1
|
Liang J, Wei X, Hou W, Wang H, Ma R, Gao Y, Du Y, Zhang Q. Liver metabolomics reveals potential mechanism of Jieduan-Niwan formula against acute-on-chronic liver failure (ACLF) by improving mitochondrial damage and TCA cycle. Chin Med 2023; 18:157. [PMID: 38037150 PMCID: PMC10691013 DOI: 10.1186/s13020-023-00858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a refractory disease with high mortality, which is characterized by a pathophysiological process of inflammation-related dysfunction of energy metabolism. Jieduan-Niwan formula (JDNWF) is a eutherapeutic Chinese medicine formula for ACLF. However, the intrinsic mechanism of its anti-ACLF effect still need to be studied systematically. PURPOSE This study aimed to investigate the mechanism of JDNWF against ACLF based on altered substance metabolic profile in ACLF the expression levels of related molecules. MATERIALS AND METHODS The chemical characteristics of JDNWF were characterized using ultra performance liquid chromatography (UPLC) coupled with triple quadrupole mass spectrometry. Wistar rats subjected to a long-term CCL4 stimulation followed by a combination of an acute attack with LPS/D-GalN were used to establish the ACLF model. Liver metabolites were analyzed by LC-MS/MS and multivariate analysis. Liver function, coagulation function, histopathology, mitochondrial metabolic enzyme activity and mitochondrial damage markers were evaluated. The protein expression of mitochondrial quality control (MQC) was investigated by western blot. RESULTS Liver function, coagulation function, inflammation, oxidative stress and mitochondrial enzyme activity were significantly improved by JDNWF. 108 metabolites are considered as biomarkers of JDNWF in treating ACLF, which were closely related to TCA cycle. It was further suggested that JDNWF alleviated mitochondrial damage and MQC may be potential mechanism of JDNWF improving mitochondrial function. CONCLUSIONS Metabolomics revealed that TCA cycle was impaired in ACLF rats, and JDNWF had a regulatory effect on it. The potential mechanism may be improving the mitochondrial function through MQC pathway, thus restoring energy metabolism.
Collapse
Affiliation(s)
- Jiajun Liang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Xiaoyi Wei
- Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weixin Hou
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Hanjing Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ruimin Ma
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yanbin Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Yuqiong Du
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| | - Qiuyun Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
2
|
Ni Y, Wang X, Wu Q, Yao Y, Xu Y, Li Y, Feng Q, Zhou M, Gou X. Qushi Huayu decoction ameliorates non-alcoholic fatty liver disease in rats by modulating gut microbiota and serum lipids. Front Endocrinol (Lausanne) 2023; 14:1272214. [PMID: 37900123 PMCID: PMC10600383 DOI: 10.3389/fendo.2023.1272214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Non-alcoholic fatty liver disease (NAFLD) is a multifactorial disease. As a clinical empirical prescription of traditional Chinese medicine, Qushi Huayu decoction (QHD) has attracted considerable attention for its advantages in multi-target treatment of NAFLD. However, the intervention mechanism of QHD on abnormal lipid levels and gut microbiota in NAFLD has not been reported. Methods Therefore, we verified the therapeutic effect of QHD on high-fat diet (HFD)-induced NAFLD in rats by physiological parameters and histopathological examination. In addition, studies on gut microbiota and serum lipidomics based on 16S rRNA sequencing and ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS) were conducted to elucidate the therapeutic mechanism of NAFLD in QHD. Results The changes in gut microbiota in NAFLD rats are mainly reflected in their diversity and composition, while QHD treated rats restored these changes. The genera Blautia, Lactobacillus, Allobaculum, Lachnoclostridium and Bacteroides were predominant in the NAFLD group, whereas, Turicibacter, Blautia, Sporosarcina, Romboutsia, Clostridium_sensu_stricto_1, Allobaculum, and Psychrobacter were predominant in the NAFLD+QHD group. Lipid subclasses, including diacylglycerol (DG), triglycerides (TG), phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidic acid (PA), phosphatidylserine (PS), lysophosphatidylinositol (LPI), and phosphatidylglycerol (PG), were significantly different between the NAFLD and the control groups, while QHD treatment significantly altered the levels of DG, TG, PA, lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), and platelet activating factor (PAF). Finally, Spearman's correlation analysis showed that NAFLD related differential lipid molecules were mainly associated with the genera of Bacteroides, Blautia, Lachnoclostridium, Clostridium_sensu_stricto_1, and Turicibacter, which were also significantly correlated with the biological parameters of NAFLD. Discussion Taken together, QHD may exert beneficial effects by regulating the gut microbiota and thus intervening in serum lipids.
Collapse
Affiliation(s)
- Yiming Ni
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Wang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Yichen Yao
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xu
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Fudan University, Shanghai, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaojun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Hughey CC, Puchalska P, Crawford PA. Integrating the contributions of mitochondrial oxidative metabolism to lipotoxicity and inflammation in NAFLD pathogenesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159209. [DOI: 10.1016/j.bbalip.2022.159209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022]
|
4
|
Li K, Tang B, Zhang W, Tu X, Ma J, Xing S, Shao Y, Zhu J, Lei F, Zhang H. A novel approach for authentication of shellac resin in the shellac-based edible coatings: Contain shellac or not in the fruit wax preservative coating. Food Chem X 2022; 14:100349. [PMID: 35663597 PMCID: PMC9156870 DOI: 10.1016/j.fochx.2022.100349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 12/18/2022] Open
Abstract
A novel approach based on targeted metabolomics for the authentication of shellac resin in shellac-based coating solution was established for the first time. The authentication of shellac resin was skillfully transformed by means of taking monomer compounds constituting shellac resin (fatty acids and terpenic acids) as targeted metabolites. The feasibility of the authenticated approach of shellac resin in commercial coating solution products for fruit preservation was verified by taking common metabolites as the biomarkers.
As an edible coating substrate, the detection of shellac resin has always been an intractable problem. In this paper, an authentication method of shellac resin in shellac-based edible coatings was established. Results showed that the authentication of shellac resin could be skillfully transformed as the identification of 13 targeted metabolites which were monomer compounds of shellac resin. The 13 targeted metabolites were further divided into 6 differential metabolites and 7 common metabolites with the metabonomic method and difference analysis of targeted metabolite contents. Then, four commercial soi-disant shellac-based coating solutions were selected to verify the feasibility of this method, and 7 common metabolites were detected in only one commercial sample, highly consistent with the results of shellac resin. All the above results indicated that the targeted metabolomics approach established in this study could provide a scientific basis for the qualitative authentication of shellac resin in the preservation coating.
Collapse
Affiliation(s)
- Kun Li
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Baoshan Tang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Wenwen Zhang
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Xinghao Tu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Jinju Ma
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| | - Shujie Xing
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Ying Shao
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jing Zhu
- Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Fuhou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi University for Nationalities, Nanning 530006, China
| | - Hong Zhang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, Yunnan 650233, China
| |
Collapse
|
5
|
Effects of Herbal Therapy on Intestinal Microbiota and Serum Metabolomics in Different Rat Models of Mongolian Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7255780. [PMID: 35677380 PMCID: PMC9170395 DOI: 10.1155/2022/7255780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022]
Abstract
Objective Heyi disease, Xila disease, and Badagan disease are three common diseases in Mongolian medicine. The changes in intestinal microbiota may be associated with the occurrence, development, and treatment of these diseases. This study aimed to investigate the effects of herbal treatment on intestinal microbiota and serum metabolites in rats with these three diseases. Methods Firstly, Heyi, Xila, and Badagan disease model rats were established by environmental, diet, and drug intervention. Then, 16S rRNA gene sequencing and metabolomics analysis were used to analyze the changes in intestinal microbiota and serum metabolites after treatment. PICRUSt analysis was applied to predict the potential functions of intestinal microbiota, and OPLS-DA multivariate model was applied to screen differential serum metabolites. Results 16S rRNA gene sequencing showed that herbal treatment significantly increased the species diversity and changed the composition of intestinal microbiota in Heyi disease and Xila disease rats. After treatment, there were 10, 9, and 3 bacterial biomarkers that were increased in Heyi, Xila, and Badagan disease rats, respectively. In the Heyi disease model, treatment resulted in 45 differential serum metabolites, involving 4 pathways. In the Badagan disease model, treatment resulted in 62 differential serum metabolites, involving 4 pathways. However, there was no significant difference in serum metabolites between TreatB and ConB in the Xila disease model. Conclusions Herbal treatment significantly changed the intestinal microbiota and serum metabolites of rats with three Mongolian medicine diseases.
Collapse
|
6
|
Sun Y, Hu N, Chen G, Wang Y, Hu Y, Ge M, Zhao Y. Efficacy and safety of Qushi Huayu granule for hyperlipidemia: study protocol for a randomized, double-blind, placebo-controlled trial. Trials 2022; 23:104. [PMID: 35109888 PMCID: PMC8808977 DOI: 10.1186/s13063-022-06031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/15/2022] [Indexed: 12/02/2022] Open
Abstract
Background Hyperlipidemia has become a common chronic disease worldwide in recent years. Studies have shown that hyperlipidemia patients, especially those with a high level of serum low-density lipoprotein cholesterol (LDL-C), have a significantly higher prevalence of atherosclerosis, leading to coronary heart disease. Previous basic experiments and clinical studies have shown that Qushi Huayu granules (QSHY) reduce blood lipids in patients with non-alcoholic fatty liver disease (NAFLD) accompanied by hyperlipidemia. However, the clinical efficacy of QSHY in patients with hyperlipidemia is still lacking. This study aims to investigate the effect and safety of QSHY for hyperlipidemia. Methods This is a randomized, double-blind, placebo-controlled trial. A total of 210 participants will be enrolled and randomized into the QSHY or placebo granules groups in equal proportions, who will receive treatment for 24 weeks. The primary outcome will be the change in LDL-C from baseline to week 12. Secondary outcomes will be changes in other serum lipids markers, life quality measuring health surveys, and traditional Chinese medicine (TCM) pattern scale. All related tests will be measured at baseline, week 12, and week 24 after enrollment. Adverse events and the safety of intervention will be monitored and evaluated. Discussion We designed a clinical trial of hyperlipidemia management with QSHY, a TCM prescription. The results of this trial will present the efficacy and safety of QSHY in patients with hyperlipidemia. Trial registration Chinese Clinical Trial Registry ChiCTR2000034125. Registered on June 25, 2019
Collapse
Affiliation(s)
- Yuanlong Sun
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Na Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Gaofeng Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Yanjie Wang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China.,Institute of Clinical Pharmacology, Shanghai University of Traditional Chinese Medicine, Ministry of Education, Shanghai, 201203, China
| | - Maojun Ge
- Department of Information Technology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, No. 528 Zhangheng Road, Pudong New Area, Shanghai, 201203, China.
| |
Collapse
|
7
|
Cui Y, Wang Q, Chang R, Aboragah A, Loor JJ, Xu C. Network Pharmacology-Based Analysis of Pogostemon cablin (Blanco) Benth Beneficial Effects to Alleviate Nonalcoholic Fatty Liver Disease in Mice. Front Pharmacol 2021; 12:789430. [PMID: 34899351 PMCID: PMC8652055 DOI: 10.3389/fphar.2021.789430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is associated with high morbidity and mortality. Pogostemon cablin (Blanco) Benth/Huo Xiang (HX) is a perennial herb with unique anti-oxidant and anti-inflammatory properties, and thus, can positively affect liver function. In this study, we used network pharmacology to predict the potential mechanism of HX on NAFLD. Pharmacological experiments were used to verify the effect of HX on the functions of NAFLD. Network pharmacology identified nine components that interacted with 82 NAFLD-related targets, revealing four target genes: TNF, IL6, TP53, and AKT1. HX prevents the development and progression of NAFLD through different pathways and targets with quercetin-regulated lipid metabolism, anti-inflammatory, and anti-oxidant pathways playing an essential role in the treatment of NAFLD. Compared with feeding HFD, HX significantly attenuated lipid accumulation in vivo with mice and also in vitro with mouse liver cells. A high dose of HX decreased hepatocyte lipid accumulation and the abundance of SREBF1 and FASN. Validation experiments revealed that HX inhibited the activation of NF-κB/IκB signaling and decreased the release and levels of pro-inflammatory factors (TNF-α and IL-6). These data suggest that HX can attenuate abnormal lipid metabolic responses and enhance antioxidant mechanisms. Thus, the pharmacological effects from plants used in traditional Chinese medicine are achievde through a multi-level response.
Collapse
Affiliation(s)
- Yizhe Cui
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qiuju Wang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Renxu Chang
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ahmad Aboragah
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Juan J Loor
- Department of Animal Sciences, Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| | - Chuang Xu
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
8
|
Ma Y, Li J, Ju Z, Huang W, Wang Z, Yang L, Ding L. Danning tablets alleviate high fat diet-induced obesity and fatty liver in mice via modulating SREBP pathway. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114320. [PMID: 34116189 DOI: 10.1016/j.jep.2021.114320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/01/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese formula Danning tablets exhibit wide clinical applications in liver and gallbladder diseases, and currently it is reported to be effective on fatty liver disease in clinical trials. However, the underlying mechanisms remain elusive. AIM OF THE STUDY The purpose of the present study was to assess the effects and potential pharmacological mechanisms of Danning tablet against high fat diet (HFD)-induced obesity, fatty liver, and related metabolic disorders in mice. MATERIALS AND METHODS C57BL/6 J male mice were treated with HFD for 12 weeks to trigger obesity and fatty liver condition. Then those mice were randomly divided into 5 groups, namely HFD, Danning tablet (0.75, 1.5 or 3 g/kg bodyweight) or lovastatin (30 mg/kg bodyweight) for extra 6 weeks' treatment of HFD. Food intake and bodyweight were recorded each week. In the last week, before the mice were sacrificed, fasting blood glucose levels and insulin levels were measured. Furthermore, insulin and glucose tolerance tests were performed. Blood and hepatic lipid levels were examined, the lipid metabolism-associated gene expressions and protein levels in the liver or adipose tissues were assayed after sacrificing all mice. RESULTS Our results demonstrated that a high dose of Danning tablet (3 g/kg) treatment mitigated body weight gain, reduced blood and hepatic cholesterol and triglyceride levels. The morphology analysis showed that Danning tablets could reduce lipid accumulation in both liver and brown adipose tissue. Moreover, Danning tablets could improve fasting blood glucose levels and ameliorate glucose and insulin tolerance in HFD-induced obese mice. Furthermore, qRT-PCR analysis revealed that the mRNA expressions of SREBP-1 and SREBP-2 as well as their target genes were remarkedly down-regulated in the liver and adipose tissue of diet-induced obesity (DIO) mice after treating those mice with Danning tablets. CONCLUSION Our results indicated that Danning tablets could improve the obesity-induced metabolic associated fatty liver disease (MAFLD) and related metabolic disorders. The potential mechanism may probably involve the regulation of the SREBP pathway.
Collapse
Affiliation(s)
- Yujie Ma
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Jinmei Li
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zhengcai Ju
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Institute of Diabetes Center, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Zhengtao Wang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Li Yang
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lili Ding
- The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The State Administration of TCM (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, Shanghai Key Laboratory of Complex Prescriptions, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
9
|
Liu Z, Wang P, Liu Z, Wei C, Li Y, Liu L. Evaluation of liver tissue extraction protocol for untargeted metabolomics analysis by ultra-high-performance liquid chromatography/tandem mass spectrometry. J Sep Sci 2021; 44:3450-3461. [PMID: 34129724 DOI: 10.1002/jssc.202100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 06/06/2021] [Accepted: 06/12/2021] [Indexed: 12/29/2022]
Abstract
The aim of the untargeted metabolomics study is to obtain a global metabolome coverage from biological samples. Therefore, a comprehensive and systematic protocol for tissue metabolite extraction is highly desirable. In this study, we evaluated a comprehensive liver pretreatment strategy based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to obtain more metabolites using four different protocols. These protocols included (A) methanol protein precipitation, (B) two-step extraction of dichloromethane-methanol followed by methanol-water, (C) two-step extraction of methyl tert-butyl ether-methanol followed by methanol-water, and (D) two-step extraction of isopropanol-methanol followed by methanol-water. Our results showed that protocol D was superior to the others due to more extracted features, annotated metabolites, and better reproducibility. And then, the stability and extraction sequence of protocol D were evaluated. The results showed that extraction with isopropanol-methanol followed by methanol-water was the optimum preparation sequence, which offered higher extraction efficiency, satisfactory repeatability, and acceptable stability. Furthermore, the optimal protocol was successfully applied by liver samples of rats after high-fat intervention. In summary, our protocol enabled a comprehensive and systematic evaluation of liver pretreatment to obtain more medium-polar and nonpolar metabolites and was suitable for high-throughput metabolomics analysis.
Collapse
Affiliation(s)
- Zhipeng Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Peng Wang
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Zengjiao Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Chunbo Wei
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Ying Li
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| | - Liyan Liu
- National Key Discipline Laboratory, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
10
|
Lan Q, Ren Z, Chen Y, Cui G, Choi IC, Ung COL, Yu HH, Lee SMY. Hepatoprotective effect of Qushihuayu formula on non-alcoholic steatohepatitis induced by MCD diet in rat. Chin Med 2021; 16:27. [PMID: 33726778 PMCID: PMC7962269 DOI: 10.1186/s13020-021-00434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Background Non-alcoholic steatohepatitis (NASH) is an advanced form of non-alcoholic fatty liver disease (NAFLD) for which there is yet any standard pharmacotherapy. Traditional Chinese medicine formula such as Qushihuayu (QSHY) composing of multiple bioactive compounds has been used to treat NAFLD and NASH and shows beneficial effects over single compound treatment. This study aimed to investigate the mechanism of hepatoprotective effect of QSHY formula using a rat model. Methods Six-weeks old male Wistar rats were given methionine/choline supplemented (MCS) diet for 8 weeks and used as the blank control. Another 7 rats, which received methionine/choline deficient (MCD) diet in the first 6 weeks and a MCS&MCD (1:1) mixture diet in the last 2 weeks, were used as the model group. The groups of QSHY pre-treatment, low dosage, medium dosage and high dosage were given the same diet as the model group. Except for pre-treatment group (1 week in advanced of other groups), all QSHY treatment groups received QSHY formula by gavage every day since the MCD diet started. Results In the MCD diet group, the QSHY formula decreased the serum ALT and AST levels, lipid droplets, inflammation foci, FAS and α-SMA protein expression than MCD diet group. MAPK pathways phospharylation were markedly depressed by the QSHY formula. Moreover, QSHY formula enhanced PPAR-γ and p-p65 translocating into nucleus. The administration of QSHY increased hepatic mRNA levels of Transcription Factor 1 alpha (HNF1A), Hepatocyte Nuclear Factor 4 alpha (HNF4A) and Forkhead box protein A3 (FOXA3) which play a pivotal role in Hepatic stellate cell (HSCs) reprogramming. Conclusion These findings suggest that QSHY formula exerts a hepatoprotective effect against steatosis and fibrosis presumably via depressed MAPK pathways phosphorylation, reinforcement of PPAR-γ and p-p65 translocating into nucleus and enhanced HSCs reprogramming. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00434-1.
Collapse
Affiliation(s)
- Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhitao Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guozhen Cui
- Zun Yi Medical University- Zhuhai Campus, Zhuhai, China
| | - I Cheong Choi
- Department of Gastroenterology, Kiang Wu Hospital, Macao, China
| | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macao, China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Institute of Chinese Medical Sciences, University of Macau, Room 7003, N22 Building, Avenide da Universidade, Taipa, Macau, China.
| |
Collapse
|
11
|
Research on the Mechanism of Qushi Huayu Decoction in the Intervention of Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Molecular Docking Technology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1704960. [PMID: 33204683 PMCID: PMC7658690 DOI: 10.1155/2020/1704960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Objective To use network pharmacology and molecular docking technology in predicting the main active ingredients and targets of Qushi Huayu Decoction (QHD) treatment in Nonalcoholic Fatty Liver Disease (NAFLD) and explore the potential mechanisms of its multi-component-multi-target-multi-pathway. Materials and Methods The main chemical components of QHD were searched using traditional Chinese medicine system pharmacology technology platform (TCMSP) and PubChem database. The main chemical components of the prescription were ADMET screened by the ACD/Labs software. The main active ingredient was screened by 60% oral bioavailability, and 60% of “bad” ingredients were removed from the drug-like group. Swiss Target Prediction, the SEA, and HitPick systems were sequentially used to search for the target of each active ingredient, and a network map of the QHD's target of the active ingredient was constructed. Genome annotation database platforms (GeneCards, OMIM, and DisGeNET) were used to predict action targets related to fatty liver disease. “Drug-Disease-Target” network diagram could be visualized with the help of Cytoscape (3.7.1) software. UniProt and STRING database platforms were used to build a protein interaction network. The KEGG signal pathway and DAVID platform were analyzed for biological process enrichment. Results A total of 128 active ingredients and 275 corresponding targets in QHD were discovered through screening. 55 key target targets and 27 important signaling pathways were screened, such as the cancer pathway, P13K-AKT signaling pathway, PPAR signaling pathway, and other related signaling pathways. Conclusions The present study revealed the material basis of QHD and discussed the pharmacological mechanism of QHD in fatty liver, thus providing a scientific basis for the clinical application and experimental research of QHD in the future.
Collapse
|
12
|
Zhu M, Li M, Zhou W, Ge G, Zhang L, Ji G. Metabolomic Analysis Identifies Glycometabolism Pathways as Potential Targets of Qianggan Extract in Hyperglycemia Rats. Front Pharmacol 2020; 11:671. [PMID: 32477136 PMCID: PMC7235344 DOI: 10.3389/fphar.2020.00671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/23/2020] [Indexed: 12/25/2022] Open
Abstract
Qianggan formula, a designed prescription according to the Traditional Chinese Medicine (TCM) theory, is widely used in treating chronic liver diseases, and indicated to prevent blood glucose increase in patients via unknown mechanisms. To unravel the effects and underlying mechanisms of Qianggan formula on hyperglycemia, we administrated Qianggan extract to high fat and high sucrose (HFHS) diet rats. Results showed that four-week Qianggan extract intervention significantly decreased serum fasting blood glucose, hemoglobin A1c, and liver glycogen levels. Gas chromatography-mass spectrometry (GC-MS) approach was employed to explore metabolomic profiles in liver and fecal samples. By multivariate and univariate statistical analysis (variable importance of projection value > 1 and p value < 0.05), 44 metabolites (18 in liver and 30 in feces) were identified as significantly different. Hierarchical cluster analysis revealed that most differential metabolites had opposite patterns between pair-wise groups. Qianggan extract restored the diet induced metabolite perturbations. Metabolite sets enrichment and pathway enrichment analysis revealed that the affected metabolites were mainly enriched in glycometabolism pathways such as glycolysis/gluconeogenesis, pentose phosphate pathway, fructose, and mannose metabolism. By compound-reaction-enzyme-gene network analysis, batches of genes (e.g. Hk1, Gck, Rpia, etc) or enzymes (e.g. hexokinase and glucokinase) related to metabolites in enriched pathways were obtained. Our findings demonstrated that Qianggan extract alleviated hyperglycemia, and the effects might be partially due to the regulation of glycometabolism related pathways.
Collapse
Affiliation(s)
- Mingzhe Zhu
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Li
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenjun Zhou
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, China-Canada Center of Research for Digestive Diseases (ccCRDD), Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Linghang Q, Yiyi X, Guosheng C, Kang X, Jiyuan T, Xiong L, Guangzhong W, Shuiqing L, Yanju L. Effects of Atractylodes Oil on Inflammatory Response and Serum Metabolites in Adjuvant Arthritis Rats. Biomed Pharmacother 2020; 127:110130. [PMID: 32289576 DOI: 10.1016/j.biopha.2020.110130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Atractylodes Rhizoma is one of two principal components in Ermiaosan, a well-known traditional Chinese medicine for the treatment of rheumatoid arthritis (RA). Atractylodes oil (AO) represents a potential alternative treatment for RA. The purpose of this study was to investigate the effect of AO in rats with Adjuvant Arthritis (AA) by exploration of changes in serum metabolites using gas chromatography-mass spectrometry (GC-MS). Foot thickness and arthritis score, ankle joint pathological structure, the concentrations of TNF-α, IL-1β, IL-6, IL-17 and the expression of MMPs in ankle joint tissue were measured as indicators of efficacy of treatment using AO. In addition, multivariate statistical analysis was used to identify differential production of metabolites and biomarkers, and to analyze metabolic pathways. The results demonstrate that administration of AO resulted in a good therapeutic effect in the AA rat model, with significantly improved joint swelling, reduced joint score, and inhibition of inflammation, synovial pannus hyperplasia, and bone and cartilage destruction. Furthermore, AO was found to exert its effect against rheumatoid arthritis principally by differentially affecting 11 metabolites and six metabolic pathways, predominantly related to abnormal amino acid metabolism, in addition to energy-related metabolic pathways. This study evaluated the capability of AO to effectively treat AA rats, providing a novel strategy for the treatment of RA.
Collapse
Affiliation(s)
- Qu Linghang
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Xu Yiyi
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Cao Guosheng
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Xu Kang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei430030, PR China
| | - Tu Jiyuan
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Lin Xiong
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China
| | - Wang Guangzhong
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Li Shuiqing
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China
| | - Liu Yanju
- College of pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei430065, PR China; Center for Hubei TCM processing technology engineering, Wuhan, Hubei430065, PR China.
| |
Collapse
|
14
|
He H, An F, Huang Q, Kong Y, He D, Chen L, Song H. Metabolic effect of AOS-iron in rats with iron deficiency anemia using LC-MS/MS based metabolomics. Food Res Int 2020; 130:108913. [DOI: 10.1016/j.foodres.2019.108913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/15/2019] [Indexed: 12/17/2022]
|
15
|
Okamoto H, Ino S, Nihei N, Ikuta N, Ueno C, Itoi A, Yoshikawa Y, Terao K, Sakamoto N. Anti-obesity effects of α-cyclodextrin-stabilized 4-methylthio-3-butenyl isothiocyanate from daikon ( Raphanus sativus var. longipinnatus) in mice. J Clin Biochem Nutr 2019; 65:99-108. [PMID: 31592053 DOI: 10.3164/jcbn.19-11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/09/2019] [Indexed: 12/20/2022] Open
Abstract
4-Methylthio-3-butenyl isothiocyanate (MTBI) is a pungent bioactive constituent found in daikon. However, MTBI is immediately hydrolyzed to 3-hydroxy-methylene-2-thioxopyrrolidine in grated daikon. In this study, we evaluated whether MTBI in grated daikon complexed with α-cyclodextrin (αCD) has anti-obesity effects in mice. C57BL/6J mice were fed a normal diet (normal group), high-fat diet (HFD, control group), HFD with αCD (αCD group), or HFD with MTBI-αCD (MTBI-αCD group) for 16 weeks. The results showed that the final body weight, epididymal white adipose tissue weight, and plasma triglyceride and total cholesterol levels were significantly lower in the MTBI-αCD group than in the control group. The cell size in epididymal adipose tissue was significantly smaller and the accumulation of lipids in the liver was significantly lower in the MTBI-αCD group than in the control group. Furthermore, real-time polymerase chain reaction showed that the mRNA expression level of tumor necrosis factor-alpha was suppressed in the MTBI-αCD group. We also observed low superoxide dismutase activity in the MTBI-αCD group, possibly because MTBI-αCD has the potential to resist HFD-induced oxidative injury. In conclusion, MTBI-αCD exerted anti-inflammation and antioxidant effects to suppress lipid accumulation in epididymal adipose tissue and the liver. These effects then prevented HFD-induced obesity in mice.
Collapse
Affiliation(s)
- Hinako Okamoto
- Department of Social/Community Medicine and Health Science, Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.,CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Syoko Ino
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Woman's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Nanako Nihei
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Naoko Ikuta
- Department of Social/Community Medicine and Health Science, Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| | - Chihiro Ueno
- CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Aya Itoi
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Woman's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan.,Graduate School of Science of Health and Nutrition, Kobe Woman's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Woman's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan.,Graduate School of Science of Health and Nutrition, Kobe Woman's University, 4-7-2 Minatojima-nakamachi, Chuo-ku, Kobe, Hyogo 650-0046, Japan
| | - Keiji Terao
- Department of Social/Community Medicine and Health Science, Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.,CycloChem Bio Co., Ltd., 7-4-5 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Norihiro Sakamoto
- Department of Social/Community Medicine and Health Science, Food and Drug Evaluation Science, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan
| |
Collapse
|
16
|
Gou XJ, Gao S, Chen L, Feng Q, Hu YY. A Metabolomic Study on the Intervention of Traditional Chinese Medicine Qushi Huayu Decoction on Rat Model of Fatty Liver Induced by High-Fat Diet. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5920485. [PMID: 30881991 PMCID: PMC6383432 DOI: 10.1155/2019/5920485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/23/2022]
Abstract
Qushi Huayu Decoction (QHD), an important clinically proved herbal formula, has been reported to be effective in treating fatty liver induced by high-fat diet in rats. However, the mechanism of action has not been clarified at the metabolic level. In this study, a urinary metabolomic method based on gas chromatography-mass spectrometry (GC-MS) coupled with pattern recognition analysis was performed in three groups (control, model, and QHD group), to explore the effect of QHD on fatty liver and its mechanism of action. There was obvious separation between the model group and control group, and the QHD group showed a tendency of recovering to the control group in metabolic profiles. Twelve candidate biomarkers were identified and used to explore the possible mechanism. Then, a pathway analysis was performed using MetaboAnalyst 3.0 to illustrate the pathways of therapeutic action of QHD. QHD reversed the urinary metabolite abnormalities (tryptophan, uridine, and phenylalanine, etc.). Fatty liver might be prevented by QHD through regulating the dysfunctions of phenylalanine, tyrosine, and tryptophan biosynthesis, phenylalanine metabolism, and tryptophan metabolism. This work demonstrated that metabolomics might be helpful for understanding the mechanism of action of traditional Chinese medicine for future clinical evaluation.
Collapse
Affiliation(s)
- Xiao-jun Gou
- Central Laboratory, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai 201999, China
| | - Shanshan Gao
- School of Pharmacy, Shaanxi University of Traditional Chinese Medicine, Yangxian, Shaanxi 712046, China
| | - Liang Chen
- Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, Jiangsu 226001, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-yang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|