1
|
Liu Y, Hong X, Liu L, Li X, Huang S, Luo Q, Huang Q, Qiu J, Qiu P, Li C. Shen Qi Wan ameliorates nephritis in chronic kidney disease via AQP1 and DEFB1 regulation. Biomed Pharmacother 2024; 170:116027. [PMID: 38113630 DOI: 10.1016/j.biopha.2023.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Shen Qi Wan (SQW) has been proven to exert anti-inflammatory effects in the kidneys of CKD models accompanied by unclear therapeutic mechanisms. This study aims to evaluate the kidney-protective and anti-inflammatory effects of SQW and to elucidate its fundamental mechanisms for CKD treatment. Firstly, the main active components of SQW were identified by UPLC-Q-TOF/MS technique. Subsequently, we evaluated inflammatory factors, renal function and renal pathology changes following SQW treatment utilizing adenine-induced CKD mice and aquaporin 1 knockout (AQP1-/-) mice. Additionally, we conducted RNA-seq analysis and bioinformatics analysis to predict the SQW potential therapeutic targets and anti-nephritis pathways. Simultaneously, WGCNA analysis method and machine learning algorithms were used to perform a clinical prognostic analysis of potential biomarkers in CKD patients from the GEO database and validated through clinical samples. Lipopolysaccharide-induced HK-2 cells were further used to explore the mechanism. We found that renal collagen deposition was reduced, serum inflammatory cytokine levels decreased, and renal function was improved after SQW intervention. It can be inferred that β-defensin 1 (DEFB1) may be a pivotal target, as confirmed by serum and renal tissue samples from CKD patients. Furthermore, SQW assuages inflammatory responses by fostering AQP1-mediated DEFB1 expression was confirmed in in vitro and in vivo studies. Significantly, the renal-protective effect of SQW is to some extent attenuated after AQP1 gene knockout. SQW could reduce inflammatory responses by modulating AQP1 and DEFB1. These findings underscore the potential of SQW as a promising contender for novel prevention and treatment strategies within the ambit of CKD management.
Collapse
Affiliation(s)
- Yiming Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiao Hong
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liu Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xinyue Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuo Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qihan Luo
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Qiaoyan Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiang Qiu
- Department of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Ping Qiu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Changyu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Xiong W, Feng J, Liu Y, Liu J, Fu L, Wang Q, Li X, Li S. ShenQiWan ameliorates renal injury in type 2 diabetic mice by modulating mitochondrial fusion and endoplasmic reticulum stress. Front Pharmacol 2023; 14:1265551. [PMID: 38026991 PMCID: PMC10667480 DOI: 10.3389/fphar.2023.1265551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Background: ShenQiWan is commonly used in traditional Chinese medicine for the treatment of diabetic nephropathy, which is closely related to mitochondrial fusion and endoplasmic reticulum stress. This study aimed to investigate the intervention effect and molecular mechanisms of ShenQiWan on renal injury in KKAy mice. Methods: C57BL/6J mice (11 weeks old) were fed a regular diet upon arrival, while KKAy mice (11 weeks old) were fed a high-fat diet upon arrival. At 12 weeks of age, KKAy mice with random blood glucose ≥13.9 mmol/L were identified as diabetic mice and randomly divided into the model group (n = 30) and the treatment group (n = 30), while C57BL/6J mice of 12 weeks old (n = 30) served as the control group. The treatment group received daily aqueous decoction of ShenQiWan (13.5 g/kg), while the control group and model group received daily equal amounts of saline from 12 weeks old to 24 weeks old. The general status of mice was observed regularly, and fasting blood glucose and 24-hour urine microalbumin were measured. Ten mice were euthanized in each group at the age of 16, 20, and 24 weeks, serum samples were used for biochemical indexes and kidney tissues were used for morphological studies. GRP78, OPA1, MFN1, MFN2 mRNA and protein expression were detected by Real-time PCR, immunohistochemistry and Western blot. Results: The mice in the model group exhibited symptoms of lethargy, slow movement, obesity, polyuria and proteinuria. Morphological observation revealed pathological changes, including thickening of the glomerular basement membrane and interstitial fibrosis. After treatment with ShenQiWan, the fasting blood glucose level of KKAy mice was significantly reduced, urinary albuminuria was decreased, serum biochemical indexes were improved, renal tissue pathological changes were significantly alleviated. The results also showed a significant reduction in the expression of endoplasmic reticulum stress-related factor GRP78 and an increase in the expression of mitochondrial fusion-related factors OPA1, MFN1 and MFN2 after treatment with ShenQiWan. Conclusion: ShenQiWan can protect diabetic mice from renal damage by modulating mitochondrial fusion and alleviating endoplasmic reticulum stress, exerting its protective effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xia Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyu Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Shen Qi Wan-Containing Serum Alleviates Renal Interstitial Fibrosis via Restraining Notch1-Mediated Epithelial-Mesenchymal Transition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:3352353. [PMID: 36793762 PMCID: PMC9925256 DOI: 10.1155/2023/3352353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/04/2022] [Accepted: 11/15/2022] [Indexed: 02/09/2023]
Abstract
Objective Shen Qi Wan (SQW) is the most classic prescription for the clinical therapy of chronic kidney disease in China. Nevertheless, the function of SQW in renal interstitial fibrosis (RIF) has not been clearly clarified. Our purpose was to explore the protective function of SQW on RIF. Methods After intervention with SQW-containing serum alone at increasing concentrations (2.5, 5, and 10%) or in combination with siNotch1, the transforming growth factor-beta (TGF-β)-induced HK-2 cell viability, extracellular matrix (ECM)-, epithelial-mesenchymal transition (EMT), and Notch1 pathway-associated protein expressions were assessed by cell counting kit-8, qRT-PCR, western blot, and immunofluorescence assays. Results SQW-containing serum intensified the viability of TGF-β-mediated HK-2 cells. Besides, it augmented the collagen II and E-cadherin levels, and weakened the fibronectin, α-SMA, vimentin, N-cadherin, and collagen I levels in HK-2 cells triggered by TGF-β. Moreover, it is found that TGF-β led to the upregulation of Notch1, Jag1, HEY1, HES1, and TGF-β in HK-2 cells, which was partially offset by SQW-containing serum. Furthermore, cotreatment of SQW-containing serum and Notch1 knockdown further apparently alleviated the Notch1, vimentin, N-cadherin, collagen I, and fibronectin levels in HK-2 cells induced by TGF-β. Conclusion Collectively, these findings elucidated that SQW-containing serum attenuated RIF via restraining EMT through the repression of the Notch1 pathway.
Collapse
|
4
|
Li J, Zhang J, Yang M, Huang X, Zhang M, Fang X, Wu S. Kirenol alleviates diabetic nephropathy via regulating TGF-β/Smads and the NF-κB signal pathway. PHARMACEUTICAL BIOLOGY 2022; 60:1690-1700. [PMID: 36073930 PMCID: PMC9467559 DOI: 10.1080/13880209.2022.2112239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/20/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Kirenol possesses anti-inflammatory, antifibrotic and anti-arthritic effects. However, its reno-protective effects against diabetic nephropathy (DN) have not been evaluated. OBJECTIVE This study explores the reno-protective effects of kirenol against DN and clarifies the potential mechanisms. MATERIALS AND METHODS The mesangial cells were treated with 20 µM kirenol and 10 ng/mL human recombinant TGF-β1 or 30 mM glucose for 24 h. Then the cells were harvested to assay the expression of the target genes or proteins. Thirty C57BL/6J male mice were given high-fat diet with streptozotocin injection to induce diabetes and then were randomized into three groups (n = 10): vehicle administration (DM group), 2 mg/kg kirenol (DM + kirenol group) and 200 mg/kg metformin (Met group) for 3 months, orally. A healthy group (Con, n = 10) was included as the control. RESULTS Compared to the DM group, kirenol treatment decreased the phosphorylation of Smad2/3 and NF-κB (0.64- and 0.43-fold) as well as the accumulation of FN and Col IV (0.58- and 0.35-fold); moreover, the expression of IκBα was restored to normal level by kirenol treatment both in vivo and in vitro. After kirenol treatment, IL-6 expression was decreased 0.35- and 0.57-fold, and TNF-α expression was decreased 0.34- and 0.46-fold, in vitro and in vivo, respectively. Furthermore, kirenol alleviated the glomerular basement membrane thickness and foot process fusion. DISCUSSION AND CONCLUSIONS Kirenol could alleviate DN by downregulating the TGF-β/Smads and the NF-κB signal pathway. Our study provides a potential mechanism for the treatment of DN with kirenol.
Collapse
Affiliation(s)
- Jialin Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Jiawen Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Yang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiaocui Huang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Meng Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Xu Y, Chen J, Wang H, Lu Y. Research and application of herbal medicine in the treatment of chronic kidney disease since the 21st century: A visualized bibliometric analysis. Front Pharmacol 2022; 13:971113. [PMID: 36249821 PMCID: PMC9561987 DOI: 10.3389/fphar.2022.971113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Here, a bibliometric and knowledge-map analysis was used to analyze the research status and application of herbal medicine for the treatment of chronic kidney disease (CKD). By looking for research hotspots and key topics, we provide new clues and research directions for future research. Methods: Articles and reviews regarding herbal medicine in the treatment of CKD were retrieved from the Web of Science Core Collection on 23 May 2022. The R-bibliometrix, VOSviewer, and CiteSpace software were used to conduct the bibliometric and knowledge-map analysis. Results: In total, 5,920 authors at 1,330 institutions from 68 countries published 1,602 papers in 355 academic journals. China is the leader and pioneer in the research and application of herbal medicine in the field of CKD treatment. Beijing University of Chinese Medicine contributed the most publications. Ping Li (China-Japan Friendship Hospital) published the most articles, while Yingyong Zhao (Northwest University) had the most cocitations. However, cooperation among countries and the research institutions is not sufficient. Journal of Ethnopharmacology published the most research and application of herbal medicine in the treatment of CKD and was the most commonly co-cited journal. The most influential research hotspots about herbal medicine in the treatment of CKD focused on diabetic nephropathy-related research, Balkan endemic nephropathy, and pharmacokinetic study. Conclusion: Herbal medicine has a wide range of pharmacological activities and therapeutic value. The research and application of herbal medicine for the treatment of CKD, especially diabetic nephropathy, will remain a hot topic in the future.
Collapse
Affiliation(s)
- Yunling Xu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Jia Chen
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - He Wang
- Hangzhou Linping Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ying Lu
- Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
6
|
Multiple Mechanisms of Shenqi Pill in Treating Nonalcoholic Fatty Liver Disease Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2384140. [PMID: 35795275 PMCID: PMC9251097 DOI: 10.1155/2022/2384140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/18/2022]
Abstract
Background Shenqi pill (SQP), a traditional Chinese prescription, has proven to be effective in treating nonalcoholic fatty liver disease (NAFLD). However, its bioactive ingredients and underlying mechanisms remain elusive. Aim We aimed to predict the active compounds, potential targets, and molecular mechanisms of SQP anti-NAFLD by applying network pharmacology and molecular docking methods. Methods Active ingredients and related targets of SQP were obtained from the TCMSP database. Potential targets of NAFLD were acquired from OMIM and GeneCards databases. The STRING database and Cytoscape software analyzed the protein-protein interaction (PPI) network and core targets of overlapping genes between SQP and NAFLD. GO enrichment analysis and KEGG enrichment analysis were performed in the DAVID database. Finally, molecular docking was employed to find possible binding conformations of macromolecular targets. Results 15 anti-NAFLD bioactive ingredients and 99 anti-NAFLD potential targets of SQP were determined using Network pharmacology. Quercetin, kaempferol, stigmasterol, diosgenin, and tetrahydroalstonine were the major active ingredients and AKT1, TNF, MAPK8, IL-6, and VEGFA were the key target proteins against NAFLD. The KEGG analysis suggested that the main pathways included PI3K/Akt signaling pathway, HIF-1 signaling pathway, MAPK signaling pathway, and TNF signaling pathway. Molecular docking predicted that quercetin, kaempferol, stigmasterol, diosgenin, and tetrahydroalstonine could bind with AKT1, TNF, and MAPK8. Conclusion This study successfully predicts the active compounds, potential targets, and signaling pathways of SQP against NAFLD. Moreover, this study contributed to the application and development of SQP.
Collapse
|
7
|
Liu XY, Zhang XB, Zhao YF, Qu K, Yu XY. Research Progress of Chinese Herbal Medicine Intervention in Renal Interstitial Fibrosis. Front Pharmacol 2022; 13:900491. [PMID: 35770077 PMCID: PMC9235922 DOI: 10.3389/fphar.2022.900491] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Chronic kidney diseases usually cause renal interstitial fibrosis, the prevention, delay, and treatment of which is a global research hotspot. However, no definite treatment options are available in modern medicine. Chinese herbal medicine has a long history, rich varieties, and accurate treatment effects. Hitherto, many Chinese herbal medicine studies have emerged to improve renal interstitial fibrosis. This paper reviews the mechanisms of renal interstitial fibrosis and recent studies on the disease intervention with Chinese herbal medicine through literature search, intend to reveal the importance of Chinese herbal medicine in renal interstitial fibrosis. The results show that Chinese herbal medicine can improve renal interstitial fibrosis, and the effects of Chinese herbal medicine on specific pathological mechanisms underlying renal interstitial fibrosis have been explored. Additionally, the limitations and advantages of Chinese herbal medicine in the treatment of renal interstitial fibrosis, possible research directions, and new targets of Chinese herbal medicine are discussed to provide a basis for studies of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xu-Bin Zhang
- Department of Orthopaedic, Xi’an Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Ya-Feng Zhao
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Kai Qu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
| | - Xiao-Yong Yu
- Department of Nephrology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an, China
- *Correspondence: Xiao-Yong Yu,
| |
Collapse
|
8
|
Yu XY, Sun Q, Zhang YM, Zou L, Zhao YY. TGF-β/Smad Signaling Pathway in Tubulointerstitial Fibrosis. Front Pharmacol 2022; 13:860588. [PMID: 35401211 PMCID: PMC8987592 DOI: 10.3389/fphar.2022.860588] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) was a major public health problem worldwide. Renal fibrosis, especially tubulointerstitial fibrosis, is final manifestation of CKD. Many studies have demonstrated that TGF-β/Smad signaling pathway plays a crucial role in renal fibrosis. Therefore, targeted inhibition of TGF-β/Smad signaling pathway can be used as a potential therapeutic measure for tubulointerstitial fibrosis. At present, a variety of targeting TGF-β1 and its downstream Smad proteins have attracted attention. Natural products used as potential therapeutic strategies for tubulointerstitial fibrosis have the characteristics of acting on multiple targets by multiple components and few side effects. With the continuous research and technique development, more and more molecular mechanisms of natural products have been revealed, and there are many natural products that inhibited tubulointerstitial fibrosis via TGF-β/Smad signaling pathway. This review summarized the role of TGF-β/Smad signaling pathway in tubulointerstitial fibrosis and natural products against tubulointerstitial fibrosis by targeting TGF-β/Smad signaling pathway. Additionally, many challenges and opportunities are presented for inhibiting renal fibrosis in the future.
Collapse
Affiliation(s)
- Xiao-Yong Yu
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Qian Sun
- Department of Nephrology, Shaanxi Traditional Chinese Medicine Hospital, Xi’an, China
| | - Ya-Mei Zhang
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| | - Ying-Yong Zhao
- Key Disciplines of Clinical Pharmacy, Clinical Genetics Laboratory, Affiliated Hospital and Clinical Medical College of Chengdu University, Chengdu, China
- *Correspondence: Xiao-Yong Yu, ; Liang Zou, ; Ying-Yong Zhao,
| |
Collapse
|
9
|
Chen Y, Song S, Shu A, Liu L, Jiang J, Jiang M, Wu Q, Xu H, Sun J. The Herb Pair Radix Rehmanniae and Cornus Officinalis Attenuated Testicular Damage in Mice With Diabetes Mellitus Through Butyric Acid/Glucagon-Like Peptide-1/Glucagon-Like Peptide-1 Receptor Pathway Mediated by Gut Microbiota. Front Microbiol 2022; 13:831881. [PMID: 35273587 PMCID: PMC8902592 DOI: 10.3389/fmicb.2022.831881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Growing body of research indicates that Traditional Chinese Medicine (TCM) interact with gut microbiota (GM) after oral administration. Radix Rehmanniae and Cornus Officinalis (RR-CO), a well-known TCM pair, is often used to treat diabetes mellitus (DM) and its complications. The current study aimed to explore the protective effects of RR-CO on DM induced testicular damage by modulating GM. The RR-CO treatments significantly reduced hyperglycemia, ameliorated testicular ultrastructural damage and inflammation in DM model to varying degrees. Additionally, 16S-ribosomal DNA (rDNA) sequencing results showed that RR-CO treatment increased the amount of butyric acid-producing GM, such as Clostridiaceae_1 family, and decreased the abundance of Catabacter, Marvinbryantia, and Helicobacter genera. RR-CO fecal bacteria transplantation (RC-FMT) increased the abundance of Clostridiaceae_1 in the Model FMT (M-FMT) group and ameliorated testicular damage. Furthermore, treatment with RR-CO increased the fecal butyric acid level, serum Glucagon-like peptide-1 (GLP-1) level, and testicular GLP-1 receptor (GLP-1R) expression compared to those in DM mice. Finally, intraperitoneal administration of sodium butyrate (SB) significantly improved the pathological damage to the testis and reduced inflammation in the DM group. These data demonstrated a protective effect of RR-CO on DM-induced testicular damage by modulation of GM, which may be mediated by the butyric acid/GLP/GLP-1R pathway.
Collapse
Affiliation(s)
- Yuping Chen
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Siyuan Song
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Anmei Shu
- Department of Basic Medical Science, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liping Liu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Jinjin Jiang
- School of Medical Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Ming Jiang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Qin Wu
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Huiqin Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jihu Sun
- Department of Science and Technology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
10
|
Guifu Dihuang Pills Ameliorated Mucus Hypersecretion by Suppressing Muc5ac Expression and Inactivating the ERK-SP1 Pathway in Lipopolysaccharide/Cigarette Smoke-Induced Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9539218. [PMID: 34777538 PMCID: PMC8580658 DOI: 10.1155/2021/9539218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/29/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022]
Abstract
Mucus hypersecretion is a hallmark of chronic obstructive pulmonary disease (COPD) and is associated with increasing sputum production and declining pulmonary function. Therefore, reducing mucus secretion can be a new therapeutic opportunity for preventing COPD. The Guifu Dihuang pill (GFDHP) is a classical Chinese medicine and has been used as an immunoregulator for treatment of kidney yang deficiency syndrome, including hypothyroidism, adrenocortical hypofunction, chronic bronchitis, and COPD, for more than 2000 years. However, the protective effects and mechanisms of GFDHP against mucus hypersecretion in COPD remain obscure. The aim of the present study was to explore the inhibitory effects of GFDHP on lipopolysaccharide/cigarette smoke- (LPS/CS-) induced Mucin5ac (Muc5ac) overproduction and airway goblet cell hyperplasia in mice. The mice were randomly assigned into 6 groups: control, model, GFDHP-L, GFDHP-M, GFDHP-H, and dexamethasone. The mice were given LPS twice through intranasal inhalation and then exposed to CS daily for 6 weeks. Three doses of GFDHP were orally administered daily during the last 3 weeks of the experiment. Pulmonary function was examined with an EMKA pulmonary system, and pulmonary hyperpermeability and lung damage were evaluated with an in vivo imaging system. Inflammatory cells and cytokines in bronchoalveolar lavage fluid (BALF) were detected with a cell count analyzer and though ELISA analysis, respectively. Lung pathological changes and airway goblet cell hyperplasia were analyzed with hematoxylin and eosin and Alcian blue periodic acid Schiff staining. The protein expression levels of Muc5ac and extracellular signal-regulated kinase (ERK)-specificity protein1 (SP1) signaling pathway were measured with Western blot and immunohistochemistry. The results demonstrated that GFDHP improved pulmonary function and suppressed mouse pulmonary hyperpermeability and edema. GFDHP suppressed inflammatory cell infiltration and cytokine release in BALF, thereby elevating pulmonary function. It ameliorated lung pathological changes and airway goblet cell hyperplasia, and suppressed expression levels of Muc5ac mRNA and protein and phospho-ERK and SP1 levels in the lung tissues of the COPD mice. In conclusion, GFDHP inhibited mucus hypersecretion induced by LPS/CS by suppressing the activation of the ERK-SP1 pathway.
Collapse
|
11
|
The Protective Effect of Shen Qi Wan on Adenine-Induced Podocyte Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5803192. [PMID: 33273954 PMCID: PMC7700022 DOI: 10.1155/2020/5803192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
Podocytes are a special type of differentiated epithelial cells that maintain the glomerular filtration barrier in the kidney. Injury or damages in podocytes can cause kidney-related disorders, like CKD. The injury or dysfunction of podocytes can occur by different metabolic disorders. Due to the severity and complexity of podocyte injuries, this state is considered as a serious health issue worldwide. Here, we examined and addressed the efficacy of an alternative Chinese medicine, Shen Qi Wan (SQW), on podocyte-related kidney injury. We evaluated the role and mechanism of action of SQW in podocyte injury. We observed that SQW significantly reduced 24-hour urinary protein and blood urea nitrogen levels and alleviated the pathological damage caused by adenine. Moreover, SQW significantly decreased the expression of nephrin and increased the expression of WT1 and AQP1 in the kidney of mice treated with adenine. We observed that SQW did not effectively reduce the high level of proteinuria in AQP1−/− mice indicating the prominent role of AQP1 in the SQW-ameliorating pathway. Transmission electron microscopy (TEM) images indicated the food processes effacement in AQP1−/− mice were not lessened by SQW. In conclusion, podocyte injury could alter the pathological nature of the kidney, and SQW administration relieves the nature of pathogenesis by activating AQP1.
Collapse
|
12
|
Cui L, Bao H, Liu Z, Man X, Liu H, Hou Y, Luo Q, Wang S, Fu Q, Zhang H. hUMSCs regulate the differentiation of ovarian stromal cells via TGF-β 1/Smad3 signaling pathway to inhibit ovarian fibrosis to repair ovarian function in POI rats. Stem Cell Res Ther 2020; 11:386. [PMID: 32894203 PMCID: PMC7487655 DOI: 10.1186/s13287-020-01904-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 01/01/2023] Open
Abstract
Objective The basic pathological changes of primary ovarian insufficiency (POI) include ovarian tissue fibrosis and follicular development disorders. The human umbilical cord mesenchymal stem cell (hUMSC) transplantation has been shown an effective method to improve the ovarian function in POI rat model; however, the exact mechanisms are still unclear. The purpose of this study is to investigate whether the recovery of ovarian function in POI rats is related to the inhibition of tissue fibrosis following hUMSC transplantation. Furthermore, the transforming growth factor-β1 (TGF-β1) signaling pathway is explored to determine the mechanisms of ovarian function recovery through its inhibition of tissue fibrosis. Methods The primary ovarian insufficiency (POI) rat model was established by intraperitoneal injection of chemotherapy drug cisplatin (CDDP) for 7 days. The levels of serum sex hormones were measured using enzyme-linked immunosorbent assay (ELISA). The tissue fibrosis in the ovary was examined using Masson staining and Sirius red staining. The collagen fibers in the ovarian tissues were detected by Western blot analysis. To investigate the mechanisms of ovarian function recovery following hUMSC transplantation, ovarian stromal cells were isolated from the ovarian cortex of immature rats. The expression of Cytochrome P450 17A1 (Cyp17a1) and fibrosis marker of alpha smooth muscle actin (α-SMA) in ovarian stromal cells was examined using immunofluorescence analysis. Also, the protein levels of Cyp17a1 and α-SMA in ovarian stromal cells were examined by Western blot analysis. The expression of TGF-β1 and Smad3 signals was measured by Western blot and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis. Results The results show that the function of the ovary in POI rats was significantly improved after hUMSC transplantation. The expression of fibrosis markers (α-SMA) and production of Collagen Type I (Collagen I) and Collagen Type III (Collagen III) in POI rats were significantly inhibited in POI rats following hUMSC transplantation. In the cultured ovarian stromal cells, the decrease of TGF-β1 and p-Smad3 protein expression was observed in hUMSC-treated POI rats. The treatment with TGF-β1 inhibitor of SB431542 further confirmed this signal pathway was involved in the process. Conclusion Our study demonstrated that the TGF-β1/Smad3 signaling pathway was involved in the inhibition of ovarian tissue fibrosis, which contributed to the restoration of ovarian function in POI rats following hUMSC transplantation.
Collapse
Affiliation(s)
- Linlu Cui
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China.,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongchu Bao
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Zhongfeng Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, Shandong, China
| | - Xuejing Man
- Department of Clinical Medicine, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong, China
| | - Hongyuan Liu
- Clinical Medical School, Binzhou Medical University, Yantai, Shandong, China
| | - Yun Hou
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Qianqian Luo
- College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Siyuan Wang
- Clinical Medical School, Binzhou Medical University, Yantai, Shandong, China
| | - Qiang Fu
- School of pharmacy, Binzhou Medical University, Yantai, Shandong, China.
| | - Hongqin Zhang
- College of Basic Medicine & Institute of Reproductive Diseases, Binzhou Medical University, Yantai, 264003, Shandong, China. .,College of Basic Medicine, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
13
|
Zeng X, Cai G, Liang T, Li Q, Yang Y, Zhong X, Zou X, Qin M, Mi Z. Rhubarb and Astragalus Capsule Attenuates Renal Interstitial Fibrosis in Rats with Unilateral Ureteral Obstruction by Alleviating Apoptosis through Regulating Transforming Growth Factor beta1 (TGF-β1)/p38 Mitogen-Activated Protein Kinases (p38 MAPK) Pathway. Med Sci Monit 2020; 26:e920720. [PMID: 32205836 PMCID: PMC7111584 DOI: 10.12659/msm.920720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Rhubarb and astragalus capsule (RAC) has been used in the clinical treatment of chronic kidney disease for decades. However, the mechanism of RAC has not been fully elucidated. This study aimed to investigate the protective effect and mechanisms of RAC on unilateral ureteral obstruction (UUO)-induced renal interstitial fibrosis. MATERIAL AND METHODS The main components of RAC are detected by high-performance liquid phase (HPLC). A rat model of UUO was established, and a subset of rats underwent treatment with RAC. Renal function and renal pathology were examined at 14 days and 21 days after the UUO operation. Renal cell apoptosis was detected by TUNEL staining. The levels of Bcl-2 and Bax in the kidney were examined by western blotting, and the levels of collagen I, alpha-SMA, transforming growth factor (TGF)-ß1, and p38 MAPK in the kidneys were detected by immunohistochemistry. RESULTS High-performance liquid phase chromatography showed that RAC contained 1.12 mg/g aloe-emodin, 2.25 mg/g rhein, 1.75 mg/g emodin, and 4.50 mg/g chrysophanol. Administration of RAC significantly decreased the levels of urinary N-acetyl-ß-D-glucosaminidase (NAG), serum blood urea nitrogen (BUN), and creatinine (Scr) and also reduced renal tissue damages and interstitial fibrosis induced by UUO in rats. Moreover, the increased levels of collagen I, alpha-SMA, TGF-ß1, p38 MAPK, and the Bax/Bcl-2 ratio, as well as cell apoptosis in the kidney, were induced by UUO, and were all found deceased by RAC treatment. CONCLUSIONS RAC can improve the renal interstitial fibrosis induced by UUO, and the mechanism may be related to inhibition of renal tubular cell apoptosis via TGF-ß1/p38 MAPK pathway.
Collapse
Affiliation(s)
- Xian Zeng
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Guozhen Cai
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Taolin Liang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Qingqing Li
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Yufang Yang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaobin Zhong
- Regenerative Medicine Research Center, Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Xiaoqin Zou
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Mengyuan Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| | - Zhengcheng Mi
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (mainland)
| |
Collapse
|
14
|
Xiaokeping Mixture Attenuates Diabetic Kidney Disease by Modulating TGF- β/Smad Pathway in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9241896. [PMID: 31687039 PMCID: PMC6800893 DOI: 10.1155/2019/9241896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/06/2019] [Indexed: 11/17/2022]
Abstract
Xiaokeping mixture (XKP), a traditional Chinese medicine compound preparation, has achieved widespread use for diabetes mellitus and its kidney damage in clinical practice. The current study was carried out to assess the protective effect of XKP in spontaneous diabetic db/db mice and the underlying mechanism whereby XKP regulates TGF-β/Smad pathway. Male C57BLKS/J db/db mice, 12 weeks old, were randomly divided into 3 groups: the model group, 17.5 mg/kg irbesartan-treated group (IST group), and 8 g/kg XKP-treated group (XKP group), while age-matched db/m mice were selected as a control group. After 8 weeks of administration, serum and urea samples were collected from mice for biochemical tests, while the kidneys were removed for histological analysis. The expression of TGF-β/Smad pathway-related mRNA and protein were measured by RT-PCR and western blot analysis. Treatment with XKP significantly improved renal function and attenuated the pathological change of diabetic kidney disease (DKD) in renal histopathology. Furthermore, the overexpression of TGF-β1, Smad3, and p-Smad3 was inhibited, as well as the reduction of Smad7 and SIP1 was weakened by XKP. In conclusion, these results suggest that XKP could attenuate DKD by modulating TGF-β/Smad pathway.
Collapse
|
15
|
El-Dawla NMQ, Sallam AAM, El-Hefnawy MH, El-Mesallamy HO. E-cadherin and periostin in early detection and progression of diabetic nephropathy: epithelial-to-mesenchymal transition. Clin Exp Nephrol 2019; 23:1050-1057. [PMID: 31104272 DOI: 10.1007/s10157-019-01744-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a severe complication of diabetes mellitus (DM). Many mechanisms are involved in its development; one of these mechanisms is epithelial-to-mesenchymal transition (EMT). During EMT, losing of the epithelial biomarkers like E-cadherin and increasing of mesenchymal biomarkers like periostin are very characteristic. METHODS The study included 19 healthy controls and 71 DN patients categorized according to their urinary albumin-to-creatinine ratio (UACR) into 19 normoalbuminuric (UACR < 30 mg/g), 37 microalbuminuric (UACR 30-300 mg/g), and 15 macroalbuminuric (UACR > 300 mg/g) patients. Fasting plasma glucose (FPG), glycated hemoglobin (HbA1C%), serum creatinine (Cr), and urea were measured. E-cadherin and periostin were measured by ELISA and compared among groups. RESULTS Concerning E-cadherin levels, in comparison to control group, there were significantly decreased in all groups (0.94, 0.52, and 0.14 ng/mL in normoalbuminuria, microalbuminuria, and macroalbuminuria groups; respectively). For periostin levels, nonsignificant increase in normoalbuminuria (0.32 ng/mL) than control group (0.3 ng/mL) was observed. There was a significant increase in other groups with the highest values in macroalbuminuria group (1.66 ng/mL). E-cadherin and periostin were correlated with each other (r = - 0.353, P < 0.001). UACR was negatively correlated with E-cadherin and positively correlated with periostin. ROC curve analyses showed that the AUC to diagnose established microalbuminuria using E-cadherin was 0.998 (95% CI 0. 932-1), and using periostin was 0.833 (95% CI 0.709-0.919). CONCLUSION Serum E-cadherin and periostin could be considered as reliable biomarkers involved in DN pathogenesis and linked to its stages.
Collapse
Affiliation(s)
- Nada M Qamar El-Dawla
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Al-Aliaa M Sallam
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt
| | | | - Hala O El-Mesallamy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo, 11566, Egypt.
| |
Collapse
|
16
|
Wang Y, Mao Y, Zhang X, Liu H, Peng W, Liang L, Shi M, Xiao Y, Zhang Y, Zhang F, Yan R, Guo B. TAK1 may promote the development of diabetic nephropathy by reducing the stability of SnoN protein. Life Sci 2019; 228:1-10. [PMID: 31028803 DOI: 10.1016/j.lfs.2019.04.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/08/2019] [Accepted: 04/23/2019] [Indexed: 10/26/2022]
Abstract
AIMS This study aimed to investigate the role of transforming growth factor-β-activated protein kinase 1(TAK1) in the development of diabetic nephropathy (DN) by regulating the protein stability of Ski-related novel protein N(SnoN). MAIN METHODS A combination of in vivo and in vitro model systems was used to investigate how TAK1 regulated the expression of SnoN protein in DN. The study determined the effects of modulating the expression or activity of TAK1 on the SnoN protein level and its influence on the epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) deposition. KEY FINDINGS Under the high-glucose condition, the activation of TGF-β1/TAK1-induced phosphorylation and ubiquitination of SnoN protein resulted in reduced SnoN protein level as a consequence of enhanced SnoN degradation, which promoted EMT and ECM deposition in renal tubular epithelial cells. The study showed that TAK1 impaired SnoN protein level by decreasing the protein stability of SnoN. SIGNIFICANCE TAK1 mediated the phosphorylation of SnoN, resulting in SnoN ubiquitination and eventual degradation, which enhanced EMT and ECM deposition to promote renal fibrosis during DN.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yanwen Mao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Xiaohuan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Huiming Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Wei Peng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Luqun Liang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Mingjun Shi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Ying Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Yingying Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Fan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China
| | - Rui Yan
- Department of Nephrology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Bing Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou 550025, China; Department of Pathophysiology, Guizhou Medical University, Guiyang, Guizhou 550025, China; Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550025, China.
| |
Collapse
|
17
|
Effect of Kangxianling Decoction on Expression of TGF- β1/Smads and Extracellular Matrix Deposition. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5813549. [PMID: 30713574 PMCID: PMC6332943 DOI: 10.1155/2019/5813549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/18/2018] [Indexed: 01/27/2023]
Abstract
Kangxianling (KXL) decoction is a traditional Chinese herbal formulation which has been used to treat early and midterm chronic renal failure. Renal fibrosis is a common characteristic of progressive chronic kidney diseases (CKD). The formation of renal fibrosis is caused by kidney trauma, infection, and immune response. The pathophysiological mechanism of renal fibrosis was mainly due to increased collagen synthesis in the kidney, decreased degradation, and a large amount of extracellular matrix (ECM) deposition. The purpose of this study was intended to evaluate the effect of Kangxianling decoction on expression of TGF-β1/Smad signaling pathway in renal fibrosis rats. 50 specific pathogen-free Sprague Dawley (SPF SD) rats were randomly divided into five groups: control group, sham group, 5/6 nephrectomy model group, 5/6 nephrectomy model plus KXL decoction (21g /kg) group, and 5/6 nephrectomy model plus Losartan Potassium (LP) (33.3 g/kg) group. The rats were all sacrificed after two months and the left kidney tissue was sampled. HE staining was used to observe the renal pathological changes and the score of kidney damage was made. Masson staining was used to observe the degree of renal fibrosis. Immunohistochemical staining, western blot, and qRT-PCR were used to detect the expression levels of related molecules in TGF-β1/Smad signaling pathway. The results suggested that KXL could lighten renal histopathology damage, downregulate the expression of TGF-β1 (transforming growth factor-β1), Smad2/3, CTGF (connective tissue growth factor), Collagen I, and Collagen III, and upregulate the expression level of Smad7.
Collapse
|
18
|
Zhu CZ, Doyle KJ, Nikkel AL, Olsen L, Namovic MT, Salte K, Widomski D, Su Z, Donnelly-Roberts DL, Gopalakrishnan MM, McGaraughty S. Short-term oral gavage administration of adenine induces a model of fibrotic kidney disease in rats. J Pharmacol Toxicol Methods 2018; 94:34-43. [DOI: 10.1016/j.vascn.2018.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/28/2018] [Accepted: 04/19/2018] [Indexed: 11/25/2022]
|
19
|
NLRP1 promotes TGF-β1-induced myofibroblast differentiation in neonatal rat cardiac fibroblasts. J Mol Histol 2018; 49:509-518. [PMID: 30120609 DOI: 10.1007/s10735-018-9789-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/27/2018] [Indexed: 12/15/2022]
Abstract
Nuclear localization leucine-rich-repeat protein 1 (NLRP1) is a member of Nod-like receptors (NLRs) family. Recent studies have reported that NLRP1 is involved in various diseases, especially in cardiovascular diseases. However, the effect of NLRP1 on cardiac fibrosis remains unclear. In this study, NLRP1 overexpression and NLRP1 silencing constructs were transfected into neonatal rat cardiac fibroblasts induced by TGF-β1 for 48 h to investigate the effect of NLRP1 in cardiac fibrosis and its molecular mechanisms. Cardiac fibroblasts were transfected with NLRP1 and then cultured in the presence and absence of TGF-β1and Smad3 inhibitor (SIS3). Our data indicated that NLRP1 not only promoted fibroblast activation and myofibroblast differentiation, but also upregulated the mRNA and protein levels of α-SMA in the TGF-β1-treated neonatal rat cardiac fibroblasts. Overexpressing NLRP1 in TGF-β1-induced cardiac fibroblasts upregulated the mRNA and protein levels of Collagen I, Collagen III, and connective tissue growth factor. Moreover, NLRP1 upregulated the protein levels of Smad2, Smad3, and Smad4 in nuclei of fibroblasts, and attenuated levels of phosphorylated Smad2 and Smad3 in the cytoplasm of fibroblasts induced by TGF-β1. In addition, the increase in fibrotic genes and Smad proteins was significantly reduced in the presence of SIS3. Our findings illustrated that NLRP1 promoted myofibroblast differentiation and excessive ECM production in TGF-β1-induced neonatal cardiac fibroblasts through directly targeting TGF-β1/Smad signaling pathways.
Collapse
|
20
|
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292:76-83. [PMID: 30017632 DOI: 10.1016/j.cbi.2018.07.008] [Citation(s) in RCA: 685] [Impact Index Per Article: 114.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is considered as a crucial mediator in tissue fibrosis and causes tissue scarring largely by activating its downstream small mother against decapentaplegic (Smad) signaling. Different TGF-β signalings play different roles in fibrogenesis. TGF-β1 directly activates Smad signaling which triggers pro-fibrotic gene overexpression. Excessive studies have demonstrated that dysregulation of TGF-β1/Smad pathway was an important pathogenic mechanism in tissue fibrosis. Smad2 and Smad3 are the two major downstream regulator that promote TGF-β1-mediated tissue fibrosis, while Smad7 serves as a negative feedback regulator of TGF-β1/Smad pathway thereby protects against TGF-β1-mediated fibrosis. This review presents an overview of the molecular mechanisms of TGF-β/Smad signaling pathway in renal, hepatic, pulmonary and cardiac fibrosis, followed by an in-depth discussion of their molecular mechanisms of intervention effects both in vitro and in vivo. The role of TGF-β/Smad signaling pathway in tumor or cancer is also discussed. Additionally, the current advances also highlight targeting TGF-β/Smad signaling pathway for the prevention of tissue fibrosis. The review reveals comprehensive pathophysiological mechanisms of tissue fibrosis. Particular challenges are presented and placed within the context of future applications against tissue fibrosis.
Collapse
Affiliation(s)
- He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|