1
|
Mandal V, Ajabiya J, Khan N, Tekade RK, Sengupta P. Advances and challenges in non-targeted analysis: An insight into sample preparation and detection by liquid chromatography-mass spectrometry. J Chromatogr A 2024; 1737:465459. [PMID: 39476774 DOI: 10.1016/j.chroma.2024.465459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 11/10/2024]
Abstract
Unknown impurities, metabolites and harmful pollutants present in pharmaceutical products, biological and environmental samples, respectively are of high concern in terms of their detection and quantification. The targeted analysis aims to quantify known chemical entities, but it lacks the ability to identify unknown components present in a sample. Non-targeted analysis is an analytical approach that can be made applicable to various disciplines of science to effectively search for unknown chemical, biological, or environmental entities that can answer various baffling mysteries of research. It employs various high-end analytical techniques that can specifically screen out multiple unknown compounds from complex mixtures. Non-targeted analysis is also applicable for complex studies such as metabolomics to search unidentified metabolites of new chemical entities. This review critically discusses the current advancements in non-targeted analysis related to the analysis of pharmaceutical, biological, and environmental samples. Various steps like sample collection, handling, preparation, extraction, its analysis using advanced techniques like high-resolution mass spectrometry, liquid chromatography mass spectrometry, and lastly interpretation of the huge amounts of complex data obtained upon analysis of complex matrices have been discussed broadly in this article. Besides the advantages of non-targeted analysis over targeted analysis, limitations, bioinformatics tools, sources of error, and research gaps have been critically analyzed.
Collapse
Affiliation(s)
- Vivek Mandal
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Jinal Ajabiya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
2
|
Mortada WI, Zedan HE, Khalifa ME. Spectrophotometric determination of trace vanadium in fresh fruit juice samples by ion pair-based surfactant-assisted microextraction procedure with solidification of floating organic drop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123107. [PMID: 37418905 DOI: 10.1016/j.saa.2023.123107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
An ion pair-based surfactant-assisted dispersive liquid-liquid microextraction with solidification of floating organic drop (IP-SA-DLLME-SFOD) was developed for extraction of vanadium followed by spectrophotometric determination. Tannic acid (TA) and cetyl trimethylammonium bromide (CTAB) were utilized as complexing and ion-pairing agents, respectively. Using ion-pairing, TA-vanadium complex became more hydrophobic and quantitatively extracted into 1-undecanol. Some factors that influence extraction efficiency were studied. Under optimized circumstances, the detection and quantification limits were 1.8 μg L-1 and 5.9 μg L-1, respectively. The method was linear up to 1000 μg L-1 and the enrichment factors was 19.8. For 100 μg L-1 vanadium, the intra-day, and inter-days relative standard deviations (n = 8) were 1.4% and 1.8%, respectively. The suggested IP-SA-DLLME-SFOD procedure has been effectively implemented for spectrophotometric quantification of vanadium in fresh fruit juice samples. Finally, the greenness of the approach was estimated using Analytical Greenness Calculator (AGREE), which proved its environmental friendliness and safety.
Collapse
Affiliation(s)
- Wael I Mortada
- Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt.
| | - Hanan E Zedan
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Magdi E Khalifa
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Aracier ED, Kök Yetimoğlu E, Aydın Urucu O. An eco-friendly and sensitive deep eutectic solvent-based liquid-phase microextraction procedure for extraction preconcentration of Pb (II) ions. ANAL SCI 2023:10.1007/s44211-023-00315-7. [PMID: 36964459 DOI: 10.1007/s44211-023-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 03/01/2023] [Indexed: 03/26/2023]
Abstract
In recent years, interest in green solvents, which are environmentally friendly, easy to prepare and biodegradable, and in their applications in chemistry has considerably increased. In the current study, a new and easy deep eutectic solvent-based liquid-phase microextraction method compatible with green chemistry principles was developed for preconcentration of Pb (II) ions. The amount of Pb (II) ions was determined with graphite furnace atomic absorption spectrometry (GFAAS). Various analytical parameters such as deep eutectic solvent (DES) ratio and amount, ligand amount, pH, sample volume were optimized and the effects of potential matrix ions on the method were investigated. The preconcentration factor of the method was found to be 160, while the limit of detection (LOD) and limit of quantification (LOQ) were found to be 0.071 µg L-1 and 0.236 µg L-1, respectively. The developed procedure was performed to determine Pb (II) ions in lake and river waters, and the accuracy of the procedure was determined with certified reference wastewater (SPS-WW1) analysis.
Collapse
Affiliation(s)
- Esra Duygu Aracier
- Faculty of Sciences, Chemistry Department, Marmara University, İstanbul, Turkey
| | - Ece Kök Yetimoğlu
- Faculty of Sciences, Chemistry Department, Marmara University, İstanbul, Turkey.
| | - Oya Aydın Urucu
- Faculty of Sciences, Chemistry Department, Marmara University, İstanbul, Turkey.
| |
Collapse
|
4
|
Green microextraction approach focuses on air-assisted dispersive liquid–liquid with solidified floating organic drop for preconcentration and determination of toxic metals in water and wastewater samples. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02714-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
Ullah N, Tuzen M. A New Trend and Future Perspectives of the Miniaturization of Conventional Extraction Methods for Elemental Analysis in Different Real Samples: A Review. Crit Rev Anal Chem 2022; 54:1729-1747. [PMID: 36197714 DOI: 10.1080/10408347.2022.2128635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Sample preparation is one of the viable procedures to be used before analysis to enhance sensitivity and reduce the matrix effect. The current review is mainly emphasized the latest outcome and applications of microextraction techniques based on the miniaturization of the classical conventional methods based on liquid-phase and solid-phase extraction for the quantitative elemental analysis in different real samples. The limitation of the conventional sample preparation methods (liquid and solid phase extraction) has been overcome by developing a new way of reducing size as compared with the conventional system through the miniaturization approach. Miniaturization of the sample preparation techniques has received extensive attention due to its extraction at microlevels, speedy, economical, eco-friendly, and high extraction capability. The growing demand for speedy, economically feasible, and environmentally sound analytical approaches is the main intention to upgrade the conventional procedures apply for sample preparation in environmental investigation. A growing trend of research has been perceived to quantify the trace for elemental analysis in different natures of real samples. This review also recapitulates the current futuristic scenarios for the green and economically viable procedure with special overemphasis and concentrates on eco-friendly miniaturized sample-preparation techniques such as liquid-phase microextraction (LPME) and solid-phase microextraction (SPME). This review also emphasizes the latest progress and applications of the LPME and SPME approach and their future perspective.
Collapse
Affiliation(s)
- Naeem Ullah
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Department of Chemistry, University of Turbat, Balochistan, Pakistan
| | - Mustafa Tuzen
- Faculty of Science and Arts, Chemistry Department, Tokat Gaziosmanpaşa University, Tokat, Turkey
- Research Institute, Center for Environment and Marine Studies, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
6
|
Rosado T, Barroso M, Vieira DN, Gallardo E. Trends in microextraction approaches for handling human hair extracts - A review. Anal Chim Acta 2021; 1185:338792. [PMID: 34711317 DOI: 10.1016/j.aca.2021.338792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022]
Abstract
The complementary role of hair in testing scenarios has expanded across the spectrum of toxicological and clinical monitoring investigations and, over the last 20 years, hair analysis has gained increasing attention and recognition. Moreover, a great deal of attention has been paid to the miniaturisation of extraction procedures, minimising/eliminating toxic organic solvents consumption, making them user-friendly and rapid, in addition to maximising extraction efficiency. The aim of this work is to provide a critical review of the advances observed over the last 5 years in the use of miniaturised approaches for sample clean-up and drug pre-concentration in hair analysis. There have been major improvements in some well-established microextraction approaches, such as liquid phase microextraction, mainly through the use of supramolecular and ionic liquids. In addition, new developments have also been reported in solid phase microextraction, driven by d-SPE applications. In the last 5 years, a total of 69 articles have been published using some type of microextraction technique for hair specimens, thus justifying the relevance of a critical review of innovations, improvements and trends related to these miniaturised approaches for sample preparation.
Collapse
Affiliation(s)
- Tiago Rosado
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal; C4 - Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses, Delegação do Sul, Lisboa, Portugal
| | | | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia - UBIMedical, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|