1
|
Dong R, Jiang G, Tian Y, Shi X. Identification of immune-related biomarkers and construction of regulatory network in patients with atherosclerosis. BMC Med Genomics 2022; 15:245. [PMID: 36437453 PMCID: PMC9703734 DOI: 10.1186/s12920-022-01397-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND More and more evidence has established the crucial roles of the innate and adaptive immune systems in driving atherosclerosis-associated chronic inflammation in arterial blood vessels. Thus, the goal of this research was to determine immune-related biomarkers in atherosclerosis. METHODS In this study, we conducted analysis on the mRNA expression profile of atherosclerosis obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) between atherosclerosis and control samples and immune-related genes (IRGs) were intersected to obtain differentially expressed immune-related genes (DEIRGs). The protein-protein interaction (PPI) network was created by STRING database and hub genes were identified by the MCODE plug-in. Furthermore, the receiver operating characteristic (ROC) curve was executed to verify the diagnostic value of the hub genes, and microRNA (miRNA)-gene-transcription factor (TF) regulatory networks were used to explain the regulatory mechanism of hub genes in atherosclerosis. Finally, qRT-PCR was performed to identify the mRNA levels of the target genes. RESULTS A total of 199 overlapping genes were screened out as DEIRGs by intersecting the DEGs and IRGs. Then, 6 hub genes with high diagnostic value (IFIH1, IFIT1, IFIT2, IFIT3, ISG15 and OAS3) were identified via PPI network and ROC curve. Finally, miRNA-gene-TF networks revealed the regulatory mechanism of diagnostic genes.We used the carotid artery of AS patients and normal human carotid artery plaque samples for qRT-PCR verification, and the results showed that the hub gene had the same trend. CONCLUSION Our study identified IFIH1, IFIT1, IFIT2, IFIT3, ISG15 and OAS3 as immune-related hub genes of atherosclerosis. These genes may serve as potential therapeutic targets for atherosclerosis patients.
Collapse
Affiliation(s)
- Ruoyu Dong
- Department of Vascular Surgery, Hebei Provincial People's Hospital, Shijiazhuang, 050000, China
| | - Guangwei Jiang
- Department of Vascular Surgery, Hebei Provincial People's Hospital, Shijiazhuang, 050000, China
| | - Yunjie Tian
- The Fourth Hospital of Hebei Medical University Gynecology, Shijiazhuang, 050000, China
| | - Xiaoming Shi
- Department of Vascular Surgery, Hebei Provincial People's Hospital, Shijiazhuang, 050000, China.
| |
Collapse
|
2
|
LOW PREVALENCE OF COVID-19 IN LAOS AND CAMBODIA: DOES DIET PLAY A ROLE? ACTA MEDICA LEOPOLIENSIA 2022. [DOI: 10.25040/aml2022.1-2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The study aims to review the involvement of different dietary habits in Laotian, Cambodian, and Vietnamese populations in reducing COVID19 impact.
Materials and Methods. The methods of collection, systematization, analysis and generalization of information data have been used. The analysis of literature in scientific databases and analytical platforms by the listed keywords has been performed; all relevant references in the found sources have also been reviewed.
Results and Discussion. Coronavirus disease (COVID-19) outbreak is an ongoing pandemic caused by a highly pathogenic human coronavirus known as SARS-CoV2. Current epidemiology reported that more than 500 million cases of COVID-19 occurred in more than 180 countries worldwide. When the upper respiratory tract gets infected by low pathogenetic HCoVs, it typically triggers a mild respiratory disease. In contrast, when the lower airways get infected by highly pathogenic HCoVs, such as SARS-CoV2, acute respiratory distress syndrome (ARDS) may occur and even fatal pneumonia. Such a situation causes the need for an urgent search of effective treatment measures. A very low incidence of SARS-CoV-2 in Laos and Cambodia, as well as low mortality rate due to COVID-19 in Vietnam and Laos, are extremely interesting, especially because of their early exposure to the virus, continuing ties to China, relative poverty, and high population density. The use of several spices and aromatic herbs as natural treatments for several illnesses, including viral infections, has been reported since a long time ago. The research reviewed three integral elements of Laotian, Cambodian, and Vietnamese diets, such as special culinary spices and herbs, coconut oil, and palm oil-rich for saturated fatty acids as well as fermented shrimp paste. Environmental and population genetic causes may be forwarded but moreover local dietary habits may have even a role in this evidence. Therefore, all these items highlight the possibility of a significant contribution of local cuisine and diet into the impact on appropriate anti-inflammatory and immune-resistant mechanisms of the human population.
Conclusions. The review on Vietnam, Cambodia, and Laos inhabitants' diet helped to suggest the dietary factors having the contributing potential of reducing the severity of SARS-CoV-2 symptoms.
Collapse
|
3
|
Scutellariae Radix and Citri Reticulatae Pericarpium Mixture Regulate PPAR γ/RXR Signaling in Reflux Esophagitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6969241. [PMID: 35027935 PMCID: PMC8752236 DOI: 10.1155/2022/6969241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Objective Gastroesophageal reflux disease (GERD) is a gastrointestinal disorder in which stomach contents reflux into the esophagus, causing complications such as mucosal damage. GERD is a very common disease and is on the rise worldwide. The aim of this study was to assess the impact of a Scutellariae Radix and Citri Reticulatae Pericarpium mixture (SC) on esophageal mucosal injury in rats with chronic acid reflux esophagitis (CARE). Methods After inducing reflux esophagitis through surgery, the group was separated and the drug was administered for 2 weeks: normal rats (Normal, n = 8), CARE-induced rats were treated with distilled water (Control, n = 8), CARE-induced rats were treated with vitamin E 30 mg/kg body weight (VitE, n = 8), CARE-induced rats were treated with SC 100 mg/kg body weight (SC100, n = 8), and CARE-induced rats were treated with SC 200 mg/kg body weight (SC200, n = 8). Results SC treatment significantly reduced the degree of esophageal mucosal damage, significantly reduced levels of MDA and MPO, and inhibited the activation of the NF-κB inflammatory pathway by activating the PPARγ/RXR pathway. In addition, SC treatment significantly regulated the expression of arachidonic acid-related proteins (COX-1, COX-2, and PGE2) and modulated the MMP/TIMP proteins in reflux esophagitis. Conclusion Consequently, SC improved the damage to the esophageal mucosa. Also, the anti-inflammatory effects of the SC suggested the inhibition of NF-κB pathway through the activation of the PPARγ/RXR pathway, thereby reducing the expression of inflammation-related cytokines.
Collapse
|
4
|
Hu J, Chen R, An J, Wang Y, Liang M, Huang K. Dauricine Attenuates Vascular Endothelial Inflammation Through Inhibiting NF-κB Pathway. Front Pharmacol 2021; 12:758962. [PMID: 34925018 PMCID: PMC8672219 DOI: 10.3389/fphar.2021.758962] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/29/2021] [Indexed: 02/03/2023] Open
Abstract
Endothelial cells are the fundamental components of blood vessels that regulate several physiological processes including immune responses, angiogenesis, and vascular tone. Endothelial dysfunction contributes to the development of various diseases such as acute lung injury, and endothelial inflammation is a vital part of endothelial dysfunction. Dauricine is an extract isolated from Menispermum dauricum DC, a traditional Chinese medical plant that can be used for pharyngitis. In this work, we found that IL-1β-induced overexpression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin was inhibited by dauricine in primary human umbilical vein endothelial cells (HUVECs). Correspondingly, adhesion of human acute monocytic leukemia cell line (THP-1) to HUVECs was decreased by dauricine. Further studies showed that dauricine inhibited the activation of nuclear factor-κB (NF-κB) pathway in HUVECs stimulated with IL-1β. In vivo, dauricine protected mice from lipopolysaccharide (LPS)-induced acute lung injury. In lung tissues, the activation of NF-κB pathway and the expression of its downstream genes (ICAM-1, VCAM-1, and E-selectin) were decreased by dauricine, consistent with what was found in vitro. In summary, we concluded that dauricine could alleviate endothelial inflammation by suppressing NF-κB pathway, which might serve as an effective candidate for diseases related with endothelial inflammation.
Collapse
Affiliation(s)
- Ji Hu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ru Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie An
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Handan First Hospital, Handan, China
| | - Yilong Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Minglu Liang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Chen Q, Shao X, He Y, Lu E, Zhu L, Tang W. Norisoboldine Attenuates Sepsis-Induced Acute Lung Injury by Modulating Macrophage Polarization via PKM2/HIF-1α/PGC-1α Pathway. Biol Pharm Bull 2021; 44:1536-1547. [PMID: 34602563 DOI: 10.1248/bpb.b21-00457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to investigate the effect of norisopoldine (NOR) on acute lung injury in septic mice. Lipopolysaccharide (LPS) was used to establish sepsis induced acute lung injury (ALI) in mice. The dry and wet weight of mice lung was detected, and the pathological changes of lung were observed by hematoxylin and eosin (H&E) staining. Bronchoalveolar lavage fluid (BALF) was detected. Inflammatory factors in BALF were detected by enzyme-linked immunosorbent assay (ELISA). The polarization of macrophages in lung tissue was detected by flow cytometry. The markers of M1 and M2 macrophages were detected by RT-PCR. LPS induced RAW264.7 cells were treated with NOR. Inflammatory response, macrophage polarization, glycolysis, and M2 pyruvate kinase (PKM2)/hypoxia inducible factor-1α (HIF-1α)/peroxisome proliferator activated receptor-γ co-activator 1-α (PGC-1α) signaling pathway were detected. NOR could effectively alleviate sepsis induced ALI, and reduce the number of total cells, total protein concentration, neutrophils, macrophages in BALF. NOR decreased the level of inflammatory factors and promoted macrophages from M1 to M2 type in vivo and vitro. Moreover, NOR could activated PKM2, and inhibited PKM2 from cytoplasm to nuclear, attenuated HIF-1α expression, and increased PGC-1α and peroxisome proliferator-activated receptor (PPAR)-γ expression. In addition, NOR inhibited glycolysis and promoted oxidative phosphorylation in RAW264.7 cells. Furthermore, PKM2 inhibitors could reverse the effect of NOR on PKM2/HIF-1α/PGC-1α signaling pathway in RAW264.7 cells. NOR alleviated sepsis induced AIL in mice, inhibited the inflammatory response, promote M2 polarization of macrophages through regulating PKM2/HIF-1α/PGC-1α signaling pathway.
Collapse
Affiliation(s)
- Qi Chen
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Xuebo Shao
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Yanyan He
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Enkui Lu
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Lijun Zhu
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| | - Weidong Tang
- Department of Critical Care Medicine, the First People's Hospital of Fuyang District
| |
Collapse
|
6
|
Dai Y, Qiang W, Gui Y, Tan X, Pei T, Lin K, Cai S, Sun L, Ning G, Wang J, Guo H, Sun Y, Cheng J, Xie L, Lan X, Wang D. A large-scale transcriptional study reveals inhibition of COVID-19 related cytokine storm by traditional Chinese medicines. Sci Bull (Beijing) 2021; 66:884-888. [PMID: 33457042 PMCID: PMC7803147 DOI: 10.1016/j.scib.2021.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022]
Affiliation(s)
- Yifei Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Weijie Qiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianli Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Kequan Lin
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen 518055, China
| | - Siwei Cai
- Department of Electronic and Computer Engineering, College of Engineering, Drexel University, Philadelphia 19104, USA
| | - Liang Sun
- Dongli District Jinqiao Street Community Health Service Center, Tianjin 300300, China
| | - Guochen Ning
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongyan Guo
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Yimin Sun
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Jing Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.,Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China.,State Key Laboratory of Membrane Biology, School of Medicine, Tsinghua University, Beijing 100084, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, China.,Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xun Lan
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
7
|
Liang B, Xiang Y, Zhang X, Wang C, Jin B, Zhao Y, Zheng F. Systematic Pharmacology and GEO Database Mining Revealed the Therapeutic Mechanism of Xuefu Zhuyu Decoration for Atherosclerosis Cardiovascular Disease. Front Cardiovasc Med 2020; 7:592201. [PMID: 33425996 PMCID: PMC7793929 DOI: 10.3389/fcvm.2020.592201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Xuefu Zhuyu decoration (XFZYD), as a traditional Chinese compound recipe, has been used to treat atherosclerosis cardiovascular disease (ASCVD) for thousands of years in China, but its effective compounds and underlying treatment molecular mechanism remains promiscuous, which severely limits its clinical application. Methods: The effective components and their targets of XFZYD were predicted and screened based on the Traditional Chinese Medicine System Pharmacology (TCMSP) database. The candidate therapeutic targets of ASCVD were screened by Pharmacogenomics Knowledgebase (PharmGKB) and Comparative Toxicogenomics Database (CTD). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for target proteins were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Differentially expressed genes were identified using the GEO2R online tool. Molecular docking was performed by Schrodinger software. To assess the efficacy of the prediction, human umbilical vein endothelial cells (HUVECs) treated with the effective compound of XFZYD were used as the in vitro model. Results: A total of 108 effective compounds (including quercetin) and 137 candidate therapeutic targets were identified. Analyzing the relationships among effective compounds, candidate therapeutic targets, and signaling pathways, the therapy mechanisms of XFZYD were mainly reflected in the protection of vascular endothelium, anti-inflammatory, antioxidant stress, etc. Accordingly, we found the effective compound of XFZYD (quercetin) decreased intracellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expressions and pro-inflammatory cytokines in HUVECs treated with lipopolysaccharide (LPS), and reduced the adhesion function of HUVECs with monocytes. The inhibitor of the predicted target protein (PTGS2) could further reduce the expressions of VCAM-1, ICAM-1, and TNF-α induced by LPS, and inhibit the adhesion function of HUVECs with monocytes, while PTGS2 agonists partially counteracted the protective effect of quercetin. Conclusions: In this study, the effective components and potential therapeutic targets of XFZYD for ASCVD treatment were explored from the perspective of systemic pharmacology. The effective component quercetin was verified to protect endothelial cells by reducing endothelial inflammatory response and impeding the attachment of monocytes against the predicted therapeutic target PTGS2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Zheng
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Guo Z, Zhao Z, Yang C, Song C. Transfer of microRNA-221 from mesenchymal stem cell-derived extracellular vesicles inhibits atherosclerotic plaque formation. Transl Res 2020; 226:83-95. [PMID: 32659442 DOI: 10.1016/j.trsl.2020.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/03/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
Mesenchymal stem cells (MSCs) have emerged as a cell-based therapy in many diseases including atherosclerosis (AS) due to their capability of immunomodulation and tissue regeneration. However, the pathway for MSCs' antiatherosclerotic activity remains to be elucidated. Here, we test the hypothesis that microRNA-221 (miR-221) from MSC-derived extracellular vesicles (EVs) alleviates AS. Male ApoE-/- mice were fed a high-fat diet for 12 weeks to induce AS, and were then treated with human bone marrow mesenchymal stem cell-derived EVs by tail vein injection. The expression pattern of miR-221 and N-acetyltransferase-1 (NAT1) in AS mice was characterized by quantitative RNA analysis and their interaction was identified by dual-luciferase reporter gene assay. In other studies, human arterial smooth muscle cells treated with oxidized low-density lipoprotein-were co-cultured with MSC-released EVs to evaluate the EV-mediated transfer of miR-221. NAT1 was highly expressed in atherosclerotic lesions. Adenovirus-mediated NAT1 knockdown resulted in a reduced lipid deposition in AS mice. Human bone marrow mesenchymal stem cell -derived EVs carrying miR-221 were internalized by human arterial smooth muscle cells and transferred their miR-221 contents to downregulate the target gene NAT1. Injection of miR-221-containing EVs inhibited lipid deposition in AS mice, in part by downregulating NAT1. The present study provides evidence that miR-221 shuttled by MSC-derived EVs can inhibit atherosclerotic plaque formation in AS model mice, suggesting that miR-221 may serve as a target for improving MSC-based therapeutic strategy against AS.
Collapse
Affiliation(s)
- Ziyuan Guo
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Zhuo Zhao
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Chuang Yang
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Chunli Song
- Department of Cardiovascular Internal Medicine, the Second Hospital of Jilin University, Changchun 130041, P.R. China.
| |
Collapse
|
9
|
Liu D, Song J, Ji X, Liu Z, Li T, Hu B. PRDM16 Upregulation Induced by MicroRNA-448 Inhibition Alleviates Atherosclerosis via the TGF-β Signaling Pathway Inactivation. Front Physiol 2020; 11:846. [PMID: 32848826 PMCID: PMC7431868 DOI: 10.3389/fphys.2020.00846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
The dysregulated expression of microRNAs (miRs) has been associated with pathological and physiological processes of atherosclerosis (AS). In addition, PR domain-containing 16 (PRDM16), a transcriptional mediator of brown fat cell identity and smooth muscle cell activities, may be involved in the hypercholesterolemia during development of AS. The bioinformatic analysis identified a regulatory miR-448 of PRDM16. Hence, the current study aimed to explore whether miR-448 influenced the activities of aortic smooth muscle cell (ASMCs) in AS. We validated that miR-448 was highly expressed in peripheral blood of patients with AS and aortic smooth muscle of AS model mice. Whereas, PRDM16 was downregulated in the aortic smooth muscle of AS model mice. PRDM16 overexpression was observed to inhibit oxidative stress injury and cell proliferation, and promote apoptosis of ASMCs. Mechanistic studies revealed that miR-448 targeted PRDM16 and negatively regulated the PRDM16 expression, while PRDM16 blocked the TGF-β signaling pathway. Furthermore, Downregulated miR-448 alleviated oxidative stress injury, and attenuated ASMC cell proliferation, migration and enhanced cell apoptosis through upregulation of PRDM16. Taken together, silencing of miR-448 upregulates PRDM16 and inactivates the TGF-β signaling pathway, thereby impeding development of AS by repressing the proliferation, migration and invasion of ASMCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
10
|
Cui X, Naveed M, Baig MMFA, Wang W, Mikrani R, Liu Z, Ahmad B, Tang M, Wazir J, Zhou X, Han L. Therapeutic effects of Qianlie Tongli decoction on chronic prostatitis/chronic pelvic pain syndrome induced by peptide T2 in mice. J Pharm Pharmacol 2020; 72:1436-1444. [DOI: 10.1111/jphp.13325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 05/30/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Objectives
This study was undertaken to reveal therapeutic effects and the preliminary mechanism of Chinese medicine formula Qianlie Tongli decoction (QTD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS).
Methods
A total of 50 male C57BL/6 mice were randomly divided into five groups. All groups except the control group were injected subcutaneously T2 peptide emulsion, which induced the CP/CPPS model. After the induction of CP/CPPS, the model group was given normal saline by oral gavage while low-dose, medium-dose and high-dose groups were treated with Chinese medicine formula. Micturition habits and pain behaviour of mice were analysed for each group. Haematoxylin and eosin (H&E) staining was used to investigate prostate inflammation. The serum level of tumour necrosis factor-α (TNF-α) was measured by enzyme-linked immunosorbent assay (ELISA) kit.
Key findings
Chinese medicine formula significantly reduced the number of urine spots and improved pain response frequency in the medium-dose and high-dose group. The high-dose group showed reduced considerably inflammatory lesion and inflammatory cell infiltration than the low-dose and medium-dose groups. Serum levels of TNF-α in the high-dose group were significantly reduced compared with the model group.
Conclusions
The results demonstrated the therapeutic effects of Qianlie Tongli decoction in CP/CPPS mice by analysing clinically relevant symptoms (urinary tract system, pelvic pain and prostate inflammation) and preliminarily explored the inflammatory-related treatment mechanisms by measuring TNF-α.
Collapse
Affiliation(s)
- Xingxing Cui
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Muhammad Naveed
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Mirza Muhammad Faran Ashraf Baig
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Wenlu Wang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Reyaj Mikrani
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Ziwei Liu
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bilal Ahmad
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Meng Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Junaid Wazir
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Xiaohui Zhou
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
- Department of Surgery, Nanjing Shuiximen Hospital, Nanjing, Jiangsu Province, China
- Zhongda Hospital, Affiliated with Southeast University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Pharmacy, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu Province, China
| |
Collapse
|
11
|
Xu Q, Dou C, Liu X, Yang L, Ni C, Wang J, Guo Y, Yang W, Tong X, Huang D. Oviductus ranae protein hydrolysate (ORPH) inhibits the growth, metastasis and glycolysis of HCC by targeting miR-491-5p/PKM2 axis. Biomed Pharmacother 2018; 107:1692-1704. [PMID: 30257387 DOI: 10.1016/j.biopha.2018.07.071] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/30/2018] [Accepted: 07/13/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Oviductus Ranae (OR) is a valuable Chinese crude drug and has been reported to have a range of biological activities. Protein hydrolysate extracted from OR (ORPH) was previously found to have immune regulatory effect and anti-glioma activity. This study was aimed to investigate the effects of ORPH on hepatocellular carcinoma (HCC) progression. METHODS MTT, BrdU, colony formation and transwell assays were used to determine proliferation and mobility of HCC cells in vitro. Glucose consumption and lactate production assays were carried out to measure the glycolysis of HCC cells. The subcutaneous tumor model and lung metastasis model in nude mice were established to detect tumor growth and metastasis of HCC in vivo. The direct binding of miR-491-5p to 3'UTR of pyruvate kinase M2 (PKM2) was confirmed by luciferase reporter assay. RESULTS In vitro experiments showed that ORPH significantly inhibited proliferation, migration, invasion, epithelial-to-mesenchymal transition (EMT) and glycolysis of HCC cells. Moreover, ORPH treatment prominently suppressed HCC growth and metastasis in mice. We demonstrated that ORPH effectively decreased the expression of PKM2 in HCC cells. Forced expression of PKM2 abrogated the inhibitory effects of ORPH on HCC cells. Mechanically, ORPH reduced PKM2 expression in a post-transcriptional manner by up-regulating miR-491-5p. miR-491-5p exhibited a similar tumor suppressive effects with ORPH in HCC cells. Moreover, ORPH exerted its inhibitory effects on HCC cells through regulating miR-491-5p/PKM2 axis. Lastly, decreased miR-491-5p level and increased PKM2 expression were correlated with unfavorable clinical features and poor prognosis of HCC patients. CONCLUSIONS In all, this study reveals that ORPH inhibits the growth, metastasis and glycolysis of HCC cells by targeting miR-491-5p/PKM2 axis. ORPH may be a potential effective anti-tumor agent for HCC.
Collapse
Affiliation(s)
- Qiuran Xu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Changwei Dou
- Department of Hepatobiliary Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China; Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Xin Liu
- Department of Neurosurgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Liu Yang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Chao Ni
- Department of General Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Jiahui Wang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province 250000, China.
| | - Yang Guo
- BengBu Medical College, Bengbu, Anhui Province 233030, China.
| | - Wei Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| | - Dongsheng Huang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang Province 310014, China.
| |
Collapse
|
12
|
Zhou B, Yu Y, Yu L, Que B, Qiu R. Sipi soup inhibits cancer‑associated fibroblast activation and the inflammatory process by downregulating long non‑coding RNA HIPK1‑AS. Mol Med Rep 2018; 18:1361-1368. [PMID: 29901171 PMCID: PMC6072218 DOI: 10.3892/mmr.2018.9144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 04/24/2018] [Indexed: 12/16/2022] Open
Abstract
Sipi soup (SPS), the aqueous extract derived from the root bark of Sophora japonical L, Salix babylonica L., Morus alba L., as well as Amygdalus davidiana (Carr.) C. de Vos, is a traditional Chinese medicine frequently used to prevent and treat infection and inflammation. However, the role of SPS in cancer-associated fibroblasts (CAFs) require further investigation. In the present study, the effects of SPS on fibroblast inactivation and the underlying mechanism were investigated. Reverse transcription-quantitative polymerase chain reaction was used to analyze the mRNA expression levels of fibroblast activation protein (FAP), interleukin (IL)-6, α-smooth muscle actin (α-SMA) and programmed cell death 4 (PDCD4). Flow cytometry was used to evaluate cell apoptosis. Immunofluorescence was used to determine the number of activated fibroblasts. The present study reported that SPS treatment did not affect the proliferative apoptotic potential of fibroblasts. Treatment with HeLa cell culture medium (CM) induced a significant increase in the expression levels of FAP, IL-6 and α-SMA, but reduced the expression of PDCD4. SPS reversed the effects of HeLa CM on the expression of these genes. Analysis with a long non-coding (lnc)RNA array of numerous differentially expressed lncRNAs revealed that the expression levels of the lncRNA homeodomain-interacting protein kinase 1 antisense RNA (HIPK1-AS) were increased in cervicitis tissues and cervical squamous cell carcinoma tissues compared with in normal cervical tissues. HIPK1-AS expression levels were upregulated in response to HeLa CM, but were decreased under SPS treatment. The downregulation of HIPK1-AS expression via short hairpin RNA abolished the effects of HeLa CM on the expression of inflammation-associated genes. The findings of the present study suggested that SPS may prevent the progression of cervical cancer by inhibiting the activation of CAF and the inflammatory process by reducing HIPK1-AS expression.
Collapse
Affiliation(s)
- Bingxiu Zhou
- Department of Obstetrics and Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Yuanyuan Yu
- Department of Chinese Medicine Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Lixia Yu
- Department of Obstetrics and Gynecology, Weihai Maternal and Child Health Hospital, Weihai, Shandong 264200, P.R. China
| | - Binfu Que
- Department of Acupuncture and Moxibustion, Longyan First Hospital, Longyan, Fujian 364000, P.R. China
| | - Rui Qiu
- Department of Acupuncture and Moxibustion, Longyan First Hospital, Longyan, Fujian 364000, P.R. China
| |
Collapse
|