1
|
Hohlmann B, Broessner P, Radermacher K. Ultrasound-based 3D bone modelling in computer assisted orthopedic surgery - a review and future challenges. Comput Assist Surg (Abingdon) 2024; 29:2276055. [PMID: 38261543 DOI: 10.1080/24699322.2023.2276055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Computer-assisted orthopedic surgery requires precise representations of bone surfaces. To date, computed tomography constitutes the gold standard, but comes with a number of limitations, including costs, radiation and availability. Ultrasound has potential to become an alternative to computed tomography, yet suffers from low image quality and limited field-of-view. These shortcomings may be addressed by a fully automatic segmentation and model-based completion of 3D bone surfaces from ultrasound images. This survey summarizes the state-of-the-art in this field by introducing employed algorithms, and determining challenges and trends. For segmentation, a clear trend toward machine learning-based algorithms can be observed. For 3D bone model completion however, none of the published methods involve machine learning. Furthermore, data sets and metrics are identified as weak spots in current research, preventing development and evaluation of models that generalize well.
Collapse
Affiliation(s)
- Benjamin Hohlmann
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| | - Peter Broessner
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| | - Klaus Radermacher
- Chair of Medical Engineering, Rheinisch-Westfalische Technische Hochschule, Aachen, Germany
| |
Collapse
|
2
|
Ji Y, Huang T, Wu Y, Li R, Wang P, Dong J, Liao H. Real-time ultrasound AR 3D visualization toward better topological structure perception for hepatobiliary surgery. Int J Comput Assist Radiol Surg 2024:10.1007/s11548-024-03273-1. [PMID: 39400852 DOI: 10.1007/s11548-024-03273-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Ultrasound serves as a crucial intraoperative imaging tool for hepatobiliary surgeons, enabling the identification of complex anatomical structures like blood vessels, bile ducts, and lesions. However, the reliance on manual mental reconstruction of 3D topologies from 2D ultrasound images presents significant challenges, leading to a pressing need for tools to assist surgeons with real-time identification of 3D topological anatomy. METHODS We propose a real-time ultrasound AR 3D visualization method for intraoperative 2D ultrasound imaging. Our system leverages backward alpha blending to integrate multi-planar ultrasound data effectively. To ensure continuity between 2D ultrasound planes, we employ spatial smoothing techniques to interpolate the widely spaced ultrasound planes. A dynamic 3D transfer function is also developed to enhance spatial representation through color differentiation. RESULTS Comparative experiments involving our AR visualization of 3D ultrasound, alongside AR visualization of 2D ultrasound and 2D visualization of 3D ultrasound, demonstrated that the proposed method significantly reduced operational time(110.25 ± 27.83 s compared to 292 ± 146.63 s and 365.25 ± 131.62 s), improved depth perception and comprehension of complex topologies, contributing to reduced pressure and increased personal satisfaction among users. CONCLUSION Quantitative experimental results and feedback from both novice and experienced physicians highlight our system's exceptional ability to enhance the understanding of complex topological anatomy. This improvement is crucial for accurate ultrasound diagnosis and informed surgical decision-making, underscoring the system's clinical applicability.
Collapse
Affiliation(s)
- Yuqi Ji
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Tianqi Huang
- School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yutong Wu
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Ruiyang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Pengfei Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Jiahong Dong
- School of ClinicalMedicine, Key Laboratory of Digital Intelligence, Hepatology (Ministry of Education), Tsinghua University, Beijing, China.
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Beijing, China.
| | - Honegen Liao
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Verma N, Setia A, Mehata AK, Randhave N, Badgujar P, Malik AK, Muthu MS. Recent Advancement of Indocyanine Green Based Nanotheranostics for Imaging and Therapy of Coronary Atherosclerosis. Mol Pharm 2024; 21:4804-4826. [PMID: 39225111 DOI: 10.1021/acs.molpharmaceut.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Atherosclerosis is a vascular intima condition in which any part of the circulatory system is affected, including the aorta and coronary arteries. Indocyanine green (ICG), a theranostic compound approved by the FDA, has shown promise in the treatment of coronary atherosclerosis after incorporation into nanoplatforms. By integration of ICG with targeting agents such as peptides or antibodies, it is feasible to increase its concentration in damaged arteries, hence increasing atherosclerosis detection. Nanotheranostics offers cutting-edge techniques for the clinical diagnosis and therapy of atherosclerotic plaques. Combining the optical properties of ICG with those of nanocarriers enables the improved imaging of atherosclerotic plaques and targeted therapeutic interventions. Several ICG-based nanotheranostics platforms have been developed such as polymeric nanoparticles, iron oxide nanoparticles, biomimetic systems, liposomes, peptide-based systems, etc. Theranostics for atherosclerosis diagnosis use magnetic resonance imaging (MRI), computed tomography (CT), near-infrared fluorescence (NIRF) imaging, photoacoustic/ultrasound imaging, positron emission tomography (PET), and single photon emission computed tomography (SPECT) imaging techniques. In addition to imaging, there is growing interest in employing ICG to treat atherosclerosis. In this review, we provide a conceptual explanation of ICG-based nanotheranostics for the imaging and therapy of coronary atherosclerosis. Moreover, advancements in imaging modalities such as MRI, CT, PET, SPECT, and ultrasound/photoacoustic have been discussed. Furthermore, we highlight the applications of ICG for coronary atherosclerosis.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
4
|
Van Der Hoek JL, Krommendijk ME, Manohar S, Arens J, Groot Jebbink E. Ex-Vivo Human-Sized Organ Machine Perfusion: A Systematic Review on the Added Value of Medical Imaging for Organ Condition Assessment. Transpl Int 2024; 37:12827. [PMID: 39296469 PMCID: PMC11408214 DOI: 10.3389/ti.2024.12827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/06/2024] [Indexed: 09/21/2024]
Abstract
Machine perfused ex-vivo organs offer an excellent experimental platform, e.g., for studying organ physiology and for conducting pre-clinical trials for drug delivery. One main challenge in machine perfusion is the accurate assessment of organ condition. Assessment is often performed using viability markers, i.e., lactate concentrations and blood gas analysis. Nonetheless, existing markers for condition assessment can be inconclusive, and novel assessment methods remain of interest. Over the last decades, several imaging modalities have given unique insights into the assessment of organ condition. A systematic review was conducted according to accepted guidelines to evaluate these medical imaging methods, focussed on literature that use machine perfused human-sized organs, that determine organ condition with medical imaging. A total of 18 out of 1,465 studies were included that reported organ condition results in perfused hearts, kidneys, and livers, using both conventional viability markers and medical imaging. Laser speckle imaging, ultrasound, computed tomography, and magnetic resonance imaging were used to identify local ischemic regions and quantify intra-organ perfusion. A detailed investigation of metabolic activity was achieved using 31P magnetic resonance imaging and near-infrared spectroscopy. The current review shows that medical imaging is a powerful tool to assess organ condition.
Collapse
Affiliation(s)
- Jan L. Van Der Hoek
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Marleen E. Krommendijk
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| | - Jutta Arens
- Engineering Organ Support Technologies Group, Department of Biomechanical Engineering, University of Twente, Enschede, Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, Netherlands
| |
Collapse
|
5
|
Rajamani A, Arun Bharadwaj P, Hariharan S, Ragavan AV, Hassan A, Arvind H, Huang S. A historical timeline of the development and evolution of medical diagnostic ultrasonography. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024. [PMID: 39225293 DOI: 10.1002/jcu.23808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 09/04/2024]
Abstract
Diagnostic ultrasonography has evolved to become an indispensable imaging tool that permits non-invasive evaluation of the whole body. In this narrative review, we present a historical timeline of the invention, development, and evolution of diagnostic medical ultrasound. It includes interesting fun facts that may help the reader identify with many of the incredible researchers in this field. This review is a tribute to the researchers who contributed to this amazing invention.
Collapse
Affiliation(s)
- Arvind Rajamani
- Nepean Clinical School, University of Sydney, Kingswood, New South Wales, Australia
- Department of Intensive Care Medicine, Nepean Hospital, Kingswood, New South Wales, Australia
| | | | | | | | - Anwar Hassan
- Department of Physiotherapy, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Hemamalini Arvind
- Division of Ophthalmology, University of Sydney Central Clinical School, Sydney, New South Wales, Australia
| | - Stephen Huang
- Nepean Clinical School, University of Sydney, Kingswood, New South Wales, Australia
| |
Collapse
|
6
|
Xia Z, Yuan R, Cao Y, Sun T, Xiong Y, Xu K. A systematic review of the application of machine learning techniques to ultrasound tongue imaging analysis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 156:1796-1819. [PMID: 39287468 DOI: 10.1121/10.0028610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
B-mode ultrasound has emerged as a prevalent tool for observing tongue motion in speech production, gaining traction in speech therapy applications. However, the effective analysis of ultrasound tongue image frame sequences (UTIFs) encounters many challenges, such as the presence of high levels of speckle noise and obscured views. Recently, the application of machine learning, especially deep learning techniques, to UTIF interpretation has shown promise in overcoming these hurdles. This paper presents a thorough examination of the existing literature, focusing on UTIF analysis. The scope of our work encompasses four key areas: a foundational introduction to deep learning principles, an exploration of motion tracking methodologies, a discussion of feature extraction techniques, and an examination of cross-modality mapping. The paper concludes with a detailed discussion of insights gleaned from the comprehensive literature review, outlining potential trends and challenges that lie ahead in the field.
Collapse
Affiliation(s)
- Zhen Xia
- National Key Lab of Parallel and Distributed Processing, National University of Defense Technology, Changsha, Hunan, China
| | - Ruicheng Yuan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China
| | - Yuan Cao
- National Key Lab of Parallel and Distributed Processing, National University of Defense Technology, Changsha, Hunan, China
| | - Tao Sun
- National Key Lab of Parallel and Distributed Processing, National University of Defense Technology, Changsha, Hunan, China
| | - Yunsheng Xiong
- National Key Lab of Parallel and Distributed Processing, National University of Defense Technology, Changsha, Hunan, China
| | - Kele Xu
- National Key Lab of Parallel and Distributed Processing, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
7
|
Paccini M, Paschina G, De Beni S, Stefanov A, Kolev V, Patanè G. US & MR/CT Image Fusion with Markerless Skin Registration: A Proof of Concept. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01176-w. [PMID: 39020154 DOI: 10.1007/s10278-024-01176-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 07/19/2024]
Abstract
This paper presents an innovative automatic fusion imaging system that combines 3D CT/MR images with real-time ultrasound acquisition. The system eliminates the need for external physical markers and complex training, making image fusion feasible for physicians with different experience levels. The integrated system involves a portable 3D camera for patient-specific surface acquisition, an electromagnetic tracking system, and US components. The fusion algorithm comprises two main parts: skin segmentation and rigid co-registration, both integrated into the US machine. The co-registration aligns the surface extracted from CT/MR images with the 3D surface acquired by the camera, facilitating rapid and effective fusion. Experimental tests in different settings, validate the system's accuracy, computational efficiency, noise robustness, and operator independence.
Collapse
Affiliation(s)
| | | | | | | | - Velizar Kolev
- MedCom GmbH, Dolivostr., 11, Darmstadt, 64293, Germany
| | | |
Collapse
|
8
|
De Sanctis L, Carnevale A, Antonacci C, Faiella E, Schena E, Longo UG. Six-Degree-of-Freedom Freehand 3D Ultrasound: A Low-Cost Computer Vision-Based Approach for Orthopedic Applications. Diagnostics (Basel) 2024; 14:1501. [PMID: 39061637 PMCID: PMC11275361 DOI: 10.3390/diagnostics14141501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/30/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
In orthopedics, X-rays and computed tomography (CT) scans play pivotal roles in diagnosing and treating bone pathologies. Machine bulkiness and the emission of ionizing radiation remain the main problems associated with these techniques. The accessibility and low risks related to ultrasound handling make it a popular 2D imaging method. Indeed, 3D ultrasound assembles 2D slices into a 3D volume. This study aimed to implement a probe-tracking method for 6 DoF 3D ultrasound. The proposed method involves a dodecahedron with ArUco markers attached, enabling computer vision tracking of the ultrasound probe's position and orientation. The algorithm focuses on the data acquisition phase but covers the basic reconstruction required for data generation and analysis. In the best case, the analysis revealed an average error norm of 2.858 mm with a standard deviation norm of 5.534 mm compared to an infrared optical tracking system used as a reference. This study demonstrates the feasibility of performing volumetric imaging without ionizing radiation or bulky systems. This marker-based approach shows promise for enhancing orthopedic imaging, providing a more accessible imaging modality for helping clinicians to diagnose pathologies regarding complex joints, such as the shoulder, replacing standard infrared tracking systems known to suffer from marker occlusion problems.
Collapse
Affiliation(s)
- Lorenzo De Sanctis
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Arianna Carnevale
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
| | - Carla Antonacci
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Eliodoro Faiella
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
| | - Emiliano Schena
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Laboratory of Measurement and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Umile Giuseppe Longo
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Álvaro del Portillo, 200, 00128 Rome, Italy; (L.D.S.); (A.C.); (C.A.); (E.F.); (E.S.)
- Research Unit of Orthopaedic and Trauma Surgery, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| |
Collapse
|
9
|
Li S, Shea QTK, Ling YT, Zheng YP. Investigation of 3D vessel reconstruction under Doppler imaging with phantoms: Towards reconstruction of the Circle of Willis. ULTRASONICS 2024; 141:107332. [PMID: 38718460 DOI: 10.1016/j.ultras.2024.107332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/26/2023] [Accepted: 04/23/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Stroke is the second leading cause of death across the globe. Early screening and risk detection could provide early intervention and possibly prevent its incidence. Imaging modalities, including 1D-Transcranial Doppler Ultrasound (1D-TCD) or Transcranial Color-code sonography (TCCS), could only provide low spatial resolution or 2D image information, respectively. Notably, 3D imaging modalities including CT have high radiation exposure, whereas MRI is expensive and cannot be adopted in patients with implanted devices. This study proposes an alternative imaging solution for reconstructing 3D Doppler ultrasound geared towards providing a screening tool for the 3D vessel structure of the brain. METHODS The system comprises an ultrasound phased array attached to a servo motor, which can rotate 180˚ at a speed of 2˚/s. We extracted the color Doppler ROI from the image before reconstructing it into a 3D view using a customized pixel-based algorithm. Different vascular diameters, flow velocity, and depth were tested using a vascular phantom with a pumped flow to confirm the system for imaging blood flow. These variables were set to mimic the vessel diameter, flow speed, and depth of the Circle of Willis (CoW) during a transcranial screening. RESULTS AND CONCLUSIONS The lower values of absolute error and ratio were found in the larger vascular channels, and vessel diameter overrepresentation was observed. Under different flow velocities, such diameter overrepresentation in the reconstructed flow did not change much; however, it did change with different depths. Meanwhile, the setting of the velocity scale and the color gain affected the dimension of reconstructed objectives. Moreover, we presented a 3D image of CoW from a subject to demonstrate its potential. The findings of this work can provide a good reference for further studies on the reconstruction of the CoW or other blood vessels using Doppler imaging.
Collapse
Affiliation(s)
- Shuai Li
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Queenie Tsung Kwan Shea
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yan To Ling
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China.
| |
Collapse
|
10
|
Ayala K, Huynh C, Voegtline K, Rutherford HJ. Made to move: A review of measurement strategies to characterize heterogeneity in normal fetal movement. Infant Behav Dev 2024; 75:101949. [PMID: 38663329 DOI: 10.1016/j.infbeh.2024.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 06/11/2024]
Abstract
Fetal movement is a crucial indicator of fetal well-being. Characteristics of fetal movement vary across gestation, posing challenges for researchers to determine the most suitable assessment of fetal movement for their study. We summarize the current measurement strategies used to assess fetal movement and conduct a comprehensive review of studies utilizing these methods. We critically evaluate various measurement approaches including subjective maternal perception, ultrasound, Doppler ultrasound, wearable technology, magnetocardiograms, and magnetic resonance imaging, highlighting their strengths and weaknesses. We discuss the challenges of accurately capturing fetal movement, which is influenced by factors such as differences in recording times, gestational ages, sample sizes, environmental conditions, subjective perceptions, and characterization across studies. We also highlight the clinical implications of heterogeneity in fetal movement assessment for monitoring fetal behavior, predicting adverse outcomes, and improving maternal attachment to the fetus. Lastly, we propose potential areas of future research to overcome the current gaps and challenges in measuring and characterizing abnormal fetal movement. Our review contributes to the growing body of literature on fetal movement assessment and provides insights into the methodological considerations and potential applications for research.
Collapse
Affiliation(s)
- Kathy Ayala
- Yale University, Yale University School of Medicine, Yale Child Study Center, USA.
| | - Christina Huynh
- Johns Hopkins School of Medicine, Department of Pediatrics, USA.
| | - Kristin Voegtline
- Johns Hopkins School of Medicine, Department of Pediatrics, USA; Johns Hopkins Bloomberg School of Public Health, Department of Population, Family and Reproductive Health, USA.
| | - Helena Jv Rutherford
- Yale University, Yale University School of Medicine, Yale Child Study Center, USA.
| |
Collapse
|
11
|
Manea E, Chitoran E, Rotaru V, Ionescu S, Luca D, Cirimbei C, Alecu M, Capsa C, Gafton B, Prutianu I, Serban D, Simion L. Integration of Ultrasound in Image-Guided Adaptive Brachytherapy in Cancer of the Uterine Cervix. Bioengineering (Basel) 2024; 11:506. [PMID: 38790373 PMCID: PMC11117609 DOI: 10.3390/bioengineering11050506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Cervical cancer continues to be a public health concern, as it remains the second most common cancer despite screening programs. It is the third most common cause of cancer-related death for women, and the majority of cases happen in developing nations. The standard treatment for locally advanced cervical cancer involves the use of external beam radiation therapy, along with concurrent chemotherapy, followed by an image-guided adaptive brachytherapy (IGABT) boost. The five-year relative survival rate for European women diagnosed with cervical cancer was 62% between 2000 and 2007. Updated cervical cancer treatment guidelines based on IGABT have been developed by the Gynecological working group, which is composed of the Group Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology. The therapeutic strategy makes use of three-dimensional imaging, which can be tailored to the target volume and at-risk organs through the use of computed tomography or magnetic resonance imaging. Under anaesthesia, the brachytherapy implantation is carried out. Ultrasonography is utilised to assess the depth of the uterine cavity and to facilitate the dilation of the uterine canal during the application insertion. In this study, we examine data from the international literature regarding the application of ultrasound in cervical cancer brachytherapy.
Collapse
Affiliation(s)
- Elena Manea
- Department of Radiotherapy, Regional Institute of Oncology, 700483 Iasi, Romania; (E.M.)
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Chitoran
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Vlad Rotaru
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana Ionescu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Dan Luca
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Ciprian Cirimbei
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Mihnea Alecu
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Cristina Capsa
- Radiology and Medical Imaging Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Bogdan Gafton
- Department of Radiotherapy, Regional Institute of Oncology, 700483 Iasi, Romania; (E.M.)
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Iulian Prutianu
- “Gr. T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Department of Morpho-Functional Sciences I—Histology, University of Medicine and Pharmacy “Gr. T. Popa”, 700483 Iasi, Romania
| | - Dragos Serban
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- Surgery Department IV, Bucharest Clinical Emergency Hospital, 050098 Bucharest, Romania
| | - Laurentiu Simion
- “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (S.I.)
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
12
|
Yeung PH, Hesse LS, Aliasi M, Haak MC, Xie W, Namburete AIL. Sensorless volumetric reconstruction of fetal brain freehand ultrasound scans with deep implicit representation. Med Image Anal 2024; 94:103147. [PMID: 38547665 DOI: 10.1016/j.media.2024.103147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Three-dimensional (3D) ultrasound imaging has contributed to our understanding of fetal developmental processes by providing rich contextual information of the inherently 3D anatomies. However, its use is limited in clinical settings, due to the high purchasing costs and limited diagnostic practicality. Freehand 2D ultrasound imaging, in contrast, is routinely used in standard obstetric exams, but inherently lacks a 3D representation of the anatomies, which limits its potential for more advanced assessment. Such full representations are challenging to recover even with external tracking devices due to internal fetal movement which is independent from the operator-led trajectory of the probe. Capitalizing on the flexibility offered by freehand 2D ultrasound acquisition, we propose ImplicitVol to reconstruct 3D volumes from non-sensor-tracked 2D ultrasound sweeps. Conventionally, reconstructions are performed on a discrete voxel grid. We, however, employ a deep neural network to represent, for the first time, the reconstructed volume as an implicit function. Specifically, ImplicitVol takes a set of 2D images as input, predicts their locations in 3D space, jointly refines the inferred locations, and learns a full volumetric reconstruction. When testing natively-acquired and volume-sampled 2D ultrasound video sequences collected from different manufacturers, the 3D volumes reconstructed by ImplicitVol show significantly better visual and semantic quality than the existing interpolation-based reconstruction approaches. The inherent continuity of implicit representation also enables ImplicitVol to reconstruct the volume to arbitrarily high resolutions. As formulated, ImplicitVol has the potential to integrate seamlessly into the clinical workflow, while providing richer information for diagnosis and evaluation of the developing brain.
Collapse
Affiliation(s)
- Pak-Hei Yeung
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom; Oxford Machine Learning in NeuroImaging Lab, Department of Computer Science, University of Oxford, OX1 3QD, United Kingdom.
| | - Linde S Hesse
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom; Oxford Machine Learning in NeuroImaging Lab, Department of Computer Science, University of Oxford, OX1 3QD, United Kingdom
| | - Moska Aliasi
- Division of Fetal Medicine, Department of Obstetrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Monique C Haak
- Division of Fetal Medicine, Department of Obstetrics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Weidi Xie
- Shanghai Jiao Tong University, Shanghai, 200240, China; Visual Geometry Group, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Ana I L Namburete
- Oxford Machine Learning in NeuroImaging Lab, Department of Computer Science, University of Oxford, OX1 3QD, United Kingdom
| |
Collapse
|
13
|
Alzubaidi M, Shah U, Agus M, Househ M. FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery. IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY 2024; 5:281-295. [PMID: 38766538 PMCID: PMC11100952 DOI: 10.1109/ojemb.2024.3382487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/05/2024] [Accepted: 03/24/2024] [Indexed: 05/22/2024] Open
Abstract
Goal: FetSAM represents a cutting-edge deep learning model aimed at revolutionizing fetal head ultrasound segmentation, thereby elevating prenatal diagnostic precision. Methods: Utilizing a comprehensive dataset-the largest to date for fetal head metrics-FetSAM incorporates prompt-based learning. It distinguishes itself with a dual loss mechanism, combining Weighted DiceLoss and Weighted Lovasz Loss, optimized through AdamW and underscored by class weight adjustments for better segmentation balance. Performance benchmarks against prominent models such as U-Net, DeepLabV3, and Segformer highlight its efficacy. Results: FetSAM delivers unparalleled segmentation accuracy, demonstrated by a DSC of 0.90117, HD of 1.86484, and ASD of 0.46645. Conclusion: FetSAM sets a new benchmark in AI-enhanced prenatal ultrasound analysis, providing a robust, precise tool for clinical applications and pushing the envelope of prenatal care with its groundbreaking dataset and segmentation capabilities.
Collapse
Affiliation(s)
- Mahmood Alzubaidi
- College of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Uzair Shah
- College of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Marco Agus
- College of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Mowafa Househ
- College of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| |
Collapse
|
14
|
Pander J, Kuhn J, Casas-Mulet R, Habersetzer L, Geist J. Diurnal patterns of spatial stream temperature variations reveal the need for integrating thermal heterogeneity in riverscape habitat restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170786. [PMID: 38331273 DOI: 10.1016/j.scitotenv.2024.170786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Longer durations of warmer weather, altered precipitation, and modified streamflow patterns driven by climate change are expected to impair ecosystem resilience, exposing freshwater ecosystems and their biota to a severe threat worldwide. Understanding the spatio-temporal temperature variations and the processes governing thermal heterogeneity within the riverscape are essential to inform water management and climate adaptation strategies. We combined UAS-based imagery data of aquatic habitats with meteorological, hydraulic, river morphology and water quality data to investigate how key factors influence spatio-temporal stream heterogeneity on a diurnal basis within different thermal regions of a large recently restored Danube floodplain. Diurnal temperature ranges of aquatic habitats were larger than expected and ranged between 14.2 and 28.0 °C (mean = 20.7 °C), with peak median temperatures (26.1 °C) around 16:00 h. The observed temperature differences in timing and amplitude among thermal regions were unexpectedly high and created a mosaic pattern of temperature heterogeneity. For example, cooler groundwater-influenced thermal regions provided several cold water patches (CWP, below 19.0 °C) and potential cold water refuges (CWRs) around 12:00 h, at the time when other habitats were warmer than 21.0 °C, exceeding the ecological threshold (20.0 °C) for key aquatic species. Within the morphological complexity of the restored floodplain, we identified groundwater influence, shading and river morphology as the key processes driving thermal riverscape heterogeneity. Promoting stream thermal refuges will become increasingly relevant under climate change scenarios, and river restoration should consider both measures to physically prevent habitat from excessive warming and measures to improve connectivity that meet the temperature requirements of target species for conservation. This requires restoring mosaics of complex and dynamic temperature riverscapes.
Collapse
Affiliation(s)
- Joachim Pander
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Johannes Kuhn
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Roser Casas-Mulet
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; Chair of Hydraulic and Water Resources Engineering, Technical University of Munich, 80333 Munich, Germany
| | - Luis Habersetzer
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Juergen Geist
- Aquatic Systems Biology Unit, TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany.
| |
Collapse
|
15
|
Ma X, Shen E, Yuan J, Gong L, Kong W, Jin Z, Tao C, Liu X. Volumetric B-mode ultrasound and Doppler Imaging: Automatic Tracking With One Single Camera. ULTRASONIC IMAGING 2024; 46:90-101. [PMID: 38041446 DOI: 10.1177/01617346231213385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Vascular diseases may occur in the upper extremities, and the lesions can span the entire length of the blood vessel. One of the most popular methods to identify vascular disorders is ultrasound Doppler imaging. However, traditional two-dimensional (2D) ultrasound Doppler imaging cannot capture the entire length of a long vessel in one image. Medical professionals often have to painstakingly reconstruct three-dimensional (3D) data using 2D ultrasound images to locate the lesions, especially for large blood vessels. 3D ultrasound Doppler imaging can display the morphological structure of blood vessels and the distribution of lesions more directly, providing a more comprehensive view compared to 2D imaging. In this work, we propose a wide-range 3D volumetric ultrasound Doppler imaging system with dual modality, in which a high-definition camera is adopted to automatically track the movement of the ultrasound transducer, simultaneously capturing a corresponding sequence of 2D ultrasound Doppler images. We conducted experiments on human arms using our proposed system and separately with X-ray computerized tomography (X-CT). The comparison results prove the potential value of our proposed system in the diagnosis of arm vascular diseases.
Collapse
Affiliation(s)
- Xiaoli Ma
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Enxiang Shen
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Jie Yuan
- School of Electronic Science and Engineering, Nanjing University, Nanjing, China
| | - Li Gong
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wentao Kong
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhibin Jin
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chao Tao
- School of Physics, Nanjing University, Nanjing, China
| | - Xiaojun Liu
- School of Physics, Nanjing University, Nanjing, China
| |
Collapse
|
16
|
Cooley MB, Wegierak D, Exner AA. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1957. [PMID: 38558290 PMCID: PMC11006412 DOI: 10.1002/wnan.1957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Nanomedicine in oncology has not had the success in clinical impact that was anticipated in the early stages of the field's development. Ideally, nanomedicines selectively accumulate in tumor tissue and reduce systemic side effects compared to traditional chemotherapeutics. However, this has been more successful in preclinical animal models than in humans. The causes of this failure to translate may be related to the intra- and inter-patient heterogeneity of the tumor microenvironment. Predicting whether a patient will respond positively to treatment prior to its initiation, through evaluation of characteristics like nanoparticle extravasation and retention potential in the tumor, may be a way to improve nanomedicine success rate. While there are many potential strategies to accomplish this, prediction and patient stratification via noninvasive medical imaging may be the most efficient and specific strategy. There have been some preclinical and clinical advances in this area using MRI, CT, PET, and other modalities. An alternative approach that has not been studied as extensively is biomedical ultrasound, including techniques such as multiparametric contrast-enhanced ultrasound (mpCEUS), doppler, elastography, and super-resolution processing. Ultrasound is safe, inexpensive, noninvasive, and capable of imaging the entire tumor with high temporal and spatial resolution. In this work, we summarize the in vivo imaging tools that have been used to predict nanoparticle distribution and treatment efficacy in oncology. We emphasize ultrasound imaging and the recent developments in the field concerning CEUS. The successful implementation of an imaging strategy for prediction of nanoparticle accumulation in tumors could lead to increased clinical translation of nanomedicines, and subsequently, improved patient outcomes. This article is categorized under: Diagnostic Tools In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery Nanomedicine for Oncologic Disease Therapeutic Approaches and Drug Discovery Emerging Technologies.
Collapse
Affiliation(s)
- Michaela B Cooley
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dana Wegierak
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Agata A Exner
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| |
Collapse
|
17
|
Okpaise OO, Tonni G, Werner H, Araujo Júnior E, Lopes J, Ruano R. Three-dimensional real and virtual models in fetal surgery: a real vision. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:303-311. [PMID: 36565438 DOI: 10.1002/uog.26148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Affiliation(s)
- O O Okpaise
- Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - G Tonni
- Prenatal Diagnostic Centre, Department of Obstetrics and Neonatology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, Reggio Emilia, Italy
| | - H Werner
- Biodesign Lab DASA/PUC-Rio, Rio de Janeiro, Brazil
| | - E Araujo Júnior
- Department of Obstetrics, Paulista School of Medicine, Federal University of São Paulo (EPM-UNIFESP), São Paulo, Brazil
- Medical School, Municipal University of São Caetano do Sul (USCS), Bela Vista Campus, São Paulo, Brazil
| | - J Lopes
- Biodesign Lab DASA/PUC-Rio, Rio de Janeiro, Brazil
- Institute for Pure and Applied Mathematics, Rio de Janeiro, Brazil
| | - R Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami, Miller School of Medicine, Miami, FL, USA
- Maternal-Fetal-Children Service of Excellence, Americas Group, United Health Care Brazil, São Paulo, Brazil
| |
Collapse
|
18
|
Nyayapathi N, Zheng E, Zhou Q, Doyley M, Xia J. Dual-modal Photoacoustic and Ultrasound Imaging: from preclinical to clinical applications. FRONTIERS IN PHOTONICS 2024; 5:1359784. [PMID: 39185248 PMCID: PMC11343488 DOI: 10.3389/fphot.2024.1359784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Photoacoustic imaging is a novel biomedical imaging modality that has emerged over the recent decades. Due to the conversion of optical energy into the acoustic wave, photoacoustic imaging offers high-resolution imaging in depth beyond the optical diffusion limit. Photoacoustic imaging is frequently used in conjunction with ultrasound as a hybrid modality. The combination enables the acquisition of both optical and acoustic contrasts of tissue, providing functional, structural, molecular, and vascular information within the same field of view. In this review, we first described the principles of various photoacoustic and ultrasound imaging techniques and then classified the dual-modal imaging systems based on their preclinical and clinical imaging applications. The advantages of dual-modal imaging were thoroughly analyzed. Finally, the review ends with a critical discussion of existing developments and a look toward the future.
Collapse
Affiliation(s)
- Nikhila Nyayapathi
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Emily Zheng
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007
| | - Marvin Doyley
- Electrical and Computer Engineering, University of Rochester, Rochester, New York, 14627
| | - Jun Xia
- Department of Biomedical Engineering, University at Buffalo, Buffalo, New York, 14226
| |
Collapse
|
19
|
Harutyunyan R, Jeffries SD, Morse J, Hemmerling TM. Beyond the Echo: The Evolution and Revolution of Ultrasound in Anesthesia. Anesth Analg 2024; 138:369-375. [PMID: 38215715 DOI: 10.1213/ane.0000000000006834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
This article explores the evolving role of ultrasound technology in anesthesia. Ultrasound emerged decades ago, offering clinicians noninvasive, economical, radiation-free, and real-time imaging capabilities. It might seem that such an old technology with apparent limitations might have had its day, but this review discusses both the current applications of ultrasound (in nerve blocks, vascular access, and airway management) and then, more speculatively, shows how integration of advanced ultrasound modalities such as contrast-enhanced imaging with virtual reality (VR), or nanotechnology can alter perioperative patient care. This article will also explore the potential of robotics and artificial intelligence (AI) in augmenting ultrasound-guided anesthetic procedures and their implications for medical practice and education.
Collapse
Affiliation(s)
- Robert Harutyunyan
- From the Department of Experimental Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Sean D Jeffries
- From the Department of Experimental Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Joshua Morse
- From the Department of Experimental Surgery, McGill University Health Center, Montreal, Quebec, Canada
| | - Thomas M Hemmerling
- From the Department of Experimental Surgery, McGill University Health Center, Montreal, Quebec, Canada
- Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Wei L, Wahyulaksana G, Te Lintel Hekkert M, Beurskens R, Boni E, Ramalli A, Noothout E, Duncker DJ, Tortoli P, van der Steen AFW, de Jong N, Verweij M, Vos HJ. High-Frame-Rate Volumetric Porcine Renal Vasculature Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2476-2482. [PMID: 37704558 DOI: 10.1016/j.ultrasmedbio.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The aim of this study was to assess the feasibility and imaging options of contrast-enhanced volumetric ultrasound kidney vasculature imaging in a porcine model using a prototype sparse spiral array. METHODS Transcutaneous freehand in vivo imaging of two healthy porcine kidneys was performed according to three protocols with different microbubble concentrations and transmission sequences. Combining high-frame-rate transmission sequences with our previously described spatial coherence beamformer, we determined the ability to produce detailed volumetric images of the vasculature. We also determined power, color and spectral Doppler, as well as super-resolved microvasculature in a volume. The results were compared against a clinical 2-D ultrasound machine. RESULTS Three-dimensional visualization of the kidney vasculature structure and blood flow was possible with our method. Good structural agreement was found between the visualized vasculature structure and the 2-D reference. Microvasculature patterns in the kidney cortex were visible with super-resolution processing. Blood flow velocity estimations were within a physiological range and pattern, also in agreement with the 2-D reference results. CONCLUSION Volumetric imaging of the kidney vasculature was possible using a prototype sparse spiral array. Reliable structural and temporal information could be extracted from these imaging results.
Collapse
Affiliation(s)
- Luxi Wei
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Geraldi Wahyulaksana
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Robert Beurskens
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Enrico Boni
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Alessandro Ramalli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Emile Noothout
- Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Piero Tortoli
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Antonius F W van der Steen
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Nico de Jong
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Martin Verweij
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| | - Hendrik J Vos
- Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands; Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
21
|
Mohamed HI, Aly M, Badran Y, Fawzy M, El-damanhory H, Gomma A, Ghoneimy OM, Abdelaleem MF, Elsharkawy M, Fayad S, Zidan AM, Soltan HA, Samih TA, Aboelsaad AY, Abdel Gawad AM, Moustafa BEA, Abbas H, Aly NM, Elhawary R, Hasan A. Recent advances in three-dimensional ultrasound virtual cystoscopy in modeling and local staging for urothelial carcinoma with histopathological correlation: a cohort prospective study. Ann Med Surg (Lond) 2023; 85:5365-5371. [PMID: 37915685 PMCID: PMC10617848 DOI: 10.1097/ms9.0000000000001345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/16/2023] [Indexed: 11/03/2023] Open
Abstract
Background Bladder urothelial carcinoma is an alarming urologic malignancy. Complex factors like modelling and local staging can affect treatment strategy. However, local staging, particularly the muscle invasion status, significantly influences decisions regarding treatment strategies. Therefore, this study aims to evaluate the novel advances of three-dimensional (3D) ultrasound (US) imaging to assess local staging in comparison with conventional cystoscopy. Methods Forty-three patients with painless haematuria and conventional cystoscopy findings of bladder mass underwent 3D US virtual cystoscopy. All specimens from conventional cystoscopy were processed histologically. Results Out of 43 participants, 18 (41.9%) patients proved to have invasive urothelial carcinoma by histopathology. The 3D US had a sensitivity of 97.5% and a specificity of 100%; however conventional cystoscopy was accurate in only 53.5% of the studied cases. Furthermore, in the case of malignant ulcers, mural extension into both the submucosal and the muscle layers was more readily appreciated in multiplanar images. Conclusion 3D US updates are promising for use in bladder tumour modelling and local staging; however, they can be of value in evaluating mural and extramural tumour extent and have proven accuracy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Hassan A. Soltan
- Department of Radiology, Faculty of Medicine, Aswan University, Aswan
| | - Tamer A.A. Samih
- Department of Radiology, Faculty of Medicine, Benha University, Benha
| | | | | | | | | | - Noha M. Aly
- Department of Pathology, Faculty of Medicine for Girls, Al-Azhar University
| | | | | |
Collapse
|
22
|
Sun H, Wu A, Lu M, Cao S. Liability, risks, and recommendations for ultrasound use in the diagnosis of obstetrics diseases. Heliyon 2023; 9:e21829. [PMID: 38045126 PMCID: PMC10692788 DOI: 10.1016/j.heliyon.2023.e21829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023] Open
Abstract
This literature review will summarize the liability issues, risks, and ultrasound recommendations for diagnosing obstetrics diseases. One liability issue is related to misdiagnosis or failure to detect abnormalities during an ultrasound examination. Ultrasound images can be subjective interpretations, and errors may occur due to factors such as operator skill, equipment limitations, or fetal positioning. Another liability concern is related to the potential adverse effects of ultrasound exposure on both the mother and fetus. While extensive research has shown that diagnostic ultrasound is generally safe when used appropriately, there are still uncertainties regarding long-term effects. Some studies suggest a possible association between prolonged or excessive exposure to ultrasound waves and adverse outcomes such as low birth weight, developmental delays, or hearing impairment. Additionally, obtaining informed consent from patients is crucial in mitigating liability risks. Patients should be informed about the purpose of the ultrasound examination, its benefits, limitations, potential risks (even if minimal), and any alternative diagnostic options available. This ensures that patients know the procedure and can make informed decisions about their healthcare. Proper documentation helps establish a clear record of the care provided and can serve as evidence in any legal disputes.
Collapse
Affiliation(s)
- Haiting Sun
- Department of Ultrasound, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang Province, PR China
| | - An Wu
- Department of Ultrasound, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang Province, PR China
| | - Minli Lu
- Department of Ultrasound, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, 315700, Zhejiang Province, PR China
| | - Shan Cao
- Department of Obstetrics, The Affiliated Second People's Hospital of Yuhang District, Hangzhou City, Hangzhou, 311100, Zhejiang Province, PR China
| |
Collapse
|
23
|
Cai Q, Hu J, Chen M, Prieto J, Rosenbaum AJ, Stringer JSA, Jiang X. Inertial Measurement Unit-Assisted Ultrasonic Tracking System for Ultrasound Probe Localization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:920-929. [PMID: 36150002 DOI: 10.1109/tuffc.2022.3207185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasonic tracking is a promising technique in indoor object localization. However, limited success has been reported in dynamic orientational and positional ultrasonic tracking for ultrasound (US) probes due to its instability and relatively low accuracy. This article aims at developing an inertial measurement unit (IMU)-assisted ultrasonic tracking system that enables a high accuracy positional and orientational localization. The system was designed with the acoustic pressure field simulation of the transmitter, receiver configuration, position-variant error simulation, and sensor fusion. The prototype was tested in a tracking volume required in typical obstetric sonography within the typical operation speed ranges (slow mode and fast mode) of US probe movement. The performance in two different speed ranges was evaluated against a commercial optical tracking device. The results show that the proposed IMU-assisted US tracking system achieved centimeter-level positional tracking accuracy with the mean absolute error (MAE) of 12 mm and the MAE of orientational tracking was less than 1°. The results indicate the possibility of implementing the IMU-assisted ultrasonic tracking system in US probe localization.
Collapse
|
24
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
25
|
Zou Q, Huang Y, Gao J, Zhang B, Wang D, Wan M. Three-dimensional ultrasound image reconstruction based on 3D-ResNet in the musculoskeletal system using a 1D probe: ex vivoand in vivofeasibility studies. Phys Med Biol 2023; 68:165003. [PMID: 37419124 DOI: 10.1088/1361-6560/ace58b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/07/2023] [Indexed: 07/09/2023]
Abstract
Objective. Three-dimensional (3D) ultrasound (US) is needed to provide sonographers with a more intuitive panoramic view of the complex anatomical structure, especially the musculoskeletal system. In actual scanning, sonographers may perform fast scanning using a one-dimensional (1D) array probe .at random angles to gain rapid feedback, which leads to a large US image interval and missing regions in the reconstructed volume.Approach.In this study, a 3D residual network (3D-ResNet) modified by a 3D global residual branch (3D-GRB) and two 3D local residual branches (3D-LRBs) was proposed to retain detail and reconstruct high-quality 3D US volumes with high efficiency using only sparse two-dimensional (2D) US images. The feasibility and performance of the proposed algorithm were evaluated onex vivoandin vivosets.Main results. High-quality 3D US volumes in the fingers, radial and ulnar bones, and metacarpophalangeal joints were obtained by the 3D-ResNet, respectively. Their axial, coronal, and sagittal slices exhibited rich texture and speckle details. Compared with kernel regression, voxel nearest-neighborhood, squared distance weighted methods, and a 3D convolution neural network in the ablation study, the mean peak-signal-to-noise ratio and mean structure similarity of the 3D-ResNet were up to 28.53 ± 1.29 dB and 0.98 ± 0.01, respectively, and the corresponding mean absolute error dropped to 0.023 ± 0.003 with a better resolution gain of 1.22 ± 0.19 and shorter reconstruction time.Significance.These results illustrate that the proposed algorithm can rapidly reconstruct high-quality 3D US volumes in the musculoskeletal system in cases of a large amount of data loss. This suggests that the proposed algorithm has the potential to provide rapid feedback and precise analysis of stereoscopic details in complex and meticulous musculoskeletal system scanning with a less limited scanning speed and pose variations for the 1D array probe.
Collapse
Affiliation(s)
- Qin Zou
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Yuqing Huang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Junling Gao
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Diya Wang
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Mingxi Wan
- Department of Biomedical Engineering, the Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
26
|
Zhao L, Song S, Zhang C, Huang P, Zhang Y, Zhang M, Zheng R. Investigation of 3D Reconstruction Algorithms For Wireless Freehand Ultrasound Imaging System. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083639 DOI: 10.1109/embc40787.2023.10340015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The handheld 3D ultrasound imaging technique based on position tracking systems has been rapidly developed and widely applied in recent decades. The objectives of this study are to investigate the performance and accuracy of different 3D reconstruction algorithms including Voxel Nearest Neighbor (VNN), Pose Optimization Based (POB), and Implicit Representation (IR) methods. The high-precision phantom was used as the validation model to measure 2D/3D distance on the reconstructed image volume, and the measurements were evaluated with the true values obtained by caliber. The results indicated that the IR method presented the best reconstruction visualization and the smallest reconstruction errors for different motion cases. It demonstrated that the neural network-based reconstruction method can improve image quality and reduce reconstruction errors for the wireless freehand 3D ultrasound imaging systems.Clinical Relevance- This study validates the accuracy and precision of the different reconstruction algorithms for freehand 3D ultrasound imaging systems.
Collapse
|
27
|
Sankepalle DM, Anthony B, Mallidi S. Visual inertial odometry enabled 3D ultrasound and photoacoustic imaging. BIOMEDICAL OPTICS EXPRESS 2023; 14:2756-2772. [PMID: 37342691 PMCID: PMC10278605 DOI: 10.1364/boe.489614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 06/23/2023]
Abstract
There is an increasing need for 3D ultrasound and photoacoustic (USPA) imaging technology for real-time monitoring of dynamic changes in vasculature or molecular markers in various malignancies. Current 3D USPA systems utilize expensive 3D transducer arrays, mechanical arms or limited-range linear stages to reconstruct the 3D volume of the object being imaged. In this study, we developed, characterized, and demonstrated an economical, portable, and clinically translatable handheld device for 3D USPA imaging. An off-the-shelf, low-cost visual odometry system (the Intel RealSense T265 camera equipped with simultaneous localization and mapping technology) to track free hand movements during imaging was attached to the USPA transducer. Specifically, we integrated the T265 camera into a commercially available USPA imaging probe to acquire 3D images and compared it to the reconstructed 3D volume acquired using a linear stage (ground truth). We were able to reliably detect 500 µm step sizes with 90.46% accuracy. Various users evaluated the potential of handheld scanning, and the volume calculated from the motion-compensated image was not significantly different from the ground truth. Overall, our results, for the first time, established the use of an off-the-shelf and low-cost visual odometry system for freehand 3D USPA imaging that can be seamlessly integrated into several photoacoustic imaging systems for various clinical applications.
Collapse
Affiliation(s)
| | - Brian Anthony
- Institute of Medical Engineering and Sciences, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
- Wellman Center for Photomedicine, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
28
|
Ravigopal SR, Sarma A, Brumfiel TA, Desai JP. Real-time Pose Tracking for a Continuum Guidewire Robot under Fluoroscopic Imaging. IEEE TRANSACTIONS ON MEDICAL ROBOTICS AND BIONICS 2023; 5:230-241. [PMID: 38250652 PMCID: PMC10798677 DOI: 10.1109/tmrb.2023.3260273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Atherosclerosis is a medical condition that causes buildup of plaque in the blood vessels and narrowing of the arteries. Surgeons often treat this condition through angioplasty with catheter placements. Continuum guidewire robots offer significant advantages for catheter placements due to their dexterity. Tracking these guidewire robots and their surrounding workspace under fluoroscopy in real-time can be useful for visualization and accurate control. This paper discusses algorithms and methods to track the shape and orientation of the guidewire and the surrounding workspaces of phantom vasculatures in real-time under C-arm fluoroscopy. The shape of continuum guidewires is found through a semantic segmentation architecture based on MobileNetv2 with a Tversky loss function to deal with class imbalances. This shape is refined through medial axis filtering and parametric curve fitting to quantitatively describe the guidewire's pose. Using a constant curvature assumption for the guidewire's bending segments, the parameters that describe the joint variables are estimated in real-time for a tendon-actuated COaxially Aligned STeerable (COAST) guidewire robot and tracked through its traversal of an aortic bifurcation phantom. The accuracy of the tracking is ~90% and the execution times are within 100ms, and hence this method is deemed suitable for real-time tracking.
Collapse
Affiliation(s)
- Sharan R Ravigopal
- Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Achraj Sarma
- Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Timothy A Brumfiel
- Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Jaydev P Desai
- Medical Robotics and Automation (RoboMed) Laboratory, Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
29
|
Staub E. Current and potential methods to assess kidney structure and morphology in term and preterm neonates. Anat Rec (Hoboken) 2023. [PMID: 36883787 DOI: 10.1002/ar.25195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
After birth, the kidney structure in neonates adapt to the functional demands of extrauterine life. Nephrogenesis is complete in the third trimester, but glomeruli, tubuli, and vasculature mature with the rapidly increasing renal blood flow and glomerular filtration. In preterm infants, nephrogenesis remains incomplete and maturation is slower and may be aberrant. This structural and functional deficit has life-long consequences: preterm born individuals are at higher risk for chronic kidney disease and arterial hypertension later in life. This review assembles the literature on existing and potential methods to visualize neonatal kidney structure and morphology and explore their potential to longitudinally document the developmental deviation after preterm birth. X-rays with and without contrast, fluoroscopy and computed tomography (CT) involve relevant ionizing radiation exposure and, apart from CT, do not provide sufficient structural details. Ultrasound has evolved into a safe and noninvasive high-resolution imaging method which is excellent for longitudinal observations. Doppler ultrasound modes can characterize and quantify blood flow to and through the kidneys. Microvascular flow imaging has opened new possibilities of visualizing previously unseen vascular structures. Recent advances in magnetic resonance imaging display renal structure and function in unprecedented detail, but are offset by the logistical challenges of the imaging procedure and limited experience with the new techniques in neonates. Kidney biopsies visualize structure histologically, but are too invasive and remain anecdotal in newborns. All the explored methods have predominantly been examined in term newborns and require further research on longitudinal structural observation in the kidneys of preterm infants.
Collapse
Affiliation(s)
- Eveline Staub
- Department of Neonatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- University of Sydney Northern Clinical School, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
30
|
Sun T, Yu L, Deng D, Yu M, Chen Y, Chang C, Chen M, Chen S, Chen X, Lin H. Three-dimensional magneto-acousto-electrical tomography (3D MAET) with single-element ultrasound transducer and coded excitation: a phantom validation study. Neurocomputing 2023. [DOI: 10.1016/j.neucom.2023.02.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
31
|
Guo H, Chao H, Xu S, Wood BJ, Wang J, Yan P. Ultrasound Volume Reconstruction From Freehand Scans Without Tracking. IEEE Trans Biomed Eng 2023; 70:970-979. [PMID: 36103448 PMCID: PMC10011008 DOI: 10.1109/tbme.2022.3206596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transrectal ultrasound is commonly used for guiding prostate cancer biopsy, where 3D ultrasound volume reconstruction is often desired. Current methods for 3D reconstruction from freehand ultrasound scans require external tracking devices to provide spatial information of an ultrasound transducer. This paper presents a novel deep learning approach for sensorless ultrasound volume reconstruction, which efficiently exploits content correspondence between ultrasound frames to reconstruct 3D volumes without external tracking. The underlying deep learning model, deep contextual-contrastive network (DC 2-Net), utilizes self-attention to focus on the speckle-rich areas to estimate spatial movement and then minimizes a margin ranking loss for contrastive feature learning. A case-wise correlation loss over the entire input video helps further smooth the estimated trajectory. We train and validate DC 2-Net on two independent datasets, one containing 619 transrectal scans and the other having 100 transperineal scans. Our proposed approach attained superior performance compared with other methods, with a drift rate of 9.64 % and a prostate Dice of 0.89. The promising results demonstrate the capability of deep neural networks for universal ultrasound volume reconstruction from freehand 2D ultrasound scans without tracking information.
Collapse
|
32
|
Ilkhechi AK, Palamar R, Sobhani MR, Dahunsi D, Ceroici C, Ghavami M, Brown J, Zemp R. High-Voltage Bias-Switching Electronics for Volumetric Imaging using Electrostrictive Row-Column Arrays. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; PP:324-335. [PMID: 37027674 DOI: 10.1109/tuffc.2023.3246424] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Top Orthogonal to Bottom Electrode (TOBE) arrays, also known as row-column arrays, hold great promise for fast high-quality volumetric imaging. Bias-voltage-sensitive TOBE arrays based on electrostrictive relaxors or micromachined ultrasound transducers can enable readout from every element of the array using only row and column addressing. However, these transducers require fast bias-switching electronics which are not part of a conventional ultrasound system and are non-trivial. Here we report on the first modular bias-switching electronics enabling transmit, receive, and biasing on every row and every column of TOBE arrays, supporting up to 1024 channels. We demonstrate the performance of these arrays by connection to a transducer testing interface board and demonstrate 3D structural imaging of tissue and 3D power Doppler imaging of phantoms with realtime B-scan imaging and reconstruction rates. Our developed electronics enable interfacing of bias-switchable TOBE arrays to channel-domain ultrasound platforms with software-defined reconstruction for next-generation 3D imaging at unprecedented scales and imaging rates.
Collapse
|
33
|
Wang Y, Fu T, Wu C, Fan J, Song H, Xiao D, Lin Y, Liu F, Yang J. Adaptive tetrahedral interpolation for reconstruction of uneven freehand 3D ultrasound. Phys Med Biol 2023; 68. [PMID: 36731138 DOI: 10.1088/1361-6560/acb88c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023]
Abstract
Objective.Freehand 3D ultrasound volume reconstruction has received considerable attention in medical research because it can freely perform spatial imaging at a low cost. However, the uneven distribution of the original ultrasound images in space reduces the reconstruction effect of the traditional method.Approach.An adaptive tetrahedral interpolation algorithm is proposed to reconstruct 3D ultrasound volume data. The algorithm adaptively divides the unevenly distributed images into numerous tetrahedrons and interpolates the voxel value in each tetrahedron to reconstruct 3D ultrasound volume data.Main results.Extensive experiments on simulated and clinical data confirm that the proposed method can achieve more accurate reconstruction than six benchmark methods. Specifically, the averaged interpolation error at the gray level can be reduced by 0.22-0.82, and the peak signal-to-noise ratio and the mean structure similarity can be improved by 0.32-1.83 dB and 0.01-0.05, respectively.Significance.With the parallel implementation of the algorithm, one 3D ultrasound volume data with size 279 × 279 × 276 can be reconstructed from 100 slices 2D ultrasound images with size 200 × 200 at 1.04 s. Such a quick and accurate approach has practical value in medical research.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Tianyu Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chan Wu
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jingfan Fan
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Hong Song
- School of Software, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Deqiang Xiao
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yucong Lin
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Fangyi Liu
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing 100853, People's Republic of China
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
34
|
Jung H, Shung KK, Lim HG. Ultrasonic High-Resolution Imaging and Acoustic Tweezers Using Ultrahigh Frequency Transducer: Integrative Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:1916. [PMID: 36850513 PMCID: PMC9962640 DOI: 10.3390/s23041916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Ultrasound imaging is a highly valuable tool in imaging human tissues due to its non-invasive and easily accessible nature. Despite advances in the field of ultrasound research, conventional transducers with frequencies lower than 20 MHz face limitations in resolution for cellular applications. To address this challenge, we employed ultrahigh frequency (UHF) transducers and demonstrated their potential applications in the field of biomedical engineering, specifically for cell imaging and acoustic tweezers. The lateral resolution achieved with a 110 MHz UHF transducer was 20 μm, and 6.5 μm with a 410 MHz transducer, which is capable of imaging single cells. The results of our experiments demonstrated the successful imaging of a single PC-3 cell and a 15 μm bead using an acoustic scanning microscope equipped with UHF transducers. Additionally, the dual-mode multifunctional UHF transducer was used to trap and manipulate single cells and beads, highlighting its potential for single-cell studies in areas such as cell deformability and mechanotransduction.
Collapse
Affiliation(s)
- Hayong Jung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
35
|
Verykokou S, Ioannidis C. An Overview on Image-Based and Scanner-Based 3D Modeling Technologies. SENSORS (BASEL, SWITZERLAND) 2023; 23:596. [PMID: 36679393 PMCID: PMC9861742 DOI: 10.3390/s23020596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 05/27/2023]
Abstract
Advances in the scientific fields of photogrammetry and computer vision have led to the development of automated multi-image methods that solve the problem of 3D reconstruction. Simultaneously, 3D scanners have become a common source of data acquisition for 3D modeling of real objects/scenes/human bodies. This article presents a comprehensive overview of different 3D modeling technologies that may be used to generate 3D reconstructions of outer or inner surfaces of different kinds of targets. In this context, it covers the topics of 3D modeling using images via different methods, it provides a detailed classification of 3D scanners by additionally presenting the basic operating principles of each type of scanner, and it discusses the problem of generating 3D models from scans. Finally, it outlines some applications of 3D modeling, beyond well-established topographic ones.
Collapse
Affiliation(s)
- Styliani Verykokou
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece
| | | |
Collapse
|
36
|
Mao Z, Zhao L, Huang S, Jin T, Fan Y, Lee APW. Complete region of interest reconstruction by fusing multiview deformable three-dimensional transesophageal echocardiography images. Med Phys 2023; 50:61-73. [PMID: 35924929 DOI: 10.1002/mp.15910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND While three-dimensional transesophageal echocardiography (3D TEE) has been increasingly used for assessing cardiac anatomy and function, it still suffers from a limited field of view (FoV) of the ultrasound transducer. Therefore, it is difficult to examine a complete region of interest without moving the transducer. Existing methods extend the FoV of 3D TEE images by mosaicing multiview static images, which requires synchronization between 3D TEE images and electrocardiogram (ECG) signal to avoid deformations in the images and can only get the widened image at a specific phase. PURPOSE This work aims to develop a novel multiview nonrigid registration and fusion method to extend the FoV of 3D TEE images at different cardiac phases, avoiding the bias toward the specifically chosen phase. METHODS A multiview nonrigid registration and fusion method is proposed to enlarge the FoV of 3D TEE images by fusing dynamic images captured from different viewpoints sequentially. The deformation field for registering images is defined by a collection of affine transformations organized in a graph structure and is estimated by a direct (intensity-based) method. The accuracy of the proposed method is evaluated by comparing it with two B-spline-based methods, two Demons-based methods, and one learning-based method VoxelMorph. Twenty-nine sequences of in vivo 3D TEE images captured from four patients are used for the comparative experiments. Four performance metrics including checkerboard volumes, signed distance, mean absolute distance (MAD), and Dice similarity coefficient (DSC) are used jointly to evaluate the accuracy of the results. Additionally, paired t-tests are performed to examine the significance of the results. RESULTS The qualitative results show that the proposed method can align images more accurately and obtain the fused images with higher quality than the other five methods. Additionally, in the evaluation of the segmented left atrium (LA) walls for the pairwise registration and sequential fusion experiments, the proposed method achieves the MAD of (0.07 ± 0.03) mm for pairwise registration and (0.19 ± 0.02) mm for sequential fusion. Paired t-tests indicate that the results obtained from the proposed method are more accurate than those obtained by the state-of-the-art VoxelMorph and the diffeomorphic Demons methods at the significance level of 0.05. In the evaluation of left ventricle (LV) segmentations for the sequential fusion experiments, the proposed method achieves a DSC of (0.88 ± 0.08), which is also significantly better than diffeomorphic Demons at the 0.05 level. The FoVs of the final fused 3D TEE images obtained by our method are enlarged around two times compared with the original images. CONCLUSIONS Without selecting the static (ECG-gated) images from the same cardiac phase, this work addressed the problem of limited FoV of 3D TEE images in the deformable scenario, obtaining the fused images with high accuracy and good quality. The proposed method could provide an alternative to the conventional fusion methods that are biased toward the specifically chosen phase.
Collapse
Affiliation(s)
- Zhehua Mao
- Robotics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Liang Zhao
- Robotics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Shoudong Huang
- Robotics Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Tongxing Jin
- School of Information Science and Engineering, Harbin Institute of Technology, Weihai, China
| | - Yiting Fan
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Alex Pui-Wai Lee
- Division of Cardiology, Department of Medicine and Therapeutics, Prince of Wales Hospital and Laboratory of Cardiac Imaging and 3D Printing, Li Ka Shing Institute of Health Science, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
37
|
Tunable image quality control of 3-D ultrasound using switchable CycleGAN. Med Image Anal 2023; 83:102651. [PMID: 36327653 DOI: 10.1016/j.media.2022.102651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/03/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
In contrast to 2-D ultrasound (US) for uniaxial plane imaging, a 3-D US imaging system can visualize a volume along three axial planes. This allows for a full view of the anatomy, which is useful for gynecological (GYN) and obstetrical (OB) applications. Unfortunately, the 3-D US has an inherent limitation in resolution compared to the 2-D US. In the case of 3-D US with a 3-D mechanical probe, for example, the image quality is comparable along the beam direction, but significant deterioration in image quality is often observed in the other two axial image planes. To address this, here we propose a novel unsupervised deep learning approach to improve 3-D US image quality. In particular, using unmatched high-quality 2-D US images as a reference, we trained a recently proposed switchable CycleGAN architecture so that every mapping plane in 3-D US can learn the image quality of 2-D US images. Thanks to the switchable architecture, our network can also provide real-time control of image enhancement level based on user preference, which is ideal for a user-centric scanner setup. Extensive experiments with clinical evaluation confirm that our method offers significantly improved image quality as well user-friendly flexibility.
Collapse
|
38
|
Fiorentino MC, Villani FP, Di Cosmo M, Frontoni E, Moccia S. A review on deep-learning algorithms for fetal ultrasound-image analysis. Med Image Anal 2023; 83:102629. [PMID: 36308861 DOI: 10.1016/j.media.2022.102629] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/12/2022] [Accepted: 09/10/2022] [Indexed: 11/07/2022]
Abstract
Deep-learning (DL) algorithms are becoming the standard for processing ultrasound (US) fetal images. A number of survey papers in the field is today available, but most of them are focusing on a broader area of medical-image analysis or not covering all fetal US DL applications. This paper surveys the most recent work in the field, with a total of 153 research papers published after 2017. Papers are analyzed and commented from both the methodology and the application perspective. We categorized the papers into (i) fetal standard-plane detection, (ii) anatomical structure analysis and (iii) biometry parameter estimation. For each category, main limitations and open issues are presented. Summary tables are included to facilitate the comparison among the different approaches. In addition, emerging applications are also outlined. Publicly-available datasets and performance metrics commonly used to assess algorithm performance are summarized, too. This paper ends with a critical summary of the current state of the art on DL algorithms for fetal US image analysis and a discussion on current challenges that have to be tackled by researchers working in the field to translate the research methodology into actual clinical practice.
Collapse
Affiliation(s)
| | | | - Mariachiara Di Cosmo
- Department of Information Engineering, Università Politecnica delle Marche, Italy
| | - Emanuele Frontoni
- Department of Information Engineering, Università Politecnica delle Marche, Italy; Department of Political Sciences, Communication and International Relations, Università degli Studi di Macerata, Italy
| | - Sara Moccia
- The BioRobotics Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Italy
| |
Collapse
|
39
|
Rascevska E, Tessier DR, Doria AS, Fenster A. Proof-of-Concept Study of a 3-D Ultrasound Scanner Used for Ankle Joint Assessment. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:278-288. [PMID: 36220709 DOI: 10.1016/j.ultrasmedbio.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/04/2022] [Accepted: 09/04/2022] [Indexed: 06/16/2023]
Abstract
Joint arthropathies often require continuous monitoring of the joint condition, typically performed using magnetic resonance (MR) or ultrasound (US) imaging. US imaging is often the preferred screening or diagnostic tool as it is fast and inexpensive. However, conventional 2-D US has limited capability to compare imaging results between examinations because of its operator dependence and challenges related to repeat imaging in the same location and orientation. Comparison between several imaging sessions is crucial to assess the interval progression of joint conditions. We propose a novel 3-D US scanner for ankle joint assessment that can partially overcome these issues by enabling 3-D imaging. Here, we (i) present the design of the 3-D US ankle scanner system, (ii) validate the geometric reconstruction accuracy of the system, (iii) provide preliminary images of healthy volunteer ankles and (iv) compare 3-D US imaging results with MR imaging. The 3-D ankle scanner consists of a tub filled with water, a linear US probe attached to the wall of the tub and a motorized unit that rotates the US probe 360° around the center of the tub. As the probe rotates, a 3-D US image is formed of the ankle of the patient positioned in the middle of the tub. US probe height, angle and distance from the tub center can be adjusted. The reconstruction accuracy of the system was validated in each of the coordinate directions at different probe angles using two test phantoms. A phantom consisting of numerous Ø200-µm nylon threads with known spacing and a metal rod with machined grooves was used for validation in the horizontal and vertical directions, respectively. The volumetric reconstruction accuracy validation was performed by imaging an agar phantom with two embedded spheres of known volumes and comparing the segmented sphere volume and surface area with the expected. Three-dimensional US and MR images of both ankles of five healthy volunteers were acquired. Distal tibia and proximal talus were segmented in both imaging modalities and the surfaces of these segmentations were compared using the 95% Hausdorff and mean surface distances. The observed mean linear measurement error in all the coordinate directions and over several probe angles was 2.98%. The mean measured volumetric measurement error was 3.45%. The volunteer study revealed useful features for joint assessment present in the 3-D ankle scanner images, such as joint spacing, distal tibia and proximal talus. The mean 95% Hausdorff and mean surface distances between segmentations in 3-D US and MR images were 5.68 ± 0.83 and 2.01 ± 0.30 mm, respectively. In this proof-of-concept study, the 3-D US ankle scanner enabled visualization of the ankle joint features that are useful for joint assessment.
Collapse
Affiliation(s)
- Elina Rascevska
- Imaging Program, Lawson Health Research Institute, London, Ontario, Canada; School of Biomedical Engineering, Western University, London, Ontario, Canada.
| | - David R Tessier
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Andrea S Doria
- Department of Diagnostic Imaging, Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Aaron Fenster
- School of Biomedical Engineering, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
40
|
Makouei F, Ewertsen C, Agander TK, Olesen MV, Pakkenberg B, Todsen T. 3D Ultrasound versus Computed Tomography for Tumor Volume Measurement Compared to Gross Pathology-A Pilot Study on an Animal Model. J Imaging 2022; 8:jimaging8120329. [PMID: 36547494 PMCID: PMC9781169 DOI: 10.3390/jimaging8120329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The margin of the removed tumor in cancer surgery has an important influence on survival. Adjuvant treatments, prognostic complications, and financial costs are required when the pathologist observes a close/positive surgical margin. Ex vivo imaging of resected cancer tissue has been suggested for margin assessment, but traditional cross-sectional imaging is not optimal in a surgical setting. Instead, three-dimensional (3D) ultrasound is a portable, high-resolution, and low-cost method to use in the operation room. In this study, we aimed to investigate the accuracy of 3D ultrasound versus computed tomography (CT) to measure the tumor volume in an animal model compared to gross pathology assessment. The specimen was formalin fixated before systematic slicing. A slice-by-slice area measurement was performed to compare the accuracy of the 3D ultrasound and CT techniques. The tumor volume measured by pathological assessment was 980.2 mm3. The measured volume using CT was 890.4 ± 90 mm3, and the volume using 3D ultrasound was 924.2 ± 96 mm3. The correlation coefficient for CT was 0.91 and that for 3D ultrasound was 0.96. Three-dimensional ultrasound is a feasible and accurate modality to measure the tumor volume in an animal model. The accuracy of tumor delineation on CT depends on the soft tissue contrast.
Collapse
Affiliation(s)
- Fatemeh Makouei
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
- Correspondence:
| | - Caroline Ewertsen
- Department of Radiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tina Klitmøller Agander
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
| | - Mikkel Vestergaard Olesen
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen, Denmark
| | - Bente Pakkenberg
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Centre for Neuroscience and Stereology, Department of Neurology, Bispebjerg-Frederiksberg Hospital, DK-2400 Copenhagen, Denmark
| | - Tobias Todsen
- Department of Otorhinolaryngology, Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Copenhagen Academy for Medical Education and Simulation, DK-2100 Copenhagen, Denmark
| |
Collapse
|
41
|
Development of an ultrasound guided focused ultrasound system for 3D volumetric low energy nanodroplet-mediated histotripsy. Sci Rep 2022; 12:20664. [PMID: 36450815 PMCID: PMC9712369 DOI: 10.1038/s41598-022-25129-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Low pressure histotripsy is likely to facilitate current treatments that require extremely high pressures. An ultrasound guided focused ultrasound system was designed to accommodate a rotating imaging transducer within a low frequency therapeutic transducer that operates at a center frequency of 105 kHz. The implementation of this integrated system provides real-time therapeutic and volumetric imaging functions, that are used here for low-cost, low-energy 3D volumetric ultrasound histotripsy using nanodroplets. A two-step approach for low pressure histotripsy is implemented with this dual-array. Vaporization of nanodroplets into gaseous microbubbles was performed via the 1D rotating imaging probe. The therapeutic transducer is then used to detonate the vaporized nanodroplets and trigger potent mechanical effects in the surrounding tissue. Rotating the imaging transducer creates a circular vaporized nanodroplet shape which generates a round lesion upon detonation. This contrasts with the elongated lesion formed when using a standard 1D imaging transducer for nanodroplet activation. Optimization experiments show that maximal nanodroplet activation can be achieved with a 2-cycle excitation pulse at a center frequency of 3.5 MHz, and a peak negative pressure of 3.4 MPa (a mechanical index of 1.84). Vaporized nanodroplet detonation was achieved by applying a low frequency treatment at a center frequency of 105 kHz and mechanical index of 0.9. In ex-vivo samples, the rotated nanodroplet activation method yielded the largest lesion area, with a mean of 4.7 ± 0.5 mm2, and a rounded shape. In comparison, standard fixed transducer nanodroplet activation resulted in an average lesion area of 2.6 ± 0.4 mm2, and an elongated shape. This hybrid system enables to achieve volumetric low energy histotripsy, and thus facilitates the creation of precise, large-volume mechanical lesions in tissues, while reducing the pressure threshold required for standard histotripsy by over an order of magnitude.
Collapse
|
42
|
Hazan Y, Nagli M, Levi A, Rosenthal A. Miniaturized ultrasound detector arrays in silicon photonics using pulse transmission amplitude monitoring. OPTICS LETTERS 2022; 47:5660-5663. [PMID: 37219297 DOI: 10.1364/ol.467652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/05/2022] [Indexed: 05/24/2023]
Abstract
Silicon photonics holds promise for a new generation of ultrasound-detection technology, based on optical resonators, with unparalleled miniaturization levels, sensitivities, and bandwidths, creating new possibilities for minimally invasive medical devices. While existing fabrication technologies are capable of producing dense resonator arrays whose resonance frequency is pressure sensitive, simultaneously monitoring the ultrasound-induced frequency modulation of numerous resonators has remained a challenge. Conventional techniques, which are based on tuning a continuous wave laser to the resonator wavelength, are not scalable due to the wavelength disparity between the resonators, requiring a separate laser for each resonator. In this work, we show that the Q-factor and transmission peak of silicon-based resonators can also be pressure sensitive, exploit this phenomenon to develop a readout scheme based on monitoring the amplitude, rather than frequency, at the output of the resonators using a single-pulse source, and demonstrate its compatibility with optoacoustic tomography.
Collapse
|
43
|
Tsumura R, Gao S, Tang Y, Zhang HK. Concentric-ring arrays for forward-viewing ultrasound imaging. J Med Imaging (Bellingham) 2022; 9:065002. [PMID: 36444284 PMCID: PMC9683378 DOI: 10.1117/1.jmi.9.6.065002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2023] Open
Abstract
Purpose Current ultrasound (US)-image-guided needle insertions often require an expertized technique for clinicians because the performance of tasks in a three-dimensional space using two-dimensional images requires operators to cognitively maintain the spatial relationships between the US probe, the needle, and the lesion. This work presents forward-viewing US imaging with a ring array configuration to enable needle interventions without requiring the registration between tools and targets. Approach The center-open ring array configuration allows the needle to be inserted from the center of the visualized US image, providing simple and intuitive guidance. To establish the feasibility of the ring array configuration, the design parameters causing the image quality, including the radius of the center hole and the number of ring layers and transducer elements, were investigated. Results Experimental results showed successful visualization, even with a hole in the transducer elements, and the target visibility was improved by increasing the number of ring layers and the number of transducer elements in each ring layer. Reducing the hole radius improved the region's image quality at a shallow depth. Conclusions Forward-viewing US imaging with a ring array configuration has the potential to be a viable alternative to conventional US image-guided needle insertion methods.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- National Institute of Advanced Industrial Science and Technology, Health and Medical Research Institute, Tsukuba, Japan
| | - Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Yichuan Tang
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Haichong K. Zhang
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| |
Collapse
|
44
|
Peng C, Cai Q, Chen M, Jiang X. Recent Advances in Tracking Devices for Biomedical Ultrasound Imaging Applications. MICROMACHINES 2022; 13:mi13111855. [PMID: 36363876 PMCID: PMC9695235 DOI: 10.3390/mi13111855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 05/27/2023]
Abstract
With the rapid advancement of tracking technologies, the applications of tracking systems in ultrasound imaging have expanded across a wide range of fields. In this review article, we discuss the basic tracking principles, system components, performance analyses, as well as the main sources of error for popular tracking technologies that are utilized in ultrasound imaging. In light of the growing demand for object tracking, this article explores both the potential and challenges associated with different tracking technologies applied to various ultrasound imaging applications, including freehand 3D ultrasound imaging, ultrasound image fusion, ultrasound-guided intervention and treatment. Recent development in tracking technology has led to increased accuracy and intuitiveness of ultrasound imaging and navigation with less reliance on operator skills, thereby benefiting the medical diagnosis and treatment. Although commercially available tracking systems are capable of achieving sub-millimeter resolution for positional tracking and sub-degree resolution for orientational tracking, such systems are subject to a number of disadvantages, including high costs and time-consuming calibration procedures. While some emerging tracking technologies are still in the research stage, their potentials have been demonstrated in terms of the compactness, light weight, and easy integration with existing standard or portable ultrasound machines.
Collapse
Affiliation(s)
- Chang Peng
- School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Qianqian Cai
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mengyue Chen
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
45
|
Farjadian F, Ghasemi S, Akbarian M, Hoseini-Ghahfarokhi M, Moghoofei M, Doroudian M. Physically stimulus-responsive nanoparticles for therapy and diagnosis. Front Chem 2022; 10:952675. [PMID: 36186605 PMCID: PMC9515617 DOI: 10.3389/fchem.2022.952675] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Nanoparticles offer numerous advantages in various fields of science, particularly in medicine. Over recent years, the use of nanoparticles in disease diagnosis and treatments has increased dramatically by the development of stimuli-responsive nano-systems, which can respond to internal or external stimuli. In the last 10 years, many preclinical studies were performed on physically triggered nano-systems to develop and optimize stable, precise, and selective therapeutic or diagnostic agents. In this regard, the systems must meet the requirements of efficacy, toxicity, pharmacokinetics, and safety before clinical investigation. Several undesired aspects need to be addressed to successfully translate these physical stimuli-responsive nano-systems, as biomaterials, into clinical practice. These have to be commonly taken into account when developing physically triggered systems; thus, also applicable for nano-systems based on nanomaterials. This review focuses on physically triggered nano-systems (PTNSs), with diagnostic or therapeutic and theranostic applications. Several types of physically triggered nano-systems based on polymeric micelles and hydrogels, mesoporous silica, and magnets are reviewed and discussed in various aspects.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Soheila Ghasemi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| | - Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Doroudian
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
- *Correspondence: Fatemeh Farjadian, , Soheila Ghasemi, , Mohammad Doroudian,
| |
Collapse
|
46
|
Tang Y, Tsumura R, Kaminski JT, Zhang HK. Actuated Reflector-Based 3-D Ultrasound Imaging With Synthetic Aperture Focusing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2437-2446. [PMID: 35675232 PMCID: PMC9339534 DOI: 10.1109/tuffc.2022.3180980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The 3-D ultrasound (US) imaging addresses the limitation in field-of-view (FOV) in conventional 2-D US imaging by providing 3-D viewing of the anatomy. The 3-D US imaging has been extensively adapted for diagnosis and image-guided surgical intervention. However, conventional approaches to implement 3-D US imaging require either expensive and sophisticated 2-D array transducers or external actuation mechanisms to move a 1-D array mechanically. Here, we propose a 3-D US imaging mechanism using an actuated acoustic reflector instead of the sensor elements for volume acquisition with significantly extended 3-D FOV, which can be implemented with simple hardware and compact size. To improve image quality on the elevation plane, we implemented the synthetic aperture focusing (SAF) method according to the diagonal geometry of the virtual element array in the proposed imaging mechanism for elevation beamforming. We first evaluated the proposed imaging mechanism and SAF with simulated point targets and cyst targets. The results of point targets suggested improved image quality on the elevation plane, and the results of cysts targets demonstrated a potential to improve 3-D visualization of human anatomy. We built a prototype imaging system with a 3-D FOV of 38 mm (lateral) by 38 mm (elevation) by 50 mm (axial) and collected data in imaging experiments with phantoms. Experimental data showed consistency with simulation results. The SAF method enhanced quantifying the cyst volume size in the breast mimicking phantom compared with no elevation beamforming. These results suggested that the proposed 3-D US imaging mechanism could potentially be applied in clinical scenarios.
Collapse
|
47
|
Organic–Inorganic Hybrid Perovskite Materials for Ultrasonic Transducer in Medical Diagnosis. CRYSTALS 2022. [DOI: 10.3390/cryst12081043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ultrasonic transducer is considered the most important component of ultrasound medical instruments, and its key active layer is generally fabricated by piezoelectric materials, such as BaTiO3, Pb (Zn, Ti)O3, PVDF, etc. As the star material, perovskite photovoltaic materials (organic and inorganic halide perovskite materials, such as CH3NH3PbI3, CsPbI3, etc.) have great potential to be widely used in solar cells, LEDs, detectors, and photoelectric and piezoelectric detectors due to their outstanding photoelectric and piezoelectric effects. Herein, we firstly discussed the research progress of commonly used piezoelectric materials and the corresponding piezoelectric effects, the current key scientific status, as well as the current application status in the field of ultrasound medicine. Then, we further explored the current progress of perovskite materials used in piezoelectric-effect devices, and their research difficulties. Finally, we designed an ideal ultrasonic transducer fabricated by perovskite photovoltaic materials and considered the future application prospects of organic and inorganic halide perovskite material in the field of ultrasound.
Collapse
|
48
|
Dong Z, Kim J, Huang C, Lowerison MR, Lok UW, Chen S, Song P. Three-Dimensional Shear Wave Elastography Using a 2D Row Column Addressing (RCA) Array. BME FRONTIERS 2022; 2022:9879632. [PMID: 37850186 PMCID: PMC10521701 DOI: 10.34133/2022/9879632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 05/18/2022] [Indexed: 10/19/2023] Open
Abstract
Objective. To develop a 3D shear wave elastography (SWE) technique using a 2D row column addressing (RCA) array, with either external vibration or acoustic radiation force (ARF) as the shear wave source. Impact Statement. The proposed method paves the way for clinical translation of 3D SWE based on the 2D RCA, providing a low-cost and high volume rate solution that is compatible with existing clinical systems. Introduction. SWE is an established ultrasound imaging modality that provides a direct and quantitative assessment of tissue stiffness, which is significant for a wide range of clinical applications including cancer and liver fibrosis. SWE requires high frame rate imaging for robust shear wave tracking. Due to the technical challenges associated with high volume rate imaging in 3D, current SWE techniques are typically confined to 2D. Advancing SWE from 2D to 3D is significant because of the heterogeneous nature of tissue, which demands 3D imaging for accurate and comprehensive evaluation. Methods. A 3D SWE method using a RCA array was developed with a volume rate up to 2000 Hz. The performance of the proposed method was systematically evaluated on tissue-mimicking elasticity phantoms and in an in vivo case study. Results. 3D shear wave motion induced by either external vibration or ARF was successfully detected with the proposed method. Robust 3D shear wave speed maps were reconstructed for phantoms and in vivo. Conclusion. The high volume rate 3D imaging provided by the 2D RCA array provides a robust and practical solution for 3D SWE with a clear pathway for future clinical translation.
Collapse
Affiliation(s)
- Zhijie Dong
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jihun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of ICT Convergence Engineering/Major in Electronic Engineering, Kangnam University, Republic of Korea
| | - Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew R. Lowerison
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - U-Wai Lok
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Pengfei Song
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
49
|
Liang H, Ning G, Dai S, Ma L, Luo J, Zhang X, Liao H. Spatiotemporal reconstruction method of carotid artery ultrasound from freehand sonography. Int J Comput Assist Radiol Surg 2022; 17:1731-1743. [PMID: 35704237 DOI: 10.1007/s11548-022-02672-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/02/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE 4D reconstruction based on radiation-free ultrasound can provide valuable information about the anatomy. Current 4D US technologies are either faced with limited field-of-view (FoV), technical complications, or cumbersome setups. This paper proposes a spatiotemporal US reconstruction framework to enhance its ability to provide dynamic structure information. METHODS We propose a spatiotemporal US reconstruction framework based on freehand sonography. First, a collecting strategy is presented to acquire 2D US images in multiple spatial and temporal positions. A morphology-based phase extraction method after pose correction is presented to decouple the compounding image variations. For temporal alignment and reconstruction, a robust kernel regression model is established to reconstruct images in arbitrary phases. Finally, the spatiotemporal reconstruction is demonstrated in the form of 4D movies by integrating the US images according to the tracked poses and estimated phases. RESULTS Quantitative and qualitative experiments were conducted on the carotid US to validate the feasibility of the proposed pipeline. The mean phase localization and heart rate estimation errors were 0.07 ± 0.04 s and 0.83 ± 3.35 bpm, respectively, compared with cardiac gating signals. The assessment of reconstruction quality showed a low RMSE (<0.06) between consecutive images. Quantitative comparisons of anatomy reconstruction from the generated US volumes and MRI showed an average surface distance of 0.39 ± 0.09 mm on the common carotid artery and 0.53 ± 0.05 mm with a landmark localization error of 0.60 ± 0.18 mm on carotid bifurcation. CONCLUSION A novel spatiotemporal US reconstruction framework based on freehand sonography is proposed that preserves the utility nature of conventional freehand US. Evaluations on in vivo datasets indicated that our framework could achieve acceptable reconstruction performance and show potential application value in the US examination of dynamic anatomy.
Collapse
Affiliation(s)
- Hanying Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Guochen Ning
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shangqi Dai
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Longfei Ma
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xinran Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Hongen Liao
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
50
|
He L, Wang B, Wen Z, Li X, Wu D. 3-D High Frequency Ultrasound Imaging by Piezo-Driving a Single-Element Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1932-1942. [PMID: 35050853 DOI: 10.1109/tuffc.2022.3145162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electronic scanning of two-dimensional (2-D) arrays and mechanical or freehand scanning of one-dimensional (1-D) arrays have been mostly utilized for conventional three-dimensional (3-D) ultrasound (US) imaging. However, the development of 2-D arrays and the hardware systems are complicated and expensive, while freehand systems with positioning sensors and mechanical systems are mostly bulky. This article represents a novel scanning strategy for achieving high-quality 3-D US imaging with a high-frequency single-element transducer. A 42-MHz US transducer with a compact structure was designed and fabricated, which was excited in the 2-D vibration by a tubular piezoelectric actuator. A dedicated imaging system was set up and both B-mode and 3-D US imaging of a custom wire phantom have been carried out to evaluate the performance of the proposed transducer. Compared to the results obtained with the motorized linear translation stage, the reconstructed images obtained by the proposed resonance scanning method are accurate, demonstrating the feasibility of 3-D US imaging with a vibrating single-element US transducer.
Collapse
|