1
|
Gu Y, Lou Y, Zhou Z, Zhao X, Ye X, Wu S, Li H, Ji Y. Resveratrol for inflammatory bowel disease in preclinical studies: a systematic review and meta-analysis. Front Pharmacol 2024; 15:1411566. [PMID: 38948464 PMCID: PMC11211549 DOI: 10.3389/fphar.2024.1411566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a chronic condition that can be managed with treatment, but it is challenging to get IBD cured. Resveratrol, a non-flavonoid polyphenolic organic compound derived from various plants, has a potential effect on IBD. The current research was set out to investigate the therapeutic effects of resveratrol on animal models of IBD. Methods: A comprehensive search of PubMed, Embase, Web of Science, and Chinese databases was performed. The literature search process was completed independently by two people and reviewed by a third person. The risk of bias in the included literature was assessed using the Collaborative Approach to Meta Analysis and Review of Animal Data from Experimental Stroke (CAMARADES) 10-point quality checklist. The meta-analysis utilized Review Manager 5.4 software to evaluate the efficacy of resveratrol, with histopathological index as the primary outcome measure. Subgroup analysis was conducted based on this indicator. Additionally, meta-analyses were carried out on different outcomes reported in the literature, including final disease activity index, final body weight change, colon length, splenic index, and inflammatory factors. Results: After conducting a thorough literature search and selection process, a total of 28 studies were ultimately included in the analysis. It was found that over half of the selected studies had more than five items with low risk of bias in the bias risk assessment. Relevant datas from included literature indicated that the histopathological index of the resveratrol group was significantly lower than that of the control group (WMD = -2.58 [-3.29, -1.87]). Subgroup analysis revealed that higher doses of resveratrol (>80 mg/kg) had a better efficacy (WMD = -3.47 [-4.97, -1.98]). Furthermore, The data summary and quantitative analysis results of SI and colon length also showed that resveratrol was effective in alleviating intestinal mucosal pathological injury of IBD. In terms of biochemical indicators, the summary analysis revealed that resveratrol affected interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), interferon-γ (IFN-γ), malondialdehyde (MDA), myeloperoxidase (MPO), superoxide dismutase (SOD), and prostaglandin E2 (PGE2) significantly. These effects may be attributed to the mechanism of resveratrol in regulating immune response and inhibiting oxidative stress. Conclusion: This review suggests that resveratrol demonstrated a notable therapeutic impact in preclinical models of IBD, particularly at doses exceeding 80 mg/kg. This efficacy is attributed to the protective mechanisms targeting the intestinal mucosa involved in the pathogenesis of IBD through various pathways. As a result, resveratrol holds promising prospects for potential clinical use in the future.
Collapse
Affiliation(s)
- Yuting Gu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yijie Lou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhanyi Zhou
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuan Zhao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Ye
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwen Wu
- Department of Acupuncture and Moxibustion, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhenjiang, China
| | - Haitao Li
- Department of Digestive System, Jinhua Municipal Hospital of Traditional Chinese Medicine, Jinhua, China
| | - Yunxi Ji
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Department of General Practice, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Yu B, Wang Y, Tan Z, Hong Z, Yao L, Huang S, Li Z, Zhang L, Li H. Resveratrol ameliorates DSS-induced ulcerative colitis by acting on mouse gut microbiota. Inflammopharmacology 2024; 32:2023-2033. [PMID: 38492181 DOI: 10.1007/s10787-024-01456-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE AND DESIGN Ulcerative colitis (UC) is a multi-faceted, recurrent immune disorder caused by dextran sulfate sodium (DSS). The intestinal microbiota has multiple functions in the host, so UC requires long-term potent medication. The effect of resveratrol (RSV) has seldom been reported, and this study researched that. Herein, the effect of RSV and Grape seed oil that anti-inflammatory ability in experimental mice was explored, also why RSV altered Gut Microbiota has been researched. MATERIALS AND METHODS In this experiment, the effects of experimental drugs on colon length in mice with DSS-induced colitis were compared. H&E Staining was performed on serial sections of colon tissues and histological scores were determined for all groups. The expression of cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) in the colon tissue of mice was detected by immunohistochemical staining. In the end, the α-diversity index, sobs index, and rarefaction curve of the cecal and colon microbiota of different groups of mice were measured. Bray-Curtis-based Venn diagram of PCoA (principal coordinate analysis) and OTUs distribution in mouse gut microbiota were obtained. RESULTS The results showed that the use of 40 mg/kg RSV (high dose) significantly reduced the severity of UC. The use of 10 mg/kg RSV (low dose) significantly reduced the effect of shortened colon length in DSS mice. Compared with the DSS-treated group, the levels of COX-2 and TNF-α in the colon tissues of RSV + DSS-treated mice were significantly decreased. According to this experiment, 19 mouse gut microbiota species had a relative abundance greater than 0.1%, with Beerella, Bacteroides, Helicobacter, Oscillator, and cecum pylori being more abundant in the colon than in the colon. A higher relative abundance of Lachnospira NK4A136 was observed in DSS and RSV groups compared with the control group, whereas the opposite was observed for Alloprevotella. This proves that resveratrol increases the uniformity and diversity of gut microbes to a certain extent, and has a protective effect on the gut.
Collapse
Affiliation(s)
- Bing Yu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, China
| | - Ying Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zekai Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zhengyi Hong
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lewen Yao
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shiyuan Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Zexi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lanyue Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Hui Li
- Department of Traditional Chinese Medicine, Institute of Guangdong Geriatric, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- School of Biomedical and Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Erol Doğan Ö, Karaca Çelik KE, Baş M, Alan EH, Çağın YF. Effects of Mediterranean Diet, Curcumin, and Resveratrol on Mild-to-Moderate Active Ulcerative Colitis: A Multicenter Randomized Clinical Trial. Nutrients 2024; 16:1504. [PMID: 38794742 PMCID: PMC11123867 DOI: 10.3390/nu16101504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
This study aimed to investigate the effects of the Mediterranean diet (MD), combined with curcumin and resveratrol supplementation, on disease activity, serum inflammatory markers, and quality of life in patients with mild-to-moderate active ulcerative colitis (UC). This study was designed as a prospective multicenter three-arm randomized controlled trial. Participants were randomized to the MD, MD + curcumin, and MD + resveratrol groups. All participants were placed on the MD for 8 weeks. The MD + curcumin group also received 1600 mg/day of curcumin supplementation, whereas the MD + resveratrol group received 500 mg/day of resveratrol supplementation for 8 weeks. Anthropometric measurements, Truelove-Witts Index, Short Form-36, Inflammatory Bowel Disease Questionnaire, Mediterranean Diet Adherence Scale (MEDAS), and laboratory tests were performed at baseline and postintervention. Within-group comparisons showed that MD, MD + curcumin, and MD + resveratrol interventions were effective in reducing disease activity and inflammation and improving quality of life in individuals with UC (p < 0.05). Between-group comparisons revealed no significant difference in all parameters except for the pain subparameter of SF-36 and the MEDAS score (p < 0.05). The MD is an effective and safe intervention to be used in clinical practice in individuals with UC.
Collapse
Affiliation(s)
- Özge Erol Doğan
- Department of Nutrition and Dietetics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
- Department of Health Care Services, Vocational School of Health Services, Ardahan University, Ardahan 75002, Turkey
| | - Kezban Esen Karaca Çelik
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Murat Baş
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Turkey
| | - Eyüp Hakan Alan
- Department of Gastroenterology, Malatya Training and Research Hospital, Malatya 44330, Turkey
| | - Yasir Furkan Çağın
- Department of Gastroenterology, Faculty of Medicine, İnönü University, Malatya 44280, Turkey
| |
Collapse
|
4
|
Suau R, Garcia A, Bernal C, Llaves M, Schiering K, Jou-Ollé E, Pertegaz A, Garcia-Jaraquemada A, Bartolí R, Lorén V, Vergara P, Mañosa M, Domènech E, Manyé J. Response Variability to Drug Testing in Two Models of Chemically Induced Colitis. Int J Mol Sci 2023; 24:ijms24076424. [PMID: 37047397 PMCID: PMC10094987 DOI: 10.3390/ijms24076424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
The lack of knowledge regarding the pathogenesis of IBD is a challenge for the development of more effective and safer therapies. Although in vivo preclinical approaches are critical for drug testing, none of the existing models accurately reproduce human IBD. Factors that influence the intra-individual response to drugs have barely been described. With this in mind, our aim was to compare the anti-inflammatory efficacy of a new molecule (MTADV) to that of corticosteroids in TNBS and DSS-induced colitis mice of both sexes in order to clarify further the response mechanism involved and the variability between sexes. The drugs were administered preventively and therapeutically, and real-time bioluminescence was performed for the in vivo time-course colitis monitoring. Morphometric data were also collected, and colonic cytokines and acute plasma phase proteins were analyzed by qRT-PCR and ELISA, respectively-bioluminescence images correlated with inflammatory markers. In the TNBS model, dexamethasone worked better in females, while MTADV improved inflammation in males. In DSS-colitis, both therapies worked similarly. Based on the molecular profiles, interaction networks were constructed to pinpoint the drivers of therapeutic response that were highly dependent on the sex. In conclusion, our results suggest the importance of considering sex in IBD preclinical drug screening.
Collapse
Affiliation(s)
- Roger Suau
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Anna Garcia
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Carla Bernal
- Laboratory of Genetic Metabolic Diseases, Faculty of Biosciences, National University of San Marcos, Lima 15088, Peru
| | - Mariona Llaves
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Katharina Schiering
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Eva Jou-Ollé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | - Alex Pertegaz
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
| | | | - Ramon Bartolí
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Hepatology Unit IGTP, 08916 Badalona, Spain
| | - Violeta Lorén
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| | - Patri Vergara
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Department of Physiology, Faculty of Veterinary, Autonomous University of Barcelona, 08193 Bellaterra, Spain
| | - Míriam Mañosa
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Eugeni Domènech
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
- Gastroenterology Department, Germans Trias i Pujol University Hospital, 08916 Badalona, Spain
| | - Josep Manyé
- IBD Research Group, Germans Trias i Pujol Research Institute (IGTP), 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain
| |
Collapse
|
5
|
Simko P, Leskanicova A, Suvakova M, Blicharova A, Karasova M, Goga M, Kolesarova M, Bojkova B, Majerova P, Zidekova N, Barvik I, Kovac A, Kiskova T. Biochemical Properties of Atranorin-Induced Behavioral and Systematic Changes of Laboratory Rats. Life (Basel) 2022; 12:life12071090. [PMID: 35888178 PMCID: PMC9316313 DOI: 10.3390/life12071090] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Atranorin (ATR) is a secondary metabolite of lichens. While previous studies investigated the effects of this substance predominantly in an in vitro environment, in our study we investigated the basic physicochemical properties, the binding affinity to human serum albumin (HSA), basic pharmacokinetics, and, mainly, on the systematic effects of ATR in vivo. Sporadic studies describe its effects during, predominantly, cancer. This project is original in terms of testing the efficacy of ATR on a healthy organism, where we can possibly attribute negative effects directly to ATR and not to the disease. For the experiment, 24 Sprague Dawley rats (Velaz, Únetice, Czech Republic) were used. The animals were divided into four groups. The first group (n = 6) included healthy males as control intact rats (♂INT) and the second group (n = 6) included healthy females as control intact rats (♀INT). Groups three and four (♂ATR/n = 6 and ♀ATR/n = 6) consisted of animals with daily administered ATR (10mg/kg body weight) in an ethanol-water solution per os for a one-month period. Our results demonstrate that ATR binds to HSA near the binding site TRP214 and acts on a systemic level. ATR caused mild anemia during the treatment. However, based on the levels of hepatic enzymes in the blood (ALT, ALP, or bilirubin levels), thiobarbituric acid reactive substances (TBARS), or liver histology, no impact on liver was recorded. Significantly increased creatinine and lactate dehydrogenase levels together with increased defecation activity during behavioral testing may indicate the anabolic effect of ATR in skeletal muscles. Interestingly, ATR changed some forms of behavior. ATR at a dose of 10 mg/kg body weight is non-toxic and, therefore, could be used in further research.
Collapse
Affiliation(s)
- Patrik Simko
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Andrea Leskanicova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Maria Suvakova
- Institute of Chemistry, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Alzbeta Blicharova
- Institute of Pathology, Faculty of Medicine, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Martina Karasova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Kosice, Slovakia;
| | - Michal Goga
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Mariana Kolesarova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Bianka Bojkova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Nela Zidekova
- Biomedical Center Martin (BioMed), Jessenius Faculty of Medicine in Martin, Comenius University, 814 99 Bratislava, Slovakia;
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, 110 00 Prague, Czech Republic;
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, 831 01 Bratislava, Slovakia; (P.M.); (A.K.)
| | - Terezia Kiskova
- Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia; (P.S.); (A.L.); (M.G.); (M.K.); (B.B.)
- Correspondence: ; Tel.: +421-55-234-1216
| |
Collapse
|
6
|
Ye X, Pi X, Zheng W, Cen Y, Ni J, Xu L, Wu K, Liu W, Li L. The Methanol Extract of Polygonatum odoratum Ameliorates Colitis by Improving Intestinal Short-Chain Fatty Acids and Gas Production to Regulate Microbiota Dysbiosis in Mice. Front Nutr 2022; 9:899421. [PMID: 35634366 PMCID: PMC9133717 DOI: 10.3389/fnut.2022.899421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022] Open
Abstract
The potential impacts of methanol extract from Polygonatum odoratum on (YZM) colonic histopathology, gut gas production, short-chain fatty acids (SCFAs), and intestinal microbiota composition were evaluated with dextran sulfate sodium (DSS)-induced colitis mice in this study. These results indicated that YZM increased colon length and ameliorated colonic histopathology in DSS-induced colitis mice. Moreover, YZM administration reversed intestinal microbiota compositions leading to the inhibition of H2S-related bacteria (e.g., Desulfovibrionaceae) and the lower level of H2S and higher contents of SCFA-related bacteria (e.g., Muribaculaceae). Taken together, the effects of methanol extract from Polygonatum odoratum are studied to provide new enlightenment and clues for its application as a functional food and clinical drug. Our study first revealed the relationship between intestinal gas production and key bacteria in ulcerative colitis.
Collapse
Affiliation(s)
- Xuewei Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Xionge Pi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenxin Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Yingxin Cen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jiahui Ni
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Langyu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Kefei Wu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Department of Basic Medical Sciences, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- *Correspondence: Wei Liu,
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
- Lanjuan Li,
| |
Collapse
|
7
|
Liu Q, Lu W, Tian F, Zhao J, Zhang H, Hong K, Yu L. Akkermansia muciniphila Exerts Strain-Specific Effects on DSS-Induced Ulcerative Colitis in Mice. Front Cell Infect Microbiol 2021; 11:698914. [PMID: 34422681 PMCID: PMC8371549 DOI: 10.3389/fcimb.2021.698914] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Akkermansia muciniphila is a commensal bacterium of the gut mucus layer. Although both in vitro and in vivo data have shown that A. muciniphila strains exhibit strain-specific modulation of gut functions, its ability to moderate immunity to ulcerative colitis have not been verified. We selected three isolated human A. muciniphila strains (FSDLZ39M14, FSDLZ36M5 and FSDLZ20M4) and the A. muciniphila type strain ATCC BAA-835 to examine the effects of different A. muciniphila strains on dextran sulfate sodium-induced colitis. All of the A. muciniphila strains were cultured anaerobically in brain heart infusion medium supplemented with 0.25% type II mucin from porcine stomach. To create animal models, colitis was established in C57BL/6 mice which randomly divided into six groups with 10 mice in each group by adding 3% dextran sulfate sodium to drinking water for 7 days. A. muciniphila strains were orally administered to the mice at a dose of 1 × 109 CFU. Only A. muciniphila FSDLZ36M5 exerted significant protection against ulcerative colitis (UC) by increasing the colon length, restoring body weight, decreasing gut permeability and promoting anti-inflammatory cytokine expression. However, the other strains (FSDLZ39M14, ATCC BAA-835 and FSDLZ20M4) failed to provide these effects. Notably, A. muciniphila FSDLZ20M4 showed a tendency to exacerbate inflammation according to several indicators. Gut microbiota sequencing showed that A. muciniphila FSDLZ36M5 supplementation recovered the gut microbiota of mice to a similar state to that of the control group. A comparative genomic analysis demonstrated that the positive effects of A. muciniphila FSDLZ36M5 compared with the FSDLZ20M4 strain may be associated with specific functional genes that are involved in immune defense mechanisms and protein synthesis. Our results verify the efficacy of A. muciniphila in improving UC and provide gene targets for the efficient and rapid screening of A. muciniphila strains with UC-alleviating effects.
Collapse
Affiliation(s)
- Qing Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Kan Hong
- Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
The potential of Akkermansia muciniphila in inflammatory bowel disease. Appl Microbiol Biotechnol 2021; 105:5785-5794. [PMID: 34312713 DOI: 10.1007/s00253-021-11453-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
Akkermansia muciniphila is a next-generation probiotic with significant application prospects. The role of A. muciniphila in metabolic diseases and tumor immunotherapy has been widely recognized. Recent clinical trials further confirmed its safety and therapeutic value in human metabolic diseases. A. muciniphila also shows potential in the treatment of intestinal inflammatory diseases, especially for inflammatory bowel disease (IBD). The improvement in the efficacy of washed microbiota transplantation (WMT) in treating IBD is closely related to the increase in the abundance of A. muciniphila in patients' gut. However, there is still controversy regarding the pro-inflammatory or anti-inflammatory effect of A. muciniphila on IBD. Currently, several studies targeting the correlation between A. muciniphila and IBD have demonstrated opposite conclusions. Similarly, the interventional studies exploring causality between them also come to conflicting results. This article therefore aims to review the relationship between A. muciniphila and IBD, the effect of intervention of A. muciniphila on IBD, and the possible reasons for the contradictory role of A. muciniphila in the treatment of IBD. KEY POINTS: The effect of A. muciniphila on inflammatory bowel disease is controversy. A. muciniphila shows anti-inflammatory potential in IBD. The colitogenicity of A. muciniphila is context dependent.
Collapse
|
9
|
Fermented Rice Bran Supplementation Prevents the Development of Intestinal Fibrosis Due to DSS-Induced Inflammation in Mice. Nutrients 2021; 13:nu13061869. [PMID: 34070845 PMCID: PMC8229226 DOI: 10.3390/nu13061869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Fermented rice bran (FRB) is known to protect mice intestines against dextran sodium sulfate (DSS)-induced inflammation; however, the restoration of post-colitis intestinal homeostasis using FRB supplementation is currently undocumented. In this study, we observed the effects of dietary FRB supplementation on intestinal restoration and the development of fibrosis after DSS-induced colitis. DSS (1.5%) was introduced in the drinking water of mice for 5 days. Eight mice were sacrificed immediately after the DSS treatment ended. The remaining mice were divided into three groups, comprising the following diets: control, 10% rice bran (RB), and 10% FRB-supplemented. Diet treatment was continued for 2 weeks, after which half the population of mice from each group was sacrificed. The experiment was continued for another 3 weeks before the remaining mice were sacrificed. FRB supplementation could reduce the general observation of colitis and production of intestinal pro-inflammatory cytokines. FRB also increased intestinal mRNA levels of anti-inflammatory cytokine, tight junction, and anti-microbial proteins. Furthermore, FRB supplementation suppressed markers of intestinal fibrosis. This effect might have been achieved via the canonical Smad2/3 activation and the non-canonical pathway of Tgf-β activity. These results suggest that FRB may be an alternative therapeutic agent against inflammation-induced intestinal fibrosis.
Collapse
|
10
|
Hanscom M, Loane DJ, Aubretch T, Leser J, Molesworth K, Hedgekar N, Ritzel RM, Abulwerdi G, Shea-Donohue T, Faden AI. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits. J Neuroinflammation 2021; 18:24. [PMID: 33461596 PMCID: PMC7814749 DOI: 10.1186/s12974-020-02067-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Disruptions of brain-gut axis have been implicated in the progression of a variety of gastrointestinal (GI) disorders and central nervous system (CNS) diseases and injuries, including traumatic brain injury (TBI). TBI is a chronic disease process characterized by persistent secondary injury processes which can be exacerbated by subsequent challenges. Enteric pathogen infection during chronic TBI worsened cortical lesion volume; however, the pathophysiological mechanisms underlying the damaging effects of enteric challenge during chronic TBI remain unknown. This preclinical study examined the effect of intestinal inflammation during chronic TBI on associated neurobehavioral and neuropathological outcomes, systemic inflammation, and dysautonomia. METHODS Dextran sodium sulfate (DSS) was administered to adult male C57BL/6NCrl mice 28 days following craniotomy (Sham) or TBI for 7 days to induce intestinal inflammation, followed by a return to normal drinking water for an additional 7 to 28 days for recovery; uninjured animals (Naïve) served as an additional control group. Behavioral testing was carried out prior to, during, and following DSS administration to assess changes in motor and cognitive function, social behavior, and mood. Electrocardiography was performed to examine autonomic balance. Brains were collected for histological and molecular analyses of injury lesion, neurodegeneration, and neuroinflammation. Blood, colons, spleens, mesenteric lymph nodes (mLNs), and thymus were collected for morphometric analyses and/or immune characterization by flow cytometry. RESULTS Intestinal inflammation 28 days after craniotomy or TBI persistently induced, or exacerbated, respectively, deficits in fine motor coordination, cognition, social behavior, and anxiety-like behavior. Behavioral changes were associated with an induction, or exacerbation, of hippocampal neuronal cell loss and microglial activation in Sham and TBI mice administered DSS, respectively. Acute DSS administration resulted in a sustained systemic immune response with increases in myeloid cells in blood and spleen, as well as myeloid cells and lymphocytes in mesenteric lymph nodes. Dysautonomia was also induced in Sham and TBI mice administered DSS, with increased sympathetic tone beginning during DSS administration and persisting through the first recovery week. CONCLUSION Intestinal inflammation during chronic experimental TBI causes a sustained systemic immune response and altered autonomic balance that are associated with microglial activation, increased neurodegeneration, and persistent neurological deficits.
Collapse
Affiliation(s)
- Marie Hanscom
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA.
| | - David J Loane
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Taryn Aubretch
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Jenna Leser
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Kara Molesworth
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Nivedita Hedgekar
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Rodney M Ritzel
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Gelareh Abulwerdi
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| | - Terez Shea-Donohue
- Division of Translational Radiation Sciences (DTRS), Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alan I Faden
- Department of Anesthesiology and Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, 685 West Baltimore Street, MSTF #6-016, Baltimore, MD, 21201, USA
| |
Collapse
|
11
|
Singh A, Yau YF, Leung KS, El-Nezami H, Lee JCY. Interaction of Polyphenols as Antioxidant and Anti-Inflammatory Compounds in Brain-Liver-Gut Axis. Antioxidants (Basel) 2020; 9:antiox9080669. [PMID: 32722619 PMCID: PMC7465954 DOI: 10.3390/antiox9080669] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress plays an important role in the onset as well as the progression of inflammation. Without proper intervention, acute inflammation could progress to chronic inflammation, resulting in the development of inflammatory diseases. Antioxidants, such as polyphenols, have been known to possess anti-oxidative properties which promote redox homeostasis. This has encouraged research on polyphenols as potential therapeutics for inflammation through anti-oxidative and anti-inflammatory pathways. In this review, the ability of polyphenols to modulate the activation of major pathways of inflammation and oxidative stress, and their potential to regulate the activity of immune cells are examined. In addition, in this review, special emphasis has been placed on the effects of polyphenols on inflammation in the brain–liver–gut axis. The data derived from in vitro cell studies, animal models and human intervention studies are discussed.
Collapse
|
12
|
Sex dependent alterations of resveratrol on social behaviors and nociceptive reactivity in VPA-induced autistic-like model in rats. Neurotoxicol Teratol 2020; 81:106905. [PMID: 32534151 DOI: 10.1016/j.ntt.2020.106905] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The present study was designed to clarify the effects of resveratrol (RSV) on social behavioral alterations and nociceptive reactivity in valproic acid (VPA)-induced autistic-like model in female and male rats. METHODS Pregnant Wistar rats were randomly divided in five groups. Animals received saline, DMSO, VPA, RSV and RSV + VPA. VPA was administered (600 mg/kg, i. p.) on embryonic day 12.5 (E12.5) and pretreatment by resveratrol (3.6 mg/kg, s. c.) was applied on E6.5 until E18.5. All offspring were weaned on postnatal day 21 and the experiments were done in male and female rats on day 60. Social interaction, hot plate and tail flick tests were set out to assess social deficits and pain threshold, respectively. Sociability index (SI), Social novelty index (SNI) and latency time were calculated as the standard indices of social behaviors and pain threshold, respectively. RESULTS The results indicated that systemic intraperitoneal administration of VPA (600 mg/kg) significantly decreased SI and SNI in social interaction test (SIT) especially in male rats, indicating the social impairments caused by VPA. RSV (3.6 mg/kg, s. c.) reversed VPA-induced social deficits in male rats, but not in female group. VPA administration resulted in significant increase in latency time in the hot plate and tail flick tests in male rats, whereas it had no such dramatic effect in females. RSV administration in combination with VPA had no significant effect on latency time compared to the valproic acid group in male rats. It is important to note that RSV by itself had no significant effect on SI, SNI and latency time in female and male rats. CONCLUSION It can be concluded that valproic acid produces autistic-like behaviors and increases pain threshold in male rats which may be ameliorated at least in part by resveratrol administration. Further studies are needed to elucidate the molecular mechanisms involved in valproic acid and resveratrol-induced effects.
Collapse
|
13
|
Health Benefits and Molecular Mechanisms of Resveratrol: A Narrative Review. Foods 2020; 9:foods9030340. [PMID: 32183376 PMCID: PMC7143620 DOI: 10.3390/foods9030340] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Resveratrol is a bioactive compound in many foods. Since its anticancer activity was reported in 1997, its health benefits have been intensively investigated. Resveratrol has antioxidant, anti-inflammatory, immunomodulatory, glucose and lipid regulatory, neuroprotective, and cardiovascular protective effects, therefore, can protect against diverse chronic diseases, such as cardiovascular diseases (CVDs), cancer, liver diseases, obesity, diabetes, Alzheimer's disease, and Parkinson's disease. This review summarizes the main findings of resveratrol-related health benefits in recent epidemiological surveys, experimental studies, and clinical trials, highlighting its related molecular mechanisms. Resveratrol, therefore, has been regarded as a potent candidate for the development of nutraceuticals and pharmaceuticals to prevent and treat certain chronic diseases.
Collapse
|
14
|
Huminiecki L, Atanasov AG, Horbańczuk J. Etiology of atherosclerosis informs choice of animal models and tissues for initial functional genomic studies of resveratrol. Pharmacol Res 2020; 156:104598. [PMID: 32067842 DOI: 10.1016/j.phrs.2019.104598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/03/2023]
Abstract
Resveratrol, a phytoalexin, is a natural polyphenol synthesized exclusively by plants in response to environmental stresses. However, the molecule has also many exogenous bioactivities in animal cells. These bioactivities may lead to anti-cancer and cardio-protective health benefits. Because cellular responses to the treatment with resveratrol include the changes of expression patterns, functional genomics is an attractive tool to study them. In recent and today's experimental practice, this mostly means microarray profiling of gene expression (using RNAs isolated from bulk tissues). Herein, we review such published studies undertaken in the context of cardiovascular diseases (CVDs). CVDs are a number one public health problem in developed countries, outweighing in magnitude even cancer. In particular, we review the studies of resveratrol in several animal models relevant to CVDs. These models included: normal and pre-mature aging in mice, as well as atherogenic diet in mice / pigs / non-human primates. Additionally, there were few clinical studies published in the context of the comorbidities of atherosclerosis in humans (e.g. obesity, diabetes, hypertension). For the purposes of these studies, three types of samples were most commonly profiled with microarrays: the liver, the skeletal muscle, and peripheral blood mononuclear cells. Resveratrol-induced changes of gene expression typically mimicked those associated with calorie restriction and lifespan extension. They also opposed changes induced by the atherogenic diet. We conclude by discussing few experimental factors that were relatively neglected thus far, but which could be interesting to investigate in the future. These factors include sex and the exact formulation of resveratrol (plant extract, or synthetic chemical).
Collapse
Affiliation(s)
- Lukasz Huminiecki
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland.
| | - Atanas G Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| | - Jarosław Horbańczuk
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Postępu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| |
Collapse
|
15
|
Cao F, Liu J, Sha BX, Pan HF. Natural Products: Experimental Efficient Agents for Inflammatory Bowel Disease Therapy. Curr Pharm Des 2020; 25:4893-4913. [DOI: 10.2174/1381612825666191216154224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
:
Inflammatory bowel disease (IBD) is a chronic, elusive disorder resulting in relapsing inflammation of
intestine with incompletely elucidated etiology, whose two representative forms are ulcerative colitis (UC) and
Crohn’s disease (CD). Accumulating researches have revealed that the individual genetic susceptibility, environmental
risk elements, intestinal microbial flora, as well as innate and adaptive immune system are implicated in
the pathogenesis and development of IBD. Despite remarkable progression of IBD therapy has been achieved by
chemical drugs and biological therapies such as aminosalicylates, corticosteroids, antibiotics, anti-tumor necrosis
factor (TNF)-α, anti-integrin agents, etc., healing outcome still cannot be obtained, along with inevitable side
effects. Consequently, a variety of researches have focused on exploring new therapies, and found that natural
products (NPs) isolated from herbs or plants may serve as promising therapeutic agents for IBD through antiinflammatory,
anti-oxidant, anti-fibrotic and anti-apoptotic effects, which implicates the modulation on nucleotide-
binding domain (NOD) like receptor protein (NLRP) 3 inflammasome, gut microbiota, intestinal microvascular
endothelial cells, intestinal epithelia, immune system, etc. In the present review, we will summarize the research
development of IBD pathogenesis and current mainstream therapy, as well as the therapeutic potential and
intrinsic mechanisms of NPs in IBD.
Collapse
Affiliation(s)
- Fan Cao
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| | - Jie Liu
- School of Traditional Chinese Medicine, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, China
| | - Bing-Xian Sha
- Department of Clinical Medicine, Tongji University, 50 Chifeng Road, Shanghai, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China
| |
Collapse
|
16
|
Target-Specific Fluorescence-Mediated Tomography for Non-Invasive and Dynamic Assessment of Early Neutrophil Infiltration in Murine Experimental Colitis. Cells 2019; 8:cells8111328. [PMID: 31661876 PMCID: PMC6912230 DOI: 10.3390/cells8111328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/18/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022] Open
Abstract
The role of neutrophils in the pathogenesis of inflammatory bowel disease (IBD) is still only incompletely understood. Here, we evaluated target-specific fluorescence-mediated tomography (FMT) for visualization of neutrophil infiltration in murine experimental DSS-induced colitis. Colitis was assessed using clinical, endoscopic, and histopathological parameters. Intestinal neutrophil infiltration was determined at day 0, 4, and 10 by targeted FMT after injection of a neutrophil-specific fluorescence-labelled monoclonal antibody (Gr-1). Complementary, immunofluorescence tissue sections with Gr-1 and ELISA-based assessment of tissue myeloperoxidase (MPO) served as the gold standard for the quantification of neutrophil infiltration. Colitic animals showed decreasing body weight, presence of fecal occult blood, and endoscopic signs of inflammation. FMT revealed a significantly increased level of fluorescence only four days after colitis induction as compared to pre-experimental conditions (pmol tracer 73.2 ± 18.1 versus 738.6 ± 80.7; p < 0.05), while neither body weight nor endoscopic assessment showed significant changes at this early time. Confirmatory, post-mortem immunofluorescence studies and measurements of tissue MPO confirmed the presence of increased neutrophil infiltration in colitic mice compared to controls. Concluding, Gr-1 targeted FMT can detect early colonic infiltration of neutrophils in experimental colitis even before clinical symptoms or endoscopic alterations occur. Therefore, FMT might be an important tool for repetitive and non-invasive monitoring of inflammatory cell infiltrate in intestinal inflammation.
Collapse
|
17
|
Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-Specific Anti-inflammatory Properties of Two Akkermansia muciniphila Strains on Chronic Colitis in Mice. Front Cell Infect Microbiol 2019; 9:239. [PMID: 31334133 PMCID: PMC6624636 DOI: 10.3389/fcimb.2019.00239] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/18/2019] [Indexed: 01/14/2023] Open
Abstract
Akkermansia muciniphila is potential probiotic in that its type strain ATCC BAA-835 has beneficial effects upon obesity and diabetes. However, whether A. muciniphila can improve inflammatory bowel diseases (IBD), which is a form of chronic intestinal dysbiosis, is unknown. Hence, we used an isolated murine A. muciniphila strain (designated 139) and A. muciniphila type strain ATCC, to investigate their anti-inflammatory properties in cell models and in Dextran Sulfate Sodium (DSS)-induced chronic colitis of mice. In vitro, the two A. muciniphila strains exerted similar anti-inflammatory properties as they both reduced IL-8 production by TNF-α-stimulated HT-29 cells. However, neither of the strains showed capacity to increase the differentiation of regulatory T (Treg)-cells from CD4+ T cell populations significantly. In vivo, both A. muciniphila strains exerted anti-inflammatory effects on chronic colitis as they improved clinical parameters including spleen weight, colon inflammation index, and colon histological score. They also down-regulated the expression of the pro-inflammatory cytokines including TNF-α and IFN-γ in the colon of mice. However, the anti-inflammatory effects of strain ATCC were stronger than strain 139 in that ATCC significantly reduced spleen weight, colon inflammation index, and fecal lipocalin-2 content in mice with chronic colitis, while strain 139 was not. Dysbiosis of the gut microbiota was observed in mice with chronic colitis. Both A. muciniphila strains facilitated the normalization of the gut microbiota. The specific capacity of strain ATCC to modulate the differentiation of Tregs as well as increase production of short chain fatty acids, demonstrated strain-specific characteristics for these two A. muciniphila strains. This study suggests the potential beneficial effect of A. muciniphila on IBD and the importance of the future study of the function of A. muciniphila at the strain-level.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinhe Xue
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liying Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers New Jersey Institute for Food, Nutrition, and Health, Rutgers University-New Brunswick, New Brunswick, NJ, United States
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol modulates the gut microbiota to prevent murine colitis development through induction of Tregs and suppression of Th17 cells. J Leukoc Biol 2019; 106:467-480. [PMID: 30897248 DOI: 10.1002/jlb.3a1218-476rr] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/15/2022] Open
Abstract
Inflammatory diseases of the gastrointestinal tract are often associated with microbial dysbiosis. Thus, dietary interactions with intestinal microbiota, to maintain homeostasis, play a crucial role in regulation of clinical disorders such as colitis. In the current study, we investigated if resveratrol, a polyphenol found in a variety of foods and beverages, would reverse microbial dysbiosis induced during colitis. Administration of resveratrol attenuated colonic inflammation and clinical symptoms in the murine model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis. Resveratrol treatment in mice with colitis led to an increase in CD4+ FOXP3+ and CD4+ IL-10+ T cells, and a decrease in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. 16S rRNA gene sequencing to investigate alterations in the gut microbiota revealed that TNBS caused significant dysbiosis, which was reversed following resveratrol treatment. Analysis of cecal flush revealed that TNBS administration led to an increase in species such as Bacteroides acidifaciens, but decrease in species such as Ruminococcus gnavus and Akkermansia mucinphilia, as well as a decrease in SCFA i-butyric acid. However, resveratrol treatment restored the gut bacteria back to homeostatic levels, and increased production of i-butyric acid. Fecal transfer experiments confirmed the protective role of resveratrol-induced microbiota against colitis inasmuch as such recipient mice were more resistant to TNBS-colitis and exhibited polarization toward CD4+ FOXP3+ T cells and decreases in CD4+ IFN-γ+ and CD4+ IL-17+ T cells. Collectively, these data demonstrate that resveratrol-mediated attenuation of colitis results from reversal of microbial dysbiosis induced during colitis and such microbiota protect the host from colonic inflammation by inducing Tregs while suppressing inflammatory Th1/Th17 cells.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
19
|
Simanovich E, Brod V, Rahat MA. Active Vaccination With EMMPRIN-Derived Multiple Antigenic Peptide (161-MAP) Reduces Angiogenesis in a Dextran Sodium Sulfate (DSS)-Induced Colitis Model. Front Immunol 2018; 9:2919. [PMID: 30619283 PMCID: PMC6295553 DOI: 10.3389/fimmu.2018.02919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/28/2018] [Indexed: 12/26/2022] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease that affects the colon and shares many clinical and histological features with the dextran sulfate sodium (DSS)-induced colitis model in mice. Angiogenesis is a critical component in many autoimmune diseases, as well as in the DSS-induced colitis model, and is it partially mediated by EMMPRIN, a multifunctional protein that can induce the expression of both the potent pro-angiogenic vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). We asked whether targeting EMMPRIN by active vaccination, using a novel, specific epitope in the protein, synthesized as a multiple antigenic peptide (MAP), could trigger beneficial effects in the DSS-induced colitic C57BL/6J mice. Mice were vaccinated with four boost injections (50 μg each) of either 161-MAP coding for the EMMPRIN epitope or the scrambled control peptide (Scr-MAP) emulsified in Freund's adjuvant. We show that male mice that were vaccinated with 161-MAP lost less weight, demonstrated improved disease activity indices (DAI), had reduced colitis histological score, and their colons were longer in comparison to mice vaccinated with the Scr-MAP. The 161-MAP vaccination also reduced serum and colon levels of EMMPRIN, colon concentrations of VEGF, MMP-9, and TGFβ, and vessel density assessed by CD31 staining. A similar effect was observed in female mice vaccinated with 161-MAP, including weight loss, colitis histological score, colon length, colon levels of EMMPRIN and colon concentrations of VEGF. However, for female mice, the changes in DAI values, EMMPRIN serum levels, and MMP-9 and TGFβ colon concentrations did not reach significance. We conclude that our strategy of alleviating autoimmunity in this model through targeting angiogenesis by actively vaccinating against EMMPRIN was successful and efficient in reducing angiogenesis.
Collapse
Affiliation(s)
| | - Vera Brod
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel
| | - Michal A Rahat
- Immunotherapy Laboratory, Carmel Medical Center, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Noorwali E, Hardie L, Cade J. Fruit and Vegetable Consumption and Their Polyphenol Content Are Inversely Associated with Sleep Duration: Prospective Associations from the UK Women's Cohort Study. Nutrients 2018; 10:E1803. [PMID: 30463296 PMCID: PMC6266198 DOI: 10.3390/nu10111803] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/29/2022] Open
Abstract
This study aims to investigate the prospective associations between fruit and vegetable (FV) intakes and their polyphenol content with subsequent sleep duration in UK women. In this study, 13,958 women with ~4 years of follow-up in the UK Women's Cohort Study were included in the analyses. FV intakes were assessed at baseline using a food frequency questionnaire (FFQ), and average hours of sleep per day were self-reported in follow-up. Polyphenol intake was calculated by matching FV items from the FFQ with the Phenol-Explorer database. Linear regression models, adjusting for confounders, were used for the analyses. Consuming an additional portion of apples, kiwi, oranges, pineapple, and 100% pure juice were associated with shorter sleep. Similarly, an additional portion of cabbage, celery, aubergine, olives, and peppers were inversely associated with sleep duration. An additional gram of total polyphenols was associated with shorter sleep by 18 min (99% CI -31 to -4, p < 0.001). FV consumption and total polyphenol content were inversely associated with sleep duration; however, effect sizes were small, and polyphenol classes from FV intakes were not associated with sleep duration. Future intervention studies considering the time of FV consumption in relation to sleep are needed to clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Essra Noorwali
- Nutrition Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21421, Saudi Arabia.
| | - Laura Hardie
- Division of Clinical and Population Sciences, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK.
| | - Janet Cade
- Nutrition Epidemiology Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
21
|
Abstract
AbstractDespite the fact that inflammatory bowel disease (IBD) has still no recognised therapy, treatments which have proven at least mildly successful in improving IBD symptoms include anti-inflammatory drugs and monoclonal antibodies targeting pro-inflammatory cytokines. Resveratrol, a natural (poly)phenol found in grapes, red wine, grape juice and several species of berries, has been shown to prevent and ameliorate intestinal inflammation. Here, we discuss the role of resveratrol in the improvement of inflammatory disorders involving the intestinal mucosa. The present review covers three specific aspects of resveratrol in the framework of inflammation: (i) its content in food; (ii) its intestinal absorption and metabolism; and (iii) its anti-inflammatory effects in the intestinal mucosa in vitro and in the very few in vivo studies present to date. Actually, if several studies have shown that resveratrol may down-regulate mediators of intestinal immunity in rodent models, only two groups have performed intervention studies in human subjects using resveratrol as an agent to improve IBD conditions. The effects of resveratrol should be further investigated by conducting well-designed clinical trials, also taking into account different formulations for the delivery of the bioactive compound.
Collapse
|