1
|
Zhong W, Li Y, Zhong H, Cheng Y, Chen Q, Zhao X, Liu Z, Li R, Zhang R. Exploring the mechanism of anti-chronic heart failure effect of qiweiqiangxin І granules based on metabolomics. Front Pharmacol 2023; 14:1111007. [PMID: 36860302 PMCID: PMC9968974 DOI: 10.3389/fphar.2023.1111007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Background: Qiweiqiangxin І granules (QWQX І) is a traditional Chinese medicine preparation based on the basic theory of traditional Chinese medicine, which produces a good curative effect in treating chronic heart failure (CHF). However, its pharmacological effect and potential mechanism for CHF remain unknown. Aim of the study: The purpose of this study is to clarify the efficacy of QWQX І and its possible mechanisms. Materials and methods: A total of 66 patients with CHF were recruited and randomly assigned to the control or QWQX І groups. The primary endpoint was the effect of left ventricular ejection fraction (LVEF) after 4 weeks of treatment. The LAD artery of rats was occluded to establish the model of CHF. Echocardiography, HE and Masson staining were performed to evaluate the pharmacological effect of QWQX І against CHF. Ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS) untargeted metabolomics was to screen endogenous metabolites in rat plasma and heart and elucidate the mechanism of QWQX І against CHF. Results: In the clinical study, a total of 63 heart failure patients completed the 4-week follow-up, including 32 in the control group and 31 in QWQX І group. After 4 weeks of treatment, LVEF was significantly improved in QWQX І group compared with the control group. In addition, the patients in QWQX І group had better quality of life than the control group. In animal studies, QWQX І significantly improved cardiac function, decreased B-type natriuretic peptide (BNP) levels, reduced inflammatory cell infiltration, and inhibited collagen fibril rate. Untargeted metabolomic analysis revealed that 23 and 34 differential metabolites were screened in the plasma and heart of chronic heart failure rats, respectively. 17 and 32 differential metabolites appeared in plasma and heart tissue after QWQX І treatment, which were enriched to taurine and hypotaurine metabolism, glycerophospholipid metabolism and linolenic acid metabolism by KEGG analysis. LysoPC (16:1 (9Z)) is a common differential metabolite in plasma and heart, which is produced by lipoprotein-associated phospholipase A2 (Lp-PLA2), hydrolyzes oxidized linoleic acid to produce pro-inflammatory substances. QWQX І regulates the level of LysoPC (16:1 (9Z)) and Lp-PLA2 to normal. Conclusion: QWQX І combined with western medicine can improve the cardiac function of patients with CHF. QWQX І can effectively improve the cardiac function of LAD-induced CHF rats through regulating glycerophospholipid metabolism and linolenic acid metabolism-mediated inflammatory response. Thus, QWQX I might provide a potential strategy for CHF therapy.
Collapse
Affiliation(s)
- Wanru Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yihua Li
- The first clinical medical college, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haixiang Zhong
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuanyuan Cheng
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Chen
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xinjun Zhao
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhongqiu Liu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| | - Rong Li
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| | - Rong Zhang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, School of Pharmaceutical Sciences, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Zhongqiu Liu, ; Rong Li, ; Rong Zhang,
| |
Collapse
|
2
|
Li J, Wang M, Yao L, Lu B, Gui M, Zhou X, Fu D. Yixin Granules Reduce Myocardial Inflammation and Fibrosis in Rats with Heart Failure by Inhibiting the Expression of ADAMTS8. Int Heart J 2023; 64:741-749. [PMID: 37518355 DOI: 10.1536/ihj.22-715] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Yixin granules are medications modified from a Chinese prescription (Sheng Xian Tang) that has been used to alleviate shortness of breath. ADAM metallopeptidase with thrombospondin type 1 motif 8 (ADAMTS8) is upregulated in the myocardium of patients with dilated cardiomyopathy. Its high expression is associated with tumor necrosis factor (TNF) -α and myocardial fibrosis. This study aimed to explore the effect of Yixin granules on heart failure (HF) in rats and whether this effect is correlated with ADAMTS8 to provide new ideas for the treatment of HF.HF rat models were established by ligation of the left anterior descending coronary artery. Model rats were injected with adeno-associated virus vectors for the overexpression of ADAMTS8 and/or treated with Yixin granules for 4 weeks. Hematoxylin-eosin and Masson staining were used to detect myocardial injury and fibrosis, respectively. Reverse transcription polymerase chain reaction, western blotting, and/or enzyme-linked immunosorbent assay were used to detect the expression of ADAMTS8, TNF-α, interleukin (IL) -1β, IL-6, collagen I, collagen III, and α-smooth muscle actin in myocardium. The myocardial infarction area of rats was measured using 2,3,5-triphenyltetrazolium chloride staining.ADAMTS8 was upregulated in the myocardium of HF rats. Yixin granule treatment improved left ventricular contractility and reduced ADAMTS8 expression, myocardial injury, inflammation, and fibrosis in HF rats. ADAMTS8 overexpression aggravated myocardial injury, inflammation, and fibrosis. Moreover, ADAMTS8 overexpression counteracted the cardioprotective effects of Yixin granules.Yixin granules may reduce myocardial inflammation and fibrosis in HF rats by inhibiting the expression of ADAMTS8.
Collapse
Affiliation(s)
- Jianhua Li
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Mingzhu Wang
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Lei Yao
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Bo Lu
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Mingtai Gui
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Xunjie Zhou
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| | - Deyu Fu
- Department of Heart Disease, Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine
| |
Collapse
|
3
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
4
|
Wu J, Tan Y, Kang D, Yu J, Qi J, Wu J, Zhang M. Xiaoyu Jiangzhi capsule protects against heart failure via Ca2+/CaMKII signaling pathways in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
5
|
Mukherjee PK, Efferth T, Das B, Kar A, Ghosh S, Singha S, Debnath P, Sharma N, Bhardwaj PK, Haldar PK. Role of medicinal plants in inhibiting SARS-CoV-2 and in the management of post-COVID-19 complications. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153930. [PMID: 35114450 PMCID: PMC8730822 DOI: 10.1016/j.phymed.2022.153930] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 05/07/2023]
Abstract
BACKGROUND The worldwide corona virus disease outbreak, generally known as COVID-19 pandemic outbreak resulted in a major health crisis globally. The morbidity and transmission modality of COVID-19 appear more severe and uncontrollable. The respiratory failure and following cardiovascular complications are the main pathophysiology of this deadly disease. Several therapeutic strategies are put forward for the development of safe and effective treatment against SARS-CoV-2 virus from the pharmacological view point but till date there are no specific treatment regimen developed for this viral infection. PURPOSE The present review emphasizes the role of herbs and herbs-derived secondary metabolites in inhibiting SARS-CoV-2 virus and also for the management of post-COVID-19 related complications. This approach will foster and ensure the safeguards of using medicinal plant resources to support the healthcare system. Plant-derived phytochemicals have already been reported to prevent the viral infection and to overcome the post-COVID complications like parkinsonism, kidney and heart failure, liver and lungs injury and mental problems. In this review, we explored mechanistic approaches of herbal medicines and their phytocomponenets as antiviral and post-COVID complications by modulating the immunological and inflammatory states. STUDY DESIGN Studies related to diagnosis and treatment guidelines issued for COVID-19 by different traditional system of medicine were included. The information was gathered from pharmacological or non-pharmacological interventions approaches. The gathered information sorted based on therapeutic application of herbs and their components against SARSCoV-2 and COVID-19 related complications. METHODS A systemic search of published literature was conducted from 2003 to 2021 using different literature database like Google Scholar, PubMed, Science Direct, Scopus and Web of Science to emphasize relevant articles on medicinal plants against SARS-CoV-2 viral infection and Post-COVID related complications. RESULTS Collected published literature from 2003 onwards yielded with total 625 articles, from more than 18 countries. Among these 625 articles, more than 95 medicinal plants and 25 active phytomolecules belong to 48 plant families. Reports on the therapeutic activity of the medicinal plants belong to the Lamiaceae family (11 reports), which was found to be maximum reported from 4 different countries including India, China, Australia, and Morocco. Other reports on the medicinal plant of Asteraceae (7 reports), Fabaceae (8 reports), Piperaceae (3 reports), Zingiberaceae (3 reports), Ranunculaceae (3 reports), Meliaceae (4 reports) were found, which can be explored for the development of safe and efficacious products targeting COVID-19. CONCLUSION Keeping in mind that the natural alternatives are in the priority for the management and prevention of the COVID-19, the present review may help to develop an alternative approach for the management of COVID-19 viral infection and post-COVID complications from a mechanistic point of view.
Collapse
Affiliation(s)
- Pulok K Mukherjee
- Institute of Bioresources and Sustainable Development, Imphal-795001, India; School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India.
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Amit Kar
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | - Suparna Ghosh
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Seha Singha
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Pradip Debnath
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal-795001, India
| | | | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata -700 032, India
| |
Collapse
|
6
|
Tan YQ, Chen HW, Li J. Astragaloside IV: An Effective Drug for the Treatment of Cardiovascular Diseases. Drug Des Devel Ther 2020; 14:3731-3746. [PMID: 32982178 PMCID: PMC7507407 DOI: 10.2147/dddt.s272355] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease (CVD), the number one cause of death worldwide, has always been the focus of clinical and scientific research. Due to the high number of deaths each year, it is essential to find alternative therapies that are safe and effective with minimal side effects. Traditional Chinese medicine (TCM) has a long history of significant impact on the treatment of CVDs. The mode of action of natural active ingredients of drugs and the development of new drugs are currently hot topics in research on TCM. Astragalus membranaceus is a commonly used Chinese medicinal herb. Previous studies have shown that Astragalus membranaceus has anti-tumor properties and can regulate metabolism, enhance immunity, and strengthen the heart. Astragaloside IV (AS-IV) is the active ingredient of Astragalus membranaceus, which has a prominent role in cardiovascular diseases. AS-IV can protect against ischemic and hypoxic myocardial cell injury, inhibit myocardial hypertrophy and myocardial fibrosis, enhance myocardial contractility, improve diastolic dysfunction, alleviate vascular endothelial dysfunction, and promote angiogenesis. It can also regulate blood glucose and blood lipid levels and reduce the risk of cardiovascular diseases. In this paper, the mechanism of AS-IV intervention in cardiovascular diseases in recent years is reviewed in order to provide a reference for future research and new drug development.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
- Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing100029, People’s Republic of China
| | - Heng-Wen Chen
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| | - Jun Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing100053, People’s Republic of China
| |
Collapse
|
7
|
Astragalus membranaceus Injection Suppresses Production of Interleukin-6 by Activating Autophagy through the AMPK-mTOR Pathway in Lipopolysaccharide-Stimulated Macrophages. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1364147. [PMID: 32724488 PMCID: PMC7364262 DOI: 10.1155/2020/1364147] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Astragalus membranaceus (AM), used in traditional Chinese medicine, has been shown to enhance immune functions, and recently, its anti-inflammatory effects were identified. However, the mechanisms of action remain unclear. Most studies have shown that autophagy might be involved in the immune response of the body, including inflammation. Here, we developed an inflammatory model by stimulating macrophages with lipopolysaccharides (LPS) to explore the anti-inflammatory effect and mechanisms of AM injection from the perspective of the regulation of autophagy. Immunoblot, immunofluorescence, and ELISA were used to determine the effects of AM injection on the production of interleukin-6 (IL-6) and alterations of autophagy markers. It was found that AM injection reduced the expression of IL-6 in LPS-stimulated macrophages and reversed the LPS-induced inhibition of cellular autophagy. After treatment with inhibitors of signaling pathways, it was shown that LPS downregulated autophagy and upregulated the production of IL-6 in macrophages via the protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway. AM injection reversed the effects of LPS by activating the AMP-activated protein kinase (AMPK) instead of inhibiting Akt. These results were further confirmed by testing activators and siRNA silencing of AMPK. Hence, these 2 distinct signaling molecules appear to exert opposite effects on mTOR, which integrates information from multiple upstream signaling pathways, negatively regulating autophagy. In addition, we demonstrated that autophagy might play a key role in regulating the production of IL-6 by testing activators and inhibitors of autophagy and siRNA silencing of ATG5. These findings showed that AM injection might enhance autophagy by activating AMPK and might further play a repressive effect on the LPS-stimulated expression of IL-6. This study explored the relationship between autophagy, signaling pathways, and the production of inflammatory factors in a model of endotoxin infection and treatment with AM injection.
Collapse
|
8
|
Efficacy and Safety of Bushenjiangya-Optimized Granule for Left Ventricular Diastolic Dysfunction in Hypertensive Patients: A Double-Blind, Randomized, Placebo-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7190352. [PMID: 32508953 PMCID: PMC7254070 DOI: 10.1155/2020/7190352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/14/2019] [Accepted: 02/25/2020] [Indexed: 11/23/2022]
Abstract
Objective The study aimed to evaluate the efficacy and safety of Bushenjiangya-optimized (BSJYO) granule on left ventricular diastolic dysfunction (LVDD) in hypertensive (HTN) patients. Methods 120 patients diagnosed with HTN plus LVDD were randomly assigned to the BSJYO granule group and placebo group, and all patients received basal western medicine (WM) treatment. After eight weeks of treatment, we evaluated echocardiography, traditional Chinese medicine (TCM) syndromes, 24-hour ambulatory blood pressure, liver and kidney functions, and adverse events. Major adverse cardiovascular events (MACEs) were collected at 6-month follow-up. Results Compared with pretreatment, E/Ea (Doppler-derived index of filling pressure and worsening LVDD) significantly decreased significantly after 8 weeks of treatment in the BSJYO granule plus basal WM group (10.52 ± 1.87 vs. 9.49 ± 1.49, P < 0.01), alongside reductions in significantly effective response (SER), effective response (ER), and total effective response (TER = SER + ER) in TCM symptom scores (21.59% vs. 71.70%, P < 0.01). There were no differences between treatment groups in kidney and liver function, early adverse events, or MACE. Conclusion BSJYO granule plus basal WM is an effective and safe therapy for HTN patients with LVDD.
Collapse
|