1
|
Ge X, Xu T, Wang M, Gao L, Tang Y, Zhang N, Zheng R, Zeng W, Chen G, Zhang B, Dai Y, Zhang Y. Chalcone-derivative L6H21 attenuates the OVA-induced asthma by targeting MD2. Eur J Med Res 2024; 29:65. [PMID: 38245791 PMCID: PMC10799361 DOI: 10.1186/s40001-023-01630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024] Open
Abstract
Asthma represents a significant global challenge that affects individuals across all age groups and imposes substantial social and economic burden. Due to heterogeneity of the disease, not all patients obtain benefit with current treatments. The objective of this study was to explore the impact of MD2 on the progression of asthma using L6H21, a novel MD2 inhibitor, to identify potential targets and drug candidates for asthma treatment. To establish an asthma-related murine model and evaluate the effects of L6H21, ovalbumin (OVA) was used to sensitize and challenge mice. Pathological changes were examined with various staining techniques, such as H&E staining, glycogen staining, and Masson staining. Inflammatory cell infiltration and excessive cytokine secretion were evaluated by analyzing BALF cell count, RT-PCR, and ELISA. The TLR4/MD2 complex formation, as well as the activation of the MAPK and NF-кB pathways, was examined using western blot and co-IP. Treatment with L6H21 demonstrated alleviation of increased airway resistance, lung tissue injury, inflammatory cell infiltration and excessive cytokine secretion triggered by OVA. In addition, it also ameliorated mucus production and collagen deposition. In the L6H21 treatment group, inhibition of MAPK and NF-кB activation was observed, along with the disruption of TLR4/MD2 complex formation, in contrast to the model group. Thus, L6H21 effectively reduced the formation of the MD2 and TLR4 complex induced by OVA in a dose-dependent manner. This reduction resulted in the attenuation of MAPKs/NF-κB activation, enhanced suppression of inflammatory factor secretion, reduced excessive recruitment of inflammatory cells, and ultimately mitigated airway damage. MD2 emerges as a crucial target for asthma treatment, and L6H21, as an MD2 inhibitor, shows promise as a potential drug candidate for the treatment of asthma.
Collapse
Affiliation(s)
- Xiangting Ge
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China
| | - Tingting Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Division of Pulmonary Medicine, Key Laboratory of Heart and Lung, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Meiyan Wang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lijiao Gao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yue Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ningjie Zhang
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Rui Zheng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Weimin Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Bing Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
| | - Yuanrong Dai
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Yali Zhang
- Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou, 325600, Zhejiang, China.
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
2
|
Xu HL, Zou LL, Chen MB, Wang H, Shen WM, Zheng QH, Cui WY. Efficacy of probiotic adjuvant therapy for irritable bowel syndrome in children: A systematic review and meta-analysis. PLoS One 2021; 16:e0255160. [PMID: 34358238 PMCID: PMC8345868 DOI: 10.1371/journal.pone.0255160] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Objective Irritable bowel syndrome (IBS) affects children’s quality of life and learning. The purpose of this research was to systematically evaluate the efficacy of probiotic adjuvant therapy for IBS in children. Methods The Web of Science, PubMed, Cochrane Library, EMBASE and Clinical Trials databases were electronically searched for randomized controlled trials (RCTs) published prior to January 2021 exploring the use of probiotic adjuvant therapy for IBS in children. Strict screening and quality evaluations of the eligible articles were performed independently by 2 researchers. Outcome indexes were extracted, and a meta-analysis of the data was performed using RevMan 5.4.1 and STATA 16 software. Finally, the risk of bias in the included studies was assessed with the RCT bias risk assessment tool recommended in the Cochrane Handbook for Systematic Reviews of Interventions (5.1.0). Results A total of nine RCTs were included. In children, probiotics significantly reduced the abdominal pain score (I2 = 95%, SMD = -1.15, 95% (-2.05, -0.24), P = 0.01) and Subject’s Global Assessment of Relief (SGARC) score (I2 = 95%, MD = -3.84, 95% (-6.49, -1.20), P = 0.004), increased the rate of abdominal pain treatment success (I2 = 0%, RR = 3.44, 95% (1.73, 6.87), P = 0.0005) and abdominal pain relief (I2 = 40%, RR = 1.48, 95% (0.96, 2.28), P = 0.08), and reduced the frequency of abdominal pain (I2 = 2%, MD = -0.82, 95% (-1.57, -0.07), P = 0.03). However, we found that it might not be possible to relieve abdominal pain by increasing the daily intake of probiotics. Conclusions Probiotics are effective at treating abdominal pain caused by IBS in children, however, there was no significant correlation between abdominal pain and the amount of probiotics ingested. More attention should be given to IBS in children, and a standardized evaluation should be adopted.
Collapse
Affiliation(s)
- Hua-Lan Xu
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Li-Li Zou
- Department of Nursing, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Mao-bing Chen
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Hua Wang
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
- * E-mail:
| | - Wen-Ming Shen
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Qi-Han Zheng
- Department of Emergency, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| | - Wei-Yan Cui
- Department of ICU, Wujin People Hospital Affiliated with Jiangsu University, and the Wujin Clinical College of Xuzhou Medical University, Changzhou Jiangsu, P. R. China
| |
Collapse
|
3
|
Srivastava M, Kaplan MH. Transcription Factors in the Development and Pro-Allergic Function of Mast Cells. FRONTIERS IN ALLERGY 2021; 2:679121. [PMID: 35387064 PMCID: PMC8974754 DOI: 10.3389/falgy.2021.679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Mark H. Kaplan
| |
Collapse
|
4
|
Airouche S, Beltrami V, Fleury S, Batard T, Bordas-Le Floch V, Stegmann T, Amacker M, Kettner A, Mascarell L. Bet v 1 contiguous overlapping peptides anchored to virosomes with TLR4 agonist enhance immunotherapy efficacy in mice. Clin Exp Allergy 2021; 51:339-349. [PMID: 33368719 DOI: 10.1111/cea.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Whereas sublingual allergen immunotherapy (AIT) is routinely performed without any adjuvant or delivery system, there is a strong scientific rationale to better target the allergen(s) to oral dendritic cells known to support regulatory immune responses by using appropriate presentation platforms. OBJECTIVE To identify a safe presentation platform able to enhance allergen-specific tolerance induction. METHODS Virosomes with membrane-integrated contiguous overlapping peptides (COPs) of Bet v 1 and TLR4 or TLR2/TLR7 agonists were assessed for induction of Bet v 1-specific IgG1, IgG2a and IgE antibodies, hypersensitivity reactions and body temperature drop following subcutaneous injection in naive CD-1 mice. The most promising candidate, Bet v 1 COPs anchored to virosomes with membrane-incorporated TLR4 agonist (Vir.A-Bet v 1 COPs), was further evaluated by the sublingual route in a therapeutic setting in BALB/c mice with birch pollen-induced allergic asthma. Airway hyperresponsiveness, pro-inflammatory cells in bronchoalveolar lavages and polarization of Th cells in the lungs and spleen were then assessed. RESULTS Both types of adjuvanted virosomes coupled to Bet v 1 COPs triggered a boosted Th1 immunity. Given a more favourable safety profile, Vir.A-Bet v 1 COPs were further evaluated and shown to able to fully reverse asthma symptoms and lung inflammation in a sublingual therapeutic model of birch pollen allergy. CONCLUSIONS AND CLINICAL RELEVANCE We report herein for the first time on the capacity of a novel and safe presentation platform, that is virosomes with membrane-integrated TLR4 agonist, to improve dramatically sublingual AIT efficacy in a murine model due to its intrinsic dual properties of targeting and stimulating to further promote anti-allergic immune responses. As such, our study paves the ground for further clinical development of this allergen presentation platform for patients suffering from respiratory allergies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mario Amacker
- Mymetics SA, Epalinges, Switzerland.,Department of Pulmonary Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
5
|
Kaur A, Kaushik D, Piplani S, Mehta SK, Petrovsky N, Salunke DB. TLR2 Agonistic Small Molecules: Detailed Structure-Activity Relationship, Applications, and Future Prospects. J Med Chem 2020; 64:233-278. [PMID: 33346636 DOI: 10.1021/acs.jmedchem.0c01627] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Toll-like receptors (TLRs) are the pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) in microbial species. Among the various TLRs, TLR2 has a special place due to its ability to sense the widest repertoire of PAMPs owing to its heterodimerization with either TLR1 or TLR6, broadening its ligand diversity against pathogens. Various scaffolds are reported to activate TLR2, which include naturally occurring lipoproteins, synthetic lipopeptides, and small heterocyclic molecules. We described a detailed SAR in TLR2 agonistic scaffolds and also covered the design and chemistry for the conjugation of TLR2 agonists to antigens, carbohydrates, polymers, and fluorophores. The approaches involved in delivery of TLR2 agonists such as lipidation of antigen, conjugation to polymers, phosphonic acids, and other linkers to achieve surface adsorption, liposomal formulation, and encapsulating nanoparticles are elaborated. The crystal structure analysis and computational modeling are also included with the structural features that facilitate TLR2 activation.
Collapse
Affiliation(s)
- Arshpreet Kaur
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Deepender Kaushik
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Sakshi Piplani
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Surinder K Mehta
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale, Australia 5046.,College of Medicine and Public Health, Flinders University, Bedford Park, Australia, 5042
| | - Deepak B Salunke
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.,National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials, Panjab University, Chandigarh 160014, India
| |
Collapse
|
6
|
Janovec V, Hodek J, Clarova K, Hofman T, Dostalik P, Fronek J, Chlupac J, Chaperot L, Durand S, Baumert TF, Pichova I, Lubyova B, Hirsch I, Weber J. Toll-like receptor dual-acting agonists are potent inducers of PBMC-produced cytokines that inhibit hepatitis B virus production in primary human hepatocytes. Sci Rep 2020; 10:12767. [PMID: 32728070 PMCID: PMC7392756 DOI: 10.1038/s41598-020-69614-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Recombinant interferon-α (IFN-α) treatment functionally cures chronic hepatitis B virus (HBV) infection in some individuals and suppresses virus replication in hepatocytes infected in vitro. We studied the antiviral effect of conditioned media (CM) from peripheral blood mononuclear cells (PBMCs) stimulated with agonists of Toll-like receptors (TLRs) 2, 7, 8 and 9. We found that CM from PBMCs stimulated with dual-acting TLR7/8 (R848) and TLR2/7 (CL413) agonists were more potent drivers of inhibition of HBe and HBs antigen secretion from HBV-infected primary human hepatocytes (PHH) than CM from PBMCs stimulated with single-acting TLR7 (CL264) or TLR9 (CpG-B) agonists. Inhibition of HBV in PHH did not correlate with the quantity of PBMC-produced IFN-α, but it was a complex function of multiple secreted cytokines. More importantly, we found that the CM that efficiently inhibited HBV production in freshly isolated PHH via various cytokine repertoires and mechanisms did not reduce covalently closed circular (ccc)DNA levels. We confirmed our data with a cell culture model based on HepG2-NTCP cells and the plasmacytoid dendritic cell line GEN2.2. Collectively, our data show the importance of dual-acting TLR agonists inducing broad cytokine repertoires. The development of poly-specific TLR agonists provides novel opportunities towards functional HBV cure.
Collapse
Affiliation(s)
- Vaclav Janovec
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic.,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Jan Hodek
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Kamila Clarova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Tomas Hofman
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic.,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Pavel Dostalik
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic
| | - Jiri Fronek
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021, Prague, Czech Republic.,Department of Anatomy, Second Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
| | - Jaroslav Chlupac
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, 14021, Prague, Czech Republic.,Department of Anatomy, Second Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
| | - Laurence Chaperot
- CNRS UMR5309, Inserm U1209, CHU Grenoble Alpes, IAB, EFS, Université Grenoble Alpes, 38000, Grenoble, France
| | - Sarah Durand
- Inserm, Institut de Recherche Sur Les Maladies Virales Et Hepatiques UMRS 1110, Universite de Strasbourg, 67000, Strasbourg, France
| | - Thomas F Baumert
- Inserm, Institut de Recherche Sur Les Maladies Virales Et Hepatiques UMRS 1110, Universite de Strasbourg, 67000, Strasbourg, France.,Pole Hepato-Digestif, Institut Hospitalo-Universitaire, Hopitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Iva Pichova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Barbora Lubyova
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic
| | - Ivan Hirsch
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25150, Vestec, Czech Republic. .,IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic. .,Institute of Molecular Genetics of the Czech Academy of Sciences, 14220, Prague, Czech Republic.
| | - Jan Weber
- IOCB & Gilead Research Center, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Science, 16610, Prague, Czech Republic.
| |
Collapse
|
7
|
Caslin HL, Kiwanuka KN, Haque TT, Taruselli MT, MacKnight HP, Paranjape A, Ryan JJ. Controlling Mast Cell Activation and Homeostasis: Work Influenced by Bill Paul That Continues Today. Front Immunol 2018; 9:868. [PMID: 29755466 PMCID: PMC5932183 DOI: 10.3389/fimmu.2018.00868] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 01/13/2023] Open
Abstract
Mast cells are tissue resident, innate immune cells with heterogenous phenotypes tuned by cytokines and other microenvironmental stimuli. Playing a protective role in parasitic, bacterial, and viral infections, mast cells are also known for their role in the pathogenesis of allergy, asthma, and autoimmune diseases. Here, we review factors controlling mast cell activation, with a focus on receptor signaling and potential therapies for allergic disease. Specifically, we will discuss our work with FcεRI and FγR signaling, IL-4, IL-10, and TGF-β1 treatment, and Stat5. We conclude with potential therapeutics for allergic disease. Much of these efforts have been influenced by the work of Bill Paul. With many mechanistic targets for mast cell activation and different classes of therapeutics being studied, there is reason to be hopeful for continued clinical progress in this area.
Collapse
Affiliation(s)
- Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Kasalina N Kiwanuka
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Tamara T Haque
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Marcela T Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - H Patrick MacKnight
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Ignacio BJ, Albin TJ, Esser-Kahn AP, Verdoes M. Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjug Chem 2018; 29:587-603. [PMID: 29378134 PMCID: PMC10642707 DOI: 10.1021/acs.bioconjchem.7b00808] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are vital elements of the mammalian immune system that function by recognizing pathogen-associated molecular patterns (PAMPs), bridging innate and adaptive immunity. They have become a prominent therapeutic target for the treatment of infectious diseases, cancer, and allergies, with many TLR agonists currently in clinical trials or approved as immunostimulants. Numerous studies have shown that conjugation of TLR agonists to other molecules can beneficially influence their potency, toxicity, pharmacokinetics, or function. The functional properties of TLR agonist conjugates, however, are highly dependent on the ligation strategy employed. Here, we review the chemical structural requirements for effective functional TLR agonist conjugation. In addition, we provide similar analysis for those that have yet to be conjugated. Moreover, we discuss applications of covalent TLR agonist conjugation and their implications for clinical use.
Collapse
Affiliation(s)
- Bob J. Ignacio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Tyler J. Albin
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Aaron P. Esser-Kahn
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
9
|
Schülke S. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses. Front Immunol 2018; 9:455. [PMID: 29616018 PMCID: PMC5867300 DOI: 10.3389/fimmu.2018.00455] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/20/2018] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) are gatekeepers of the immune system that control induction and polarization of primary, antigen-specific immune responses. Depending on their maturation/activation status, the molecules expressed on their surface, and the cytokines produced DCs have been shown to either elicit immune responses through activation of effector T cells or induce tolerance through induction of either T cell anergy, regulatory T cells, or production of regulatory cytokines. Among the cytokines produced by tolerogenic DCs, interleukin 10 (IL-10) is a key regulatory cytokine limiting und ultimately terminating excessive T-cell responses to microbial pathogens to prevent chronic inflammation and tissue damage. Because of their important role in preventing autoimmune diseases, transplant rejection, allergic reactions, or in controlling chronic inflammation DCs have become an interesting tool to modulate antigen-specific immune responses. For the treatment of allergic inflammation, the aim is to downregulate allergen-specific T helper 2 (Th2) responses and the associated clinical symptoms [allergen-driven Th2 activation, Th2-driven immunoglobulin E (IgE) production, IgE-mediated mast cell and basophil activation, allergic inflammation]. Here, combining the presentation of allergens by DCs with a pro-tolerogenic, IL-10-producing phenotype is of special interest to modulate allergen-specific immune responses in the treatment of allergic diseases. This review discusses the reported strategies to induce DC-derived IL-10 secretion for the suppression of allergen-specific Th2-responses with a focus on IL-10 treatment, IL-10 transduction, and the usage of both whole bacteria and bacteria-derived components. Interestingly, while IL-10-producing DCs induced either by IL-10 treatment or IL-10 transduction are arrested in an immature/semi-mature state, treatment of DCs with live or killed bacteria as well as isolated bacterial components results in the induction of both anti-inflammatory IL-10 and pro-inflammatory, Th1-promoting IL-12 secretion often paralleled by an enhanced expression of co-stimulatory molecules on the stimulated DCs. By the secretion of DC-derived exosomes or CC-chemokine ligand 18, as well as the expression of inhibitory molecules like cytotoxic T lymphocyte-associated antigen 4, TNF receptor superfamily member 4, Ig-like transcript-22/cluster of differentiation 85, or programmed death-1, IL-10-producing DCs have been repeatedly shown to suppress antigen-specific Th2-responses. Therefore, DC-based vaccination approaches hold great potential to improve the treatment of allergic diseases.
Collapse
Affiliation(s)
- Stefan Schülke
- Vice President's Research Group 1, Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|