1
|
Shannon A, O'Sullivan A, O'Sullivan KJ, Clifford S, O'Sullivan L. Assessing the Dispersion Stability of Antimicrobial Fillers in Photosensitive Resin for Vat Polymerization 3D Printing. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e1334-e1342. [PMID: 39359597 PMCID: PMC11442375 DOI: 10.1089/3dp.2022.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polymers are widely used in healthcare due to their biocompatibility and mechanical properties; however, the use of polymers in medical products can promote biofilm formation, which can be a source of hospital-acquired infections. Due to this, there is a rising demand for inherently antimicrobial polymers for devices in contact with patients. 3D printing as a manufacturing technology has increased exponentially in recent years. Surgical guides, orthotics, and prosthetics, among other medical devices, created by vat polymerization have been used in hospitals to treat patients. Biocompatible resins are available for these applications, but there is a lack of antimicrobial resins, which would further improve the technology for clinical use. The focus of this study was to assess settling of candidate antimicrobial metal and metal oxide fillers in vat polymerization resin to determine which fillers were compatible with the resin. Dispersion stability was assessed by measuring settling over the maximum print duration of the medium priced desktop 3D printers to evaluate printability of 17 potentially antimicrobial resins. Eight materials displayed settling behavior during the test period: molybdenum oxide, zirconium oxide nanopowder, scandium oxide, zirconium oxide, titanium oxide, tungsten oxide, lanthanum oxide, and magnesium oxide. No settling was observed for manganese oxide, magnesium oxide nanopowder, titanium oxide nanopowder, copper oxide, silver oxide, zinc oxide nanopowder, zinc oxide, silver nanopowder, and gold nanopowder during the test period. This method could be applied to assess settling of other fillers introduced into 3D printing resins before actual printing.
Collapse
Affiliation(s)
- Alice Shannon
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
- National Childrens Research Centre, Dublin, Ireland
| | - Aidan O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Kevin J O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| | - Seamus Clifford
- School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | - Leonard O'Sullivan
- Rapid Innovation Unit, Confirm Centre for Smart Manufacturing, Health Research Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
2
|
de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: An original application of the semisolid extrusion technique. Int J Pharm 2022; 624:122029. [PMID: 35853566 DOI: 10.1016/j.ijpharm.2022.122029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022]
Abstract
Semisolid extrusion is a layer-by-layer 3D printing technique that produces objects from gels or pastes. This process can be carried out at room temperature, without using a light source, and has been explored in pharmaceutics in the last few years. In this regard, our group hypothesized its suitability for the production of three-dimensional (3D) printed nanomedicines containing drug-loaded organic nanocarriers. In this study, the original application of the semisolid extrusion was evaluated to produce redispersible 3D printed oral solid forms containing drug-loaded polymeric nanocapsules. A carboxymethyl cellulose hydrogel containing resveratrol and curcumin co-encapsulated in nanocapsules was prepared, and the nanocapsules did not change its complex viscosity and yield stress. Homogeneous and yellow cylindrical-shaped solid forms were printed, with a mean weight of 0.102 ± 0.015 g, a polyphenol content of approximately 160 μg/unit, disintegration time of <45 min, and recovery of the nanosized carriers. The polyphenols were completely released from the solid forms after 8 h, although part of them remained encapsulated in the nanocapsules. This study represents a proof of concept concerning the use of semisolid extrusion to produce 3D printed forms composed of polymeric nanocapsules in a one-step process. It proposes an original platform for the development of solid nanomedicines from liquid aqueous nanocapsule suspensions.
Collapse
Affiliation(s)
- Thayse Viana de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rafaela Santos de Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Juliana Dos Santos
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nadine Lysyk Funk
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cesar Liberato Petzhold
- Instituto de Química, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves - Agronomia, Porto Alegre, RS 90650-001, Brazil
| | - Ruy Carlos Ruver Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Ipiranga, 2752, Porto Alegre, Rio Grande do Sul 90610-000, Brazil; Laboratório de Nanocarreadores e Impressão 3D em Tecnologia Farmacêutica (Nano3D), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
3
|
Additive Manufacturing and Characterization of Metal Particulate Reinforced Polylactic Acid (PLA) Polymer Composites. Polymers (Basel) 2021; 13:polym13203545. [PMID: 34685302 PMCID: PMC8537213 DOI: 10.3390/polym13203545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Affordable commercial desktop 3-D printers and filaments have introduced additive manufacturing to all disciplines of science and engineering. With rapid innovations in 3-D printing technology and new filament materials, material vendors are offering specialty multifunctional metal-reinforced polymers with unique properties. Studies are necessary to understand the effects of filament composition, metal reinforcements, and print parameters on microstructure and mechanical behavior. In this study, densities, metal vol%, metal cross-sectional area %, and microstructure of various metal-reinforced Polylactic Acid (PLA) filaments were characterized by multiple methods. Comparisons are made between polymer microstructures before and after printing, and the effect of printing on the metal-polymer interface adhesion has been demonstrated. Tensile response and fracture toughness as a function of metal vol% and print height was determined. Tensile and fracture toughness tests show that PLA filaments containing approximately 36 vol% of bronze or copper particles significantly reduce mechanical properties. The mechanical response of PLA with 12 and 18 vol% of magnetic iron and stainless steel particles, respectively, is similar to that of pure PLA with a slight decrease in ultimate tensile strength and fracture toughness. These results show the potential for tailoring the concentration of metal reinforcements to provide multi-functionality without sacrificing mechanical properties.
Collapse
|
4
|
Al-Otaibi AL. Yttrium Doped Single-Crystalline Orthorhombic Molybdenum Oxide Micro-Belts: Synthesis, Structural, Optical and Photocatalytic Properties. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-01999-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Abstract
An implants' effectiveness depends upon the form of biomaterial used in its manufacture. A suitable material for implants should be biocompatible, sterile, mechanically stable and simple to shape. 3D printing technologies have been breaking new ground in the medical and medical industries in order to build patient-specific devices embedded in bioactive drugs, cells and proteins. Widespread use in medical 3D printing is a broad range of biomaterials including metals, ceramics, polymers and composites. Continuous work and developments in biomaterials used in 3D printing have contributed to significant growth of 3D printing applications in the production of personalised joints, prostheses, medication delivery system and 3D tissue engineering and regenerative medicine scaffolds. The present analysis focuses on the biomaterials used for therapeutic applications in different 3D printing technologies. Many specific forms of medical 3D printing technology are explored in depth, including fused deposition modelling, extrusion-based bioprinting, inkjet and poly-jet printing processes, their therapeutic uses, various types of biomaterial used today and the major shortcoming , are being studied in depth.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Mechanical Engineering, DIT University, Dehradun, India
| | - Vivek Srivastava
- Department of Mechanical Engineering, DIT University, Dehradun, India
| |
Collapse
|
6
|
Vanaei S, Parizi M, Vanaei S, Salemizadehparizi F, Vanaei H. An Overview on Materials and Techniques in 3D Bioprinting Toward Biomedical Application. ENGINEERED REGENERATION 2021. [DOI: 10.1016/j.engreg.2020.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
7
|
Durga Prasad Reddy R, Sharma V. Additive manufacturing in drug delivery applications: A review. Int J Pharm 2020; 589:119820. [DOI: 10.1016/j.ijpharm.2020.119820] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
|
8
|
Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review. Pharmaceutics 2020; 12:pharmaceutics12060517. [PMID: 32517052 PMCID: PMC7356885 DOI: 10.3390/pharmaceutics12060517] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Fused filament fabrication (FFF) 3D printing technology is widely used in many fields. For almost a decade, medical researchers have been exploring the potential use of this technology for improving the healthcare sector. Advances in personalized medicine have been more achievable due to the applicability of producing drug delivery devices, which are explicitly designed based on patients’ needs. For the production of these devices, a filament—which is the feedstock for the FFF 3D printer—consists of a carrier polymer (or polymers) and a loaded active pharmaceutical ingredient (API). This systematic review of the literature investigates the most widely used approaches for producing drug-loaded filaments. It also focusses on several factors, such as the polymeric carrier and the drug, loading capacity and homogeneity, processing conditions, and the intended applications. This review concludes that the filament preparation method has a significant effect on both the drug homogeneity within the polymeric carrier and drug loading efficiency.
Collapse
|
9
|
Ghorbani F, Zamanian A, Kermanian F, Shamoosi A. A bioinspired 3D shape olibanum‐collagen‐gelatin scaffolds with tunable porous microstructure for efficient neural tissue regeneration. Biotechnol Prog 2019; 36:e2918. [DOI: 10.1002/btpr.2918] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 07/14/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Farnaz Ghorbani
- Department of Orthopedics, Shanghai Pudong HospitalFudan University Pudong Medical Center Shanghai China
| | - Ali Zamanian
- Department of Nanotechnology and Advanced MaterialsMaterials and Energy Research Center Karaj Iran
| | - Fatemeh Kermanian
- Department of Anatomy, School of MedicineAlborz University of Medical Sciences Karaj Iran
| | - Atefeh Shamoosi
- Department of Anatomy, School of MedicineAlborz University of Medical Sciences Karaj Iran
| |
Collapse
|
10
|
Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, Perry CC. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev 2018; 118:11118-11193. [PMID: 30362737 DOI: 10.1021/acs.chemrev.7b00660] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Metallo-oxide (MO)-based bioinorganic nanocomposites promise unique structures, physicochemical properties, and novel biochemical functionalities, and within the past decade, investment in research on materials such as ZnO, TiO2, SiO2, and GeO2 has significantly increased. Besides traditional approaches, the synthesis, shaping, structural patterning, and postprocessing chemical functionalization of the materials surface is inspired by strategies which mimic processes in nature. Would such materials deliver new technologies? Answering this question requires the merging of historical knowledge and current research from different fields of science. Practically, we need an effective defragmentation of the research area. From our perspective, the superficial accounting of material properties, chemistry of the surfaces, and the behavior of biomolecules next to such surfaces is a problem. This is particularly of concern when we wish to bridge between technologies in vitro and biotechnologies in vivo. Further, besides the potential practical technological efficiency and advantages such materials might exhibit, we have to consider the wider long-term implications of material stability and toxicity. In this contribution, we present a critical review of recent advances in the chemistry and engineering of MO-based biocomposites, highlighting the role of interactions at the interface and the techniques by which these can be studied. At the end of the article, we outline the challenges which hamper progress in research and extrapolate to developing and promising directions including additive manufacturing and synthetic biology that could benefit from molecular level understanding of interactions occurring between inanimate (abiotic) and living (biotic) materials.
Collapse
Affiliation(s)
- Marion J Limo
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Interface and Surface Analysis Centre, School of Pharmacy , University of Nottingham , University Park, Nottingham NG7 2RD , United Kingdom
| | - Anna Sola-Rabada
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Estefania Boix
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom.,Department of Bioproducts and Biosystems , Aalto University , P.O. Box 16100, FI-00076 Aalto , Finland
| | - Veeranjaneyulu Thota
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Zayd C Westcott
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Valeria Puddu
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| | - Carole C Perry
- Interdisciplinary Biomedical Research Centre, School of Science and Technology , Nottingham Trent University , Clifton Lane, Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
11
|
Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems - a passing fad or the future? Adv Drug Deliv Rev 2018; 132:139-168. [PMID: 29778901 DOI: 10.1016/j.addr.2018.05.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 12/23/2022]
Abstract
The US Food and Drug Administration approval of the first 3D printed tablet in 2015 has ignited growing interest in 3D printing, or additive manufacturing (AM), for drug delivery and testing systems. Beyond just a novel method for rapid prototyping, AM provides key advantages over traditional manufacturing of drug delivery and testing systems. These includes the ability to fabricate complex geometries to achieve variable drug release kinetics; ease of personalising pharmacotherapy for patient and lowering the cost for fabricating personalised dosages. Furthermore, AM allows fabrication of complex and micron-sized tissue scaffolds and models for drug testing systems that closely resemble in vivo conditions. However, there are several limitations such as regulatory concerns that may impede the progression to market. Here, we provide an overview of the advantages of AM drug delivery and testing, as compared to traditional manufacturing techniques. Also, we discuss the key challenges and future directions for AM enabled pharmaceutical applications.
Collapse
Affiliation(s)
- Seng Han Lim
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Himanshu Kathuria
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Justin Jia Yao Tan
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Block S4A, Level 3, 117543, Singapore
| | - Lifeng Kang
- School of Pharmacy, University of Sydney, Pharmacy and Bank Building A15, NSW 2006, Australia.
| |
Collapse
|
12
|
Tappa K, Jammalamadaka U. Novel Biomaterials Used in Medical 3D Printing Techniques. J Funct Biomater 2018; 9:E17. [PMID: 29414913 PMCID: PMC5872103 DOI: 10.3390/jfb9010017] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 12/19/2022] Open
Abstract
The success of an implant depends on the type of biomaterial used for its fabrication. An ideal implant material should be biocompatible, inert, mechanically durable, and easily moldable. The ability to build patient specific implants incorporated with bioactive drugs, cells, and proteins has made 3D printing technology revolutionary in medical and pharmaceutical fields. A vast variety of biomaterials are currently being used in medical 3D printing, including metals, ceramics, polymers, and composites. With continuous research and progress in biomaterials used in 3D printing, there has been a rapid growth in applications of 3D printing in manufacturing customized implants, prostheses, drug delivery devices, and 3D scaffolds for tissue engineering and regenerative medicine. The current review focuses on the novel biomaterials used in variety of 3D printing technologies for clinical applications. Most common types of medical 3D printing technologies, including fused deposition modeling, extrusion based bioprinting, inkjet, and polyjet printing techniques, their clinical applications, different types of biomaterials currently used by researchers, and key limitations are discussed in detail.
Collapse
Affiliation(s)
- Karthik Tappa
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Udayabhanu Jammalamadaka
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
13
|
Fafenrot S, Grimmelsmann N, Wortmann M, Ehrmann A. Three-Dimensional (3D) Printing of Polymer-Metal Hybrid Materials by Fused Deposition Modeling. MATERIALS 2017; 10:ma10101199. [PMID: 29048347 PMCID: PMC5667005 DOI: 10.3390/ma10101199] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 12/29/2022]
Abstract
Fused deposition modeling (FDM) is a three-dimensional (3D) printing technology that is usually performed with polymers that are molten in a printer nozzle and placed line by line on the printing bed or the previous layer, respectively. Nowadays, hybrid materials combining polymers with functional materials are also commercially available. Especially combinations of polymers with metal particles result in printed objects with interesting optical and mechanical properties. The mechanical properties of objects printed with two of these metal-polymer blends were compared to common poly (lactide acid) (PLA) printed objects. Tensile tests and bending tests show that hybrid materials mostly containing bronze have significantly reduced mechanical properties. Tensile strengths of the 3D-printed objects were unexpectedly nearly identical with those of the original filaments, indicating sufficient quality of the printing process. Our investigations show that while FDM printing allows for producing objects with mechanical properties similar to the original materials, metal-polymer blends cannot be used for the rapid manufacturing of objects necessitating mechanical strength.
Collapse
Affiliation(s)
- Susanna Fafenrot
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.
| | - Nils Grimmelsmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.
| | - Martin Wortmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany.
| |
Collapse
|