control samples, absorbance measurement results demonstrated a slower rate and reduced overall amount of polymerization in the less concentrated tubulin samples exposed to PBM for 30 min with the parameters mentioned above. Paradoxically, the opposite effect was observed in the 45.5 μM tubulin samples, demonstrating a remarkable increase in the polymerization rates and total polymer mass achieved after exposure to PBM. These results on the effects of PBM on living cells, tubulin, and microtubules are novel, further validating the modulating effects of PBM and contributing to designing more effective PBM parameters. Finally, potential consequences for the use of PBM in the context of neurodegenerative diseases are discussed.
Collapse
Affiliation(s)
- Michael Staelens
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | - Aarat P. Kalra
- Scholes Lab, Department of Chemistry, Princeton University, Princeton, NJ, United States
| | - Hoa T. Le
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | | | | | - Lew Lim
- Vielight Inc., Toronto, ON, Canada
| | - Jack A. Tuszyński
- Department of Physics, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Jack A. Tuszyński
| |
Collapse
|
23
|
Scalon D, Picada JN, de Sousa JT, da Silva AT, Colares JR, Marroni NAP. Photobiomodulation intervention improves oxidative, inflammatory, and morphological parameters of skeletal muscle in cirrhotic Wistar rats. Lasers Med Sci 2022; 37:1973-1982. [PMID: 34735658 DOI: 10.1007/s10103-021-03458-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/29/2021] [Indexed: 12/29/2022]
Abstract
Photobiomodulation (PBM) might be an intervention method to mitigate sarcopenia in cirrhotic patients. Given the lack of research on this issue, the goal of this study was to evaluate possible beneficial effects of PBM on the structural and functional properties of skeletal muscle from cirrhotic rats. Cirrhosis was induced by secondary bile duct ligation (BDL). Wistar rats were randomized into four groups: sham-operated control (Sham), Sham + PBM, BDL, and BDL + PBM. After cirrhosis induction, a dose of PBM (1 J; 100mW; 10 s; 880 nm; 6 × per week) was applied to each quadriceps, from the 15th to the 45th day after surgery. The locomotor ability was performed using an open-field task. The muscle structure was analyzed using histological methods. Cell damage was also evaluated assessing oxidative stress and DNA damage markers, and IL-1β pro-inflammatory interleukin by immunohistochemical analysis. An increase in the number of crossings was observed in the BDL + PBM group in relation to BDL. The BDL group showed muscle atrophy and increased IL-1β in relation to Sham, while in the BDL + PBM group, the fiber muscle was restructured and there was a decrease of IL-1 β. TBARS increased in the liver and muscle tissues in the BDL group and decreased it in the BDL + PBM group. SOD increased while CAT decreased in the BDL + PBM group in relation to the BDL group. No genotoxic or mutagenic effect was observed for PBM treatment. PBM improved the locomotion and the morphology of the muscle fibers, decreasing oxidative stress and inflammation, without causing DNA damage in cirrhotic rats.
Collapse
Affiliation(s)
- Diogo Scalon
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Avenida Farroupilha, 8001, Canoas, RS, CEP 92425900, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Avenida Farroupilha, 8001, Canoas, RS, CEP 92425900, Brazil.
- Lutheran University of Brazil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, RS, CEP 92425900, Brazil.
| | - Jayne Torres de Sousa
- Laboratory of Genetic Toxicology, Lutheran University of Brazil, Avenida Farroupilha, 8001, Canoas, RS, CEP 92425900, Brazil
| | - Ariane Tainá da Silva
- Postgraduate Program in Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050170, Brazil
| | - Josieli Raskopf Colares
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, CEP 90035003, Brazil
| | - Norma Anair Possa Marroni
- Postgraduate Program in Biological Sciences: Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500, Porto Alegre, RS, CEP 90050170, Brazil
- Experimental Laboratory of Pneumological Sciences and Inflammation, Postgraduate Program in Medical Sciences, Federal Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2400, Porto Alegre, RS, CEP 90035003, Brazil
| |
Collapse
|
24
|
Oxidative Stress Profile of Mothers and Their Offspring after Maternal Consumption of High-Fat Diet in Rodents: A Systematic Review and Meta-Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9073859. [PMID: 34868458 PMCID: PMC8636978 DOI: 10.1155/2021/9073859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 09/27/2021] [Accepted: 10/26/2021] [Indexed: 01/03/2023]
Abstract
Maternal exposure to the high-fat diet (HFD) during gestation or lactation can be harmful to both a mother and offspring. The aim of this systematic review was to identify and evaluate the studies with animal models (rodents) that were exposed to the high-fat diet during pregnancy and/or lactation period to investigate oxidative stress and lipid and liver enzyme profile of mothers and their offspring. The electronic search was performed in the PUBMED (Public/Publisher MEDLINE), EMBASE (Ovid), and Web of Science databases. Data from 77 studies were included for qualitative analysis, and of these, 13 studies were included for meta-analysis by using a random effects model. The pooled analysis revealed higher malondialdehyde levels in offspring of high-fat diet groups. Furthermore, the pooled analysis showed increased reactive oxygen species and lower superoxide dismutase and catalase in offspring of mothers exposed to high-fat diet during pregnancy and/or lactation. Despite significant heterogeneity, the systematic review shows oxidative stress in offspring induced by maternal HFD.
Collapse
|
25
|
Freitas KABDS, Rocha NS, Minicucci EM, Silva VFBD, Langoni H, Popim RC. Effects of photobiomodulation on wound contraction in rats undergoing doxorubicin extravasation: a histomorphometric analysis. Rev Esc Enferm USP 2021; 55:e20200527. [PMID: 34591064 DOI: 10.1590/1980-220x-reeusp-2020-0527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 07/24/2021] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE To analyze wound contraction and histomorphometric pattern of lesions in Wistar rats undergoing doxorubicin extravasation. METHOD Sixty adult female rats were used, divided into four groups of fifteen animals: Group 1 (Control, without antidote); Group 2 (Hyaluronidase); Group 3 (Photobiomodulation), and Group 4 (Hyaluronidase + Photobiomodulation). Doxorubicin 1mg (0.5 ml) was applied subcutaneously on the animals' back, inducing the wound. Macroscopic and morphometric evaluation of the lesions was performed every two days for 28 days. On the 30th day, euthanasia was performed and the material was collected for histological evaluation. RESULTS The animals in the photobiomodulation and photobiomodulation + Hyaluronidase groups presented regeneration tissue with neovascularization and acute inflammation, with improvement in wound healing, which did not occur in the other groups. The contraction rates were better in those treated with photobiomodulation and photobiomodulation + Hyaluronidase, with healing percentages of 76.6% and 72.1%, respectively. CONCLUSION The combination of photobiomodulation (660 nm-1 J) with topical hyaluronidase (65 UTR) proved to be effective in the process of wound healing due to extravasation of doxorubicin, and can be incorporated into the practice of clinical oncology.
Collapse
Affiliation(s)
| | - Noeme Sousa Rocha
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Departamento de Clínica Veterinária, Botucatu, SP, Brazil
| | - Eliana Maria Minicucci
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Enfermagem, Botucatu, SP, Brazil
| | | | - Hélio Langoni
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina Veterinária e Zootecnia de Botucatu, Departamento de Clínica Veterinária, Botucatu, SP, Brazil
| | - Regina Célia Popim
- Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Medicina de Botucatu, Departamento de Enfermagem, Botucatu, SP, Brazil
| |
Collapse
|
26
|
Nascimento JJAC, Machado ASD, Della-Santa GML, Fernandes DC, Ferreira MC, Machado GAP, Chaves BCG, Costa KB, Rocha-Vieira E, Oliveira MX, Gaiad TP, Santos AP. Effects of photobiomodulation therapy on functional recovery, angiogenesis and redox status in denervated muscle of rats. EINSTEIN-SAO PAULO 2021; 19:eAO6001. [PMID: 34586157 PMCID: PMC8439560 DOI: 10.31744/einstein_journal/2021ao6001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: To evaluate the effects of photobiomodulation therapy in redox status, angiogenesis marker – vascular endothelial growth factor – and in the functional recovery in denervated muscle. Methods: A total of 32 female Wistar rats underwent a crush injury and were randomly divided into four groups: Light Emitting Diode Group 2 and Control Group 2 (muscle collected 2 days after injury), and Light Emitting Diode Group 21 and Control Group 21 (muscle collected 21 days afterinjury). Light Emitting Diode Group 2 and Light Emitting Diode Group 21 received two and ten light emitting diode applications (630±20nm, 9J/cm2, 300mW), respectively, and the Control Group 2 and Control Group 21 did not receive any treatment. The function was evaluated by grasping test at four moments (pre-injury, 2, 10 and 21 post-injury days). The flexor digitorum muscle was collected for analysis of immunolocalization of vascular endothelial growth factor and redox parameters. Results: Functional improvement was observed at the second and tenth post-injury day in treated groups compared to control (p<0.005). The muscle tissue of treated groups presented higher immunohistochemical expression of vascular endothelial growth factor. Photobiomodulation therapy decreased the oxidative damage to lipid in Light Emitting Diode Group 2 compared to Control Group 2 (p=0.023) in the denervated muscle. Conclusion: Photobiomodulation therapy accelerated the functional recovery, increased angiogenesis and reduced lipid peroxidation in the denervated muscle at 2 days after injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karine Beatriz Costa
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Etel Rocha-Vieira
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | | | - Thais Peixoto Gaiad
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Ana Paula Santos
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| |
Collapse
|
27
|
de Souza Rastelli AN. Antimicrobial Photodynamic Therapy (aPDT) as a Disinfection and Biomodulation Approach in Implant Dentistry. Photochem Photobiol 2021; 97:1155-1160. [PMID: 34420213 DOI: 10.1111/php.13509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 08/20/2021] [Indexed: 01/03/2023]
Abstract
This article is a highlight of the paper by Choe et al. in this issue of Photochemistry and Photobiology. In that review paper, the disinfection and biomodulation outcomes promoted by antimicrobial photodynamic therapy (aPDT) on peri-implantitis infection were stated and discussed. The killing of the oral pathogens by aPDT is based on the generation of reactive oxygen species (ROS). Besides that, biomodulation can also be provided by aPDT and improve the healing and modulate the inflammatory process. Although aPDT has shown positive effects on the treatment of peri-implantitis disease mainly as a complimentary technique, the authors suggested that more and standardize clinical studies are needed to support the clinical application of aPDT for that purpose. Also, the standardization of parameters related to the light source and photosensitizers is required. In addition, nano-based materials may improve aPDT performance against oral biofilms and could increase the hopes of overcoming dental implant failures.
Collapse
|
28
|
Photobiomodulation-Underlying Mechanism and Clinical Applications. J Clin Med 2020; 9:jcm9061724. [PMID: 32503238 PMCID: PMC7356229 DOI: 10.3390/jcm9061724] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study is to explore the possibilities for the application of laser therapy in medicine and dentistry by analyzing lasers' underlying mechanism of action on different cells, with a special focus on stem cells and mechanisms of repair. The interest in the application of laser therapy in medicine and dentistry has remarkably increased in the last decade. There are different types of lasers available and their usage is well defined by different parameters, such as: wavelength, energy density, power output, and duration of radiation. Laser irradiation can induce a photobiomodulatory (PBM) effect on cells and tissues, contributing to a directed modulation of cell behaviors, enhancing the processes of tissue repair. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), can induce cell proliferation and enhance stem cell differentiation. Laser therapy is a non-invasive method that contributes to pain relief and reduces inflammation, parallel to the enhanced healing and tissue repair processes. The application of these properties was employed and observed in the treatment of various diseases and conditions, such as diabetes, brain injury, spinal cord damage, dermatological conditions, oral irritation, and in different areas of dentistry.
Collapse
|
29
|
de Souza Oliveira C, de Oliveira HA, Teixeira ILA, Antonio EL, Silva FA, Sunemi S, Leal-Junior EC, de Tarso Camillo de Carvalho P, Tucci PJF, Serra AJ. Low-level laser therapy prevents muscle apoptosis induced by a high-intensity resistance exercise in a dose-dependent manner. Lasers Med Sci 2020; 35:1867-1870. [PMID: 32026166 DOI: 10.1007/s10103-020-02978-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Cláudia de Souza Oliveira
- Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Ednei Luiz Antonio
- Programa de Pós-graduação em Cardiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Flavio Andre Silva
- Programa de Pós-graduação em Cardiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Centro Universitário Adventista de São Paulo, São Paulo, SP, Brazil
| | - Simone Sunemi
- Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, SP, Brazil
| | - Ernesto Cesar Leal-Junior
- Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, SP, Brazil
| | | | | | - Andrey Jorge Serra
- Programa de Pós-graduação em Biofotônica Aplicada as Ciências da Saúde, Universidade Nove de Julho, São Paulo, SP, Brazil. .,Programa de Pós-graduação em Cardiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,, São Paulo, Brazil.
| |
Collapse
|
30
|
dos Santos SA, Sampaio LM, Caires JR, Fernandes GHC, Marsico A, Serra AJ, Leal-Junior EC, de Carvalho PDTC. Parameters and Effects of Photobiomodulation in Plantar Fasciitis: A Meta-Analysis and Systematic Review. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2019; 37:327-335. [DOI: 10.1089/photob.2018.4588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Solange Almeida dos Santos
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Luciana Malosa Sampaio
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Jheniphe Rocha Caires
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Aline Marsico
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Andrey Jorge Serra
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Ernesto Cesar Leal-Junior
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Paulo de Tarso Camillo de Carvalho
- Postgraduate Program in Rehabilitation Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
- Postgraduate Program in Biophotonics Applied to Health Sciences, Universidade Nove de Julho (UNINOVE), São Paulo, Brazil
| |
Collapse
|
31
|
Photodynamic antimicrobial chemotherapy has an overt killing effect on periodontal pathogens? A systematic review of experimental studies. Lasers Med Sci 2019; 34:1527-1534. [PMID: 31111263 DOI: 10.1007/s10103-019-02806-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
Abstract
The periodontal disease (PD) etiology is mainly associated with some bacterial strains, such as Porphyromonas gingivalis (P. gingivalis). Nonsurgical root scaling (e.g., antibiotics) may achieve a temporary decrease in the P. gingivalis level, yet it cannot eradicate the microorganism. Moreover, antibiotics can lead to bacterial resistance and undesirable side effects. This systematic review was performed to identify animal data defining antimicrobial photodynamic therapy (PACT) role on experimental PD models in the treatment of P. gingivalis. Embase, MEDLINE, and PubMed were examined for studies published from January 1980 to August 2018. MeSH terms and Scopus data were used to find more related keywords. Four studies were selected and reviewed by two independent researches with a structured tool for rating the research quality. The beneficial effect of PACT included reductions in P. gingivalis counts, bleeding on probing, redness, and inflammation on multiple sites (i.e., first molar, dental implants; subgingival; and mandibular premolars). Although our results suggest that PACT displays antimicrobial action on P. gingivalis, thus improving the PD, a nonuniformity in the PACT protocol and the limited number of studies included lead to consider that the bactericidal efficacy of PACT against periodontal pathogens in PD remains unclear.
Collapse
|
32
|
Lamaro-Cardoso A, Bachion MM, Morais JM, Fantinati MS, Milhomem AC, Almeida VL, Vinaud MC, Lino-Júnior RS. Photobiomodulation associated to cellular therapy improve wound healing of experimental full thickness burn wounds in rats. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 194:174-182. [PMID: 30999165 DOI: 10.1016/j.jphotobiol.2019.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/05/2023]
Abstract
Adipose derived stromal vascular fraction (SVF) is a method of cell therapy potentially applicable for treatment of full thickness burns. Here we investigated if the association of photobiomodulation (PBM) with SVF therapy could improve wound healing in experimentally induced full thickness burn wounds in rats compared to the topical agent 2% silver sulfadiazine in a dose-dependent manner. Sixty-six male Wistar rats were divided in 4 groups containing 5 animals each which received the following treatments: 2% sulfadiazine (SD), SVF, SVF plus PBM at 30 mW (SVFL30), and SVF plus PBM at 100 mW (SVFL100). Two donor animals were used for each experimental series with 3, 7 and 30 days. Digital photography, microscopic analysis with Hematoxilin and Eosin (H&E), quantification of collagen type I by picrosirius red staining analysis and wound contraction evaluation were performed in order to quantify the results. At day 3 SVF alone or combined with PBM promoted increased early inflammatory response compared to SD. At day 7 SVFL30 and SVFL100 enhanced inflammatory cells infiltration, angiogenesis and fibroblast content compared to SVF and SD groups. At day 30 collagen concentration and wound contraction were higher in SVFL30 when compared to the other groups. In conclusion PBM promotes a synergistic outcome with SVF therapy with a dose dependent effect potentializing wound healing of experimental full thickness burns in rats through amplification of early inflammatory response, enhanced angiogenesis, fibroblast content, accentuated wound contraction and collagen concentration.
Collapse
Affiliation(s)
| | - Maria M Bachion
- Faculty of Nursing, Federal University of Goiás, Goiânia, Brazil
| | - Júlia M Morais
- Faculty of Medicine, Federal University of Goiás, Jataí, Brazil
| | | | - Anália C Milhomem
- Laboratory of Experimental Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Vera L Almeida
- Laboratory of Experimental Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Marina C Vinaud
- Laboratory of Experimental Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ruy S Lino-Júnior
- Laboratory of Experimental Pathology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
33
|
Effects and parameters of the photobiomodulation in experimental models of third-degree burn: systematic review. Lasers Med Sci 2018; 34:637-648. [DOI: 10.1007/s10103-018-2633-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
|
34
|
Photobiomodulation Leads to Reduced Oxidative Stress in Rats Submitted to High-Intensity Resistive Exercise. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5763256. [PMID: 29636849 PMCID: PMC5832038 DOI: 10.1155/2018/5763256] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/11/2017] [Accepted: 11/29/2017] [Indexed: 12/13/2022]
Abstract
The aim of this study was to determine whether oxidative stress markers are influenced by low-intensity laser therapy (LLLT) in rats subjected to a high-intensity resistive exercise session (RE). Female Wistar rats divided into three experimental groups (Ctr: control, 4J: LLLT, and RE) and subdivided based on the sampling times (instantly or 24 h postexercise) underwent irradiation with LLLT using three-point transcutaneous method on the hind legs, which was applied to the gastrocnemius muscle at the distal, medial, and proximal points. Laser (4J) or placebo (device off) were carried out 60 sec prior to RE that consisted of four climbs bearing the maximum load with a 2 min time interval between each climb. Lipoperoxidation levels and antioxidant capacity were obtained in muscle. Lipoperoxidation levels were increased (4-HNE and CL markers) instantly post-RE. LLLT prior to RE avoided the increase of the lipid peroxidation levels. Similar results were also notified for oxidation protein assays. The GPx and FRAP activities did not reduce instantly or 24 h after RE. SOD increased 24 h after RE, while CAT activity did not change with RE or LLLT. In conclusion, LLLT prior to RE reduced the oxidative stress markers, as well as, avoided reduction, and still increased the antioxidant capacity.
Collapse
|