1
|
Viana Dos Santos MB, Braga de Oliveira A, Veras Mourão RH. Brazilian plants with antimalarial activity: A review of the period from 2011 to 2022. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117595. [PMID: 38122914 DOI: 10.1016/j.jep.2023.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Malaria continues to be a serious global public health problem in subtropical and tropical countries of the world. The main drugs used in the treatment of human malaria, quinine and artemisinin, are isolates of medicinal plants, making the use of plants a widespread practice in countries where malaria is endemic. Over the years, due to the increased resistance of the parasite to chloroquine and artemisinin in certain regions, new strategies for combating malaria have been employed, including research with medicinal plants. AIM This review focuses on the scientific production regarding medicinal plants from Brazil whose antimalarial activity was evaluated during the period from 2011 to 2022. 2. METHODOLOGY For this review, four electronic databases were selected for research: Pubmed, ScienceDirect, Scielo and Periódicos CAPES. Searches were made for full texts published in the form of scientific articles written in Portuguese or English and in a digital format. In addition, prospects for new treatments as well as future research that encourages the search for natural products and antimalarial derivatives are also presented. RESULTS A total of 61 publications were encountered, which cited 36 botanical families and 92 species using different Plasmodium strains in in vitro and in vivo assays. The botanical families with the most expressive number of species found were Rubiaceae, Apocynaceae, Fabaceae and Asteraceae (14, 14, 9 and 6 species, respectively), and the most frequently cited species were of the genera Psychotria L. (8) and Aspidosperma Mart. (12), which belong to the families Rubiaceae and Apocynaceae. Altogether, 75 compounds were identified or isolated from 28 different species, 31 of which are alkaloids. In addition, the extracts of the analyzed species, including the isolated compounds, showed a significant reduction of parasitemia in P. falciparum and P. berghei, especially in the clones W2 CQ-R (in vitro) and ANKA (in vivo), respectively. The Brazilian regions with the highest number of species analyzed were those of the north, especially the states of Pará and Amazonas, and the southeast, especially the state of Minas Gerais. CONCLUSION Although many plant species with antimalarial potential have been identified in Brazil, studies of new antimalarial molecules are slow and have not evolved to the production of a phytotherapeutic medicine. Given this, investigations of plants of traditional use and biotechnological approaches are necessary for the discovery of natural antimalarial products that contribute to the treatment of the disease in the country and in other endemic regions.
Collapse
Affiliation(s)
- Maria Beatriz Viana Dos Santos
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil.
| | - Alaíde Braga de Oliveira
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas - PPGCF, Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| | - Rosa Helena Veras Mourão
- Laboratório de Bioprospecção e Biologia Experimental - LabBBEx, Universidade Federal do Oeste do Pará, Rua Vera Paz, s/n, Salé, 68035-110, Santarém, PA, Brazil; Programa de Pós-Graduação Doutorado em Rede de Biodiversidade e Biotecnologia - BIONORTE/Polo Pará. Universidade Federal do Pará, Rua Augusto Corrêa, 01, Guamá, 66075-110, Belém, PA, Brazil
| |
Collapse
|
2
|
Komogortsev AN, Lichitsky BV, Melekhina VG. Novel approach for the synthesis of 2-arylfuro[3,2- b]pyran-3-carbaldehydes based on acid-catalyzed cyclization of allomaltol containing enaminones. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2150975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrey N. Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Boris V. Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| | - Valeriya G. Melekhina
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
3
|
Koumpoura C, Nguyen M, Bijani C, Vendier L, Salina EG, Buroni S, Degiacomi G, Cojean S, Loiseau PM, Benoit-Vical F, García-Sosa AT, Baltas M. Design of Anti-infectious Agents from Lawsone in a Three-Component Reaction with Aldehydes and Isocyanides. ACS OMEGA 2022; 7:35635-35655. [PMID: 36249398 PMCID: PMC9558256 DOI: 10.1021/acsomega.2c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
The first effective synthetic approach to naphthofuroquinones via a reaction involving lawsone, various aldehydes, and three isocyanides under microwave irradiation afforded derivatives in moderate to good yields. In addition, for less-reactive aldehydes, two naphtho-enaminodione quinones were obtained for the first time, as result of condensation between lawsone and isocyanides. X-ray structure determination for 9 and 2D-NMR spectra of 28 confirmed the obtained structures. All compounds were evaluated for their anti-infectious activities against Plasmodium falciparum, Leishmania donovani, and Mycobacterium tuberculosis. Among the naphthofuroquinone series, 17 exhibited comparatively the best activity against P. falciparum (IC50 = 2.5 μM) and M. tuberculosis (MIC = 9 μM) with better (P. falciparum) or equivalent (M. tuberculosis) values to already-known naphthofuroquinone compounds. Among the two naphtho-enaminodione quinones, 28 exhibited a moderate activity against P. falciparum with a good selectivity index (SI > 36) while also a very high potency against L. donovani (IC50 = 3.5 μM and SI > 28), rendering it very competitive to the reference drug miltefosine. All compounds were studied through molecular modeling on their potential targets for P. falciparum, Pfbc1, and PfDHODH, where 17 showed the most favorable interactions.
Collapse
Affiliation(s)
- Christina
L. Koumpoura
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Michel Nguyen
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Christian Bijani
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Laure Vendier
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Elena G. Salina
- Bach
Institute of Biochemistry, Research Center
of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Silvia Buroni
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Giulia Degiacomi
- Department
of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia 27100, Italy
| | - Sandrine Cojean
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Philippe M. Loiseau
- Antiparasite
Chemotherapy, UMR 8076 CNRS BioCIS, Faculty of Pharmacy, University
Paris-Saclay, Châtenay-Malabry 92290, France
| | - Françoise Benoit-Vical
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| | - Alfonso T. García-Sosa
- Department
of Molecular Technology, Institute of Chemistry, University of Tartu, Ravila 14a, Tartu 50411, Estonia
| | - Michel Baltas
- Laboratoire
de Chimie de Coordination du CNRS−UPR8241, Inserm ERL 1289
Team “New antiplasmodial molecules and pharmacological approaches”, 205 route de Narbonne, BP 44099, Toulouse Cedex 31077, France
| |
Collapse
|
4
|
Boeno SI, Vieira IJC, Braz-Filho R, de Souza Passos M, Curcino Vieira MG, do Nascimento MFA, Gontijo DC, de Oliveira AB. Antiplasmodial and cytotoxic effects of the methanol extract, canthinone alkaloids, squalene- and protolimonoid-type triterpenes from Homalolepis suffruticosa roots. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114890. [PMID: 34864128 DOI: 10.1016/j.jep.2021.114890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Different species of the Simaroubaceae family are used in traditional medicine to treat malaria. Among these is Homalolepis suffruticosa (syn. Simaba suffruticosa and Quassia suffruticosa), which is native to Central Brazil and popularly known as calunga. However, there is a lack of investigation concerning its antimalarial effects. AIM OF THE STUDY To investigate the antiplasmodial and cytotoxic effects of the isolated metabolites and methanol extract from H. suffruticosa roots as well as to conduct the dereplication of this extract aiming to characterize its metabolic profile by UPLC-DAD-ESI-MS/MS. MATERIALS AND METHODS Methanol extract of the H. suffruticosa roots and six isolated compounds were evaluated against chloroquine-resistant Plasmodium falciparum W2 strain by the PfLDH method and cytotoxicity in HepG2 cells by the MTT assay. Dereplication of the extract was performed by UPLC-DAD-ESI-MS/MS. RESULTS The six isolated compounds disclosed high to moderate antiplasmodial activity (IC50 0.0548 ± 0.0083 μg/mL to 26.65 ± 2.40 μg/mL) and cytotoxicity was in the range of CC50 0.62 ± 0.33 μg/mL to 56.43 ± 2.54 μg/mL, while 5-metoxycantin-6-one proved to be the most potent constituent of the six assayed ones. The methanol extract of the roots showed high in vitro antiplasmodial activity (IC50 1.88 ± 0.56 μg/mL), moderate cytotoxicity (CC50 41.93 ± 2.30 μg/mL), and good selectivity index (SI = 22.30). Finally, C20 quassinoids and canthin-6-one alkaloids were putatively identified in the H. suffruticosa methanol extract by LC-MS. CONCLUSIONS Taken together, the isolated compounds, mainly the 5-metoxycantin-6-one and the methanol extract from H. suffruticosa roots, disclose good antiplasmodial activity, supporting the ethnopharmacological history of the Simaroubaceae species as traditional antimalarial drugs.
Collapse
Affiliation(s)
- Samyra Imad Boeno
- Laboratório de Ciências Químicas, CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamengo, 2000, Parque Califórnia, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamengo, 2000, Parque Califórnia, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Raimundo Braz-Filho
- Laboratório de Ciências Químicas, CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamengo, 2000, Parque Califórnia, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Michel de Souza Passos
- Laboratório de Ciências Químicas, CCT, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Av. Alberto Lamengo, 2000, Parque Califórnia, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Milena Gonçalves Curcino Vieira
- Instituto Federal de Educação, Ciência e Tecnologia, Rua Dr. Siqueira, 273, Parque Dom Bosco, 28030-130, Campos dos Goytacazes, RJ, Brazil
| | - Maria Fernanda Alves do Nascimento
- Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Douglas Costa Gontijo
- Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil
| | - Alaíde Braga de Oliveira
- Faculdade de Farmácia, Departamento de Produtos Farmacêuticos, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial Inhibitors Targeting Epigenetics or Mitochondria in Plasmodium falciparum: Recent Survey upon Synthesis and Biological Evaluation of Potential Drugs against Malaria. Molecules 2021; 26:molecules26185711. [PMID: 34577183 PMCID: PMC8467436 DOI: 10.3390/molecules26185711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
Despite many efforts, malaria remains among the most problematic infectious diseases worldwide, mainly due to the development of drug resistance by P. falciparum. Over the past decade, new essential pathways have been emerged to fight against malaria. Among them, epigenetic processes and mitochondrial metabolism appear to be important targets. This review will focus on recent evolutions concerning worldwide efforts to conceive, synthesize and evaluate new drug candidates interfering selectively and efficiently with these two targets and pathways. The focus will be on compounds/scaffolds that possess biological/pharmacophoric properties on DNA methyltransferases and HDAC’s for epigenetics, and on cytochrome bc1 and dihydroorotate dehydrogenase for mitochondrion.
Collapse
Affiliation(s)
- Christina L. Koumpoura
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | - Anne Robert
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
| | | | - Michel Baltas
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, Inserm ERL 1289, 205 Route de Narbonne, BP 44099, CEDEX 4, F-31077 Toulouse, France; (C.L.K.); (A.R.)
- Correspondence:
| |
Collapse
|
6
|
do Nascimento MFA, Borgati TF, de Souza LCR, Tagliati CA, de Oliveira AB. In silico, in vitro and in vivo evaluation of natural Bignoniaceous naphthoquinones in comparison with atovaquone targeting the selection of potential antimalarial candidates. Toxicol Appl Pharmacol 2020; 401:115074. [PMID: 32464218 DOI: 10.1016/j.taap.2020.115074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 01/01/2023]
Abstract
The natural naphthoquinones lapachol, α- and β-lapachone are found in Bignoniaceous Brazilian plant species of the Tabebuia genus (synonym Handroanthus) and are recognized for diverse bioactivities, including as antimalarial. The aim of the present work was to perform in silico, in vitro and in vivo studies to evaluating the antimalarial potential of these three naphthoquinones in comparison with atovaquone, a synthetic antimalarial. The ADMET properties of these compounds were predicted in silico by the preADMET program. The in vitro toxicity assays were experimentally determined in immortalized and tumoral cells from different organs. In vivo acute oral toxicity was also evaluated for lapachol. Several favorable pharmacokinetics data were predicted although, as expected, high cytotoxicity was experimentally determined for β-lapachone. Lapachol was not cytotoxic or showed low cytotoxicity to all of the cells assayed (HepG2, A549, Neuro 2A, LLC-PK1, MRC-5), it was nontoxic in the acute oral test and disclosed the best parasite selectivity index in the in vitro assays against chloroquine resistant Plasmodium falciparum W2 strain. On the other hand, α- and β-lapachone were more potent than lapachol in the antiplasmodial assays but with low parasite selectivity due to their cytotoxicity. The diversity of data here reported disclosed lapachol as a promising candidate to antimalarial drug development.
Collapse
Affiliation(s)
- Maria Fernanda Alves do Nascimento
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Tatiane Freitas Borgati
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Larissa Camila Ribeiro de Souza
- Departamento de Inovação Tecnológica, Instituto de Ciências Biológicas, Universidade Federal de Minas, Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Carlos Alberto Tagliati
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas, Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil
| | - Alaíde Braga de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG 31.270-901, Brazil.
| |
Collapse
|