1
|
Katayama IA, Huang Y, Garza AE, Brooks DL, Williams JS, Nascimento MM, Heimann JC, Pojoga LH. Longitudinal changes in blood pressure are preceded by changes in albuminuria and accelerated by increasing dietary sodium intake. Exp Gerontol 2023; 173:112114. [PMID: 36738979 PMCID: PMC10965150 DOI: 10.1016/j.exger.2023.112114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dietary sodium is a well-known risk factor for cardiovascular and renal disease; however, direct evidence of the longitudinal changes that occur with aging, and the influence of dietary sodium on the age-associated alterations are scarce. METHODS C57BL/6 mice were maintained for 13 months on a low (LS, 0.02 % Na+), normal (NS, 0.3 % Na+) or high (HS, 1.6 % Na+) salt diet. We assessed 1) the longitudinal trajectories for two markers of cardiovascular and renal dysfunction (blood pressure (BP) and albuminuria), as well as hormonal changes, and 2) end-of-study cardiac and renal parameters. RESULTS The effect of aging on BP and kidney damage did not reach significance levels in the LS group; however, relative to baseline, there were significant increases in these parameters for animals maintained on NS and HS diets, starting as early as month 7 and month 5, respectively. Furthermore, changes in albuminuria preceded the changes in BP relative to baseline, irrespective of the diet. Circulating aldosterone and plasma renin activity displayed the expected decreasing trends with age and dietary sodium loading. As compared to LS - higher dietary sodium consumption associated with increasing trends in left ventricular mass and volume indices, consistent with an eccentric dilated phenotype. Functional and molecular markers of kidney dysfunction displayed similar trends with increasing long-term sodium levels: higher renovascular resistance, increased glomerular volumes, as well as higher levels of renal angiotensin II type 1 and mineralocorticoid receptors, and lower renal Klotho levels. CONCLUSION Our study provides a timeline for the development of cardiorenal dysfunction with aging, and documents that increasing dietary salt accelerates the age-induced phenotypes. In addition, we propose albuminuria as a prognostic biomarker for the future development of hypertension. Last, we identified functional and molecular markers of renal dysfunction that associate with long-term dietary salt loading.
Collapse
Affiliation(s)
- Isis Akemi Katayama
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Yuefei Huang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amanda E Garza
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Danielle L Brooks
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Williams
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana M Nascimento
- Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Joel C Heimann
- Laboratory of Experimental Hypertension, Department of Internal Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luminita H Pojoga
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Calcagno C, David JA, Motaal AG, Coolen BF, Beldman T, Corbin A, Kak A, Ramachandran S, Pruzan A, Sridhar A, Soler R, Faries CM, Fayad ZA, Mulder WJM, Strijkers GJ. Self-gated, dynamic contrast-enhanced magnetic resonance imaging with compressed-sensing reconstruction for evaluating endothelial permeability in the aortic root of atherosclerotic mice. NMR IN BIOMEDICINE 2023; 36:e4823. [PMID: 36031706 PMCID: PMC10078106 DOI: 10.1002/nbm.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/01/2022] [Accepted: 08/21/2022] [Indexed: 05/16/2023]
Abstract
High-risk atherosclerotic plaques are characterized by active inflammation and abundant leaky microvessels. We present a self-gated, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquisition with compressed sensing reconstruction and apply it to assess longitudinal changes in endothelial permeability in the aortic root of Apoe-/- atherosclerotic mice during natural disease progression. Twenty-four, 8-week-old, female Apoe-/- mice were divided into four groups (n = 6 each) and imaged with self-gated DCE-MRI at 4, 8, 12, and 16 weeks after high-fat diet initiation, and then euthanized for CD68 immunohistochemistry for macrophages. Eight additional mice were kept on a high-fat diet and imaged longitudinally at the same time points. Aortic-root pseudo-concentration curves were analyzed using a validated piecewise linear model. Contrast agent wash-in and washout slopes (b1 and b2 ) were measured as surrogates of aortic root endothelial permeability and compared with macrophage density by immunohistochemistry. b2 , indicating contrast agent washout, was significantly higher in mice kept on an high-fat diet for longer periods of time (p = 0.03). Group comparison revealed significant differences between mice on a high-fat diet for 4 versus 16 weeks (p = 0.03). Macrophage density also significantly increased with diet duration (p = 0.009). Spearman correlation between b2 from DCE-MRI and macrophage density indicated a weak relationship between the two parameters (r = 0.28, p = 0.20). Validated piecewise linear modeling of the DCE-MRI data showed that the aortic root contrast agent washout rate is significantly different during disease progression. Further development of this technique from a single-slice to a 3D acquisition may enable better investigation of the relationship between in vivo imaging of endothelial permeability and atherosclerotic plaques' genetic, molecular, and cellular makeup in this important model of disease.
Collapse
Affiliation(s)
- Claudia Calcagno
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - John A David
- Amsterdam University Medical Centers, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Abdallah G Motaal
- Siemens Healthineers, Cardiovascular Care Group, Advanced Therapies Business, Erlangen, Germany
| | - Bram F Coolen
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Thijs Beldman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexandra Corbin
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arnav Kak
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarayu Ramachandran
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Alison Pruzan
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Arthi Sridhar
- Department of Hematology/Oncology, UTHealth McGovern Medical School, Houston, TX, USA
| | - Raphael Soler
- CNRS, CRMBM, Marseille, France
- Department of Vascular and Endovascular Surgery, Hôpital Universitaire de la Timone, APHM, Marseille, France
| | - Christopher M Faries
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Zahi A Fayad
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Willem J M Mulder
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gustav J Strijkers
- Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Amsterdam University Medical Centers, Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Hess A, Borchert T, Ross TL, Bengel FM, Thackeray JT. Characterizing the transition from immune response to tissue repair after myocardial infarction by multiparametric imaging. Basic Res Cardiol 2022; 117:14. [PMID: 35275268 PMCID: PMC8917105 DOI: 10.1007/s00395-022-00922-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
Persistent inflammation following myocardial infarction (MI) precipitates adverse outcome including acute ventricular rupture and chronic heart failure. Molecular imaging allows longitudinal assessment of immune cell activity in the infarct territory and predicts severity of remodeling. We utilized a multiparametric imaging platform to assess the immune response and cardiac healing following MI in mice. Suppression of circulating macrophages prior to MI paradoxically resulted in higher total leukocyte content in the heart, demonstrated by increased CXC motif chemokine receptor 4 (CXCR4) positron emission tomography imaging. This supported the formation of a thrombus overlying the injured region, as identified by magnetic resonance imaging. The injured and thrombotic region in macrophage depeleted mice subsequently showed active calcification, as evidenced by accumulation of 18F-fluoride and by cardiac computed tomography. Importantly, macrophage suppression triggered a prolonged inflammatory response confirmed by post-mortem tissue analysis that was associated with higher mortality from ventricular rupture early after occlusion and with increased infarct size and worse chronic contractile function at 6 weeks after reperfusion. These findings establish a molecular imaging toolbox for monitoring the interplay between adverse immune response and tissue repair after MI. This may serve as a foundation for development and monitoring of novel targeted therapies that may include immune modulation and endogenous healing support.
Collapse
Affiliation(s)
- Annika Hess
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Tobias Borchert
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,Present Address: Cardior Pharmaceuticals GmbH, Hannover, Germany
| | - Tobias L. Ross
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Frank M. Bengel
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - James T. Thackeray
- grid.10423.340000 0000 9529 9877Department of Nuclear Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
4
|
Glasenapp A, Derlin K, Gutberlet M, Hess A, Ross TL, Wester HJ, Bengel FM, Thackeray JT. Molecular Imaging of Inflammation and Fibrosis in Pressure Overload Heart Failure. Circ Res 2021; 129:369-382. [PMID: 34074134 DOI: 10.1161/circresaha.120.318539] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Aylina Glasenapp
- Department of Nuclear Medicine (A.G., A.H., T.L.R., F.M.B., J.T.T.)
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Germany (A.G., K.D., M.G.)
| | - Katja Derlin
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Germany (A.G., K.D., M.G.)
| | - Marcel Gutberlet
- Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Germany (A.G., K.D., M.G.)
| | - Annika Hess
- Department of Nuclear Medicine (A.G., A.H., T.L.R., F.M.B., J.T.T.)
| | - Tobias L Ross
- Department of Nuclear Medicine (A.G., A.H., T.L.R., F.M.B., J.T.T.)
| | - Hans-Jürgen Wester
- Technical University of Munich, Radiopharmaceutical Chemistry, Germany (H.-J.W.)
| | - Frank M Bengel
- Department of Nuclear Medicine (A.G., A.H., T.L.R., F.M.B., J.T.T.)
| | | |
Collapse
|
5
|
Li H, Qu Y, Metze P, Sommerfeld F, Just S, Abaei A, Rasche V. Quantification of Biventricular Myocardial Strain Using CMR Feature Tracking: Reproducibility in Small Animals. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8492705. [PMID: 33553431 PMCID: PMC7847329 DOI: 10.1155/2021/8492705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Myocardial strain is a well-validated parameter for evaluating myocardial contraction. Cardiovascular magnetic resonance myocardial feature tracking (CMR-FT) is a novel method for the quantitative measurements of myocardial strain from routine cine acquisitions. In this study, we investigated the influence of temporal resolution on tracking accuracy of CMR-FT and the intraobserver, interobserver, and interstudy reproducibilities for biventricular strain analysis in mice from self-gated CMR at 11.7 T. 12 constitutive nexilin knockout (Nexn-KO) mice, heterozygous (Het, N = 6) and wild-type (WT, N = 6), were measured with a well-established self-gating sequence twice within two weeks. CMR-FT measures of biventricular global and segmental strain parameters were derived. Interstudy, intraobserver, and interobserver reproducibilities were investigated. For the assessment of the impact of the temporal resolution for the outcome in CMR-FT, highly oversampled semi-4 chamber and midventricular short-axis data were acquired and reconstructed with 10 to 80 phases per cardiac cycle. A generally reduced biventricular myocardial strain was observed in Nexn-KO Het mice. Excellent intraobserver and interobserver reproducibility was achieved in all global strains (ICC range from 0.76 to 0.99), where global right ventricle circumferential strain (RCSSAX) showed an only good interobserver reproducibility (ICC 0.65, 0.11-0.89). For interstudy reproducibility, left ventricle longitudinal strain (LLSLAX) was the most reproducible measure of strain (ICC 0.90, 0.71-0.97). The left ventricle radial strain (LRSSAX) (ICC 0.50, 0.10-0.83) showed fair reproducibility and RCSSAX (ICC 0.36, 0.14-0.74) showed only poor reproducibility. In general, compared with global strains, the segmental strains showed relatively lower reproducibility. A minimal temporal resolution of 20 phases per cardiac cycle appeared sufficient for CMR-FT strain analysis. The analysis of myocardial strain from high-resolution self-gated cine images by CMR-FT provides a highly reproducible method for assessing myocardial contraction in small rodent animals. Especially, global LV longitudinal and circumferential strain revealed excellent reproducibility of intra- and interobserver and interstudy measurements.
Collapse
Affiliation(s)
- Hao Li
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Yangyang Qu
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | | | - Steffen Just
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Doost A, Rangel A, Nguyen Q, Morahan G, Arnolda L. Micro-CT scan with virtual dissection of left ventricle is a non-destructive, reproducible alternative to dissection and weighing for left ventricular size. Sci Rep 2020; 10:13853. [PMID: 32807896 PMCID: PMC7431593 DOI: 10.1038/s41598-020-70734-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
Micro-CT scan images enhanced by iodine staining provide high-resolution visualisation of soft tissues in laboratory mice. We have compared Micro-CT scan-derived left ventricular (LV) mass with dissection and weighing. Ex-vivo micro-CT scan images of the mouse hearts were obtained following staining by iodine. The LV was segmented and its volume was assessed using a semi-automated method by Drishti software. The left ventricle was then dissected in the laboratory and its actual weight was measured and compared against the estimated results. LV mass was calculated multiplying its estimated volume and myocardial specific gravity. Thirty-five iodine-stained post-natal mouse hearts were studied. Mice were of either sex and 68 to 352 days old (median age 202 days with interquartile range 103 to 245 days) at the time of sacrifice. Samples were from 20 genetically diverse strains. Median mouse body weight was 29 g with interquartile range 24 to 34 g. Left Ventricular weights ranged from 40.0 to 116.7 mg. The segmented LV mass estimated from micro-CT scan and directly measured dissected LV mass were strongly correlated (R2 = 0. 97). Segmented LV mass derived from Micro-CT images was very similar to the physically dissected LV mass (mean difference = 0.09 mg; 95% confidence interval − 3.29 mg to 3.1 mg). Micro-CT scanning provides a non-destructive, efficient and accurate visualisation tool for anatomical analysis of animal heart models of human cardiovascular conditions. Iodine-stained soft tissue imaging empowers researchers to perform qualitative and quantitative assessment of the cardiac structures with preservation of the samples for future histological analysis.
Collapse
Affiliation(s)
- Ata Doost
- Australian National University Medical School, Canberra, ACT, Australia
| | - Alejandra Rangel
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Building 32, Wollongong, NSW, 2522, Australia
| | - Quang Nguyen
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, University of Western Australia, Perth, Australia
| | - Leonard Arnolda
- Australian National University Medical School, Canberra, ACT, Australia. .,Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Building 32, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
7
|
Li H, Metze P, Abaei A, Rottbauer W, Just S, Lu Q, Rasche V. Feasibility of real-time cardiac MRI in mice using tiny golden angle radial sparse. NMR IN BIOMEDICINE 2020; 33:e4300. [PMID: 32227427 DOI: 10.1002/nbm.4300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Cardiovascular magnetic resonance imaging has proven valuable for the assessment of structural and functional cardiac abnormalities. Even although it is an established imaging method in small animals, the long acquisition times of gated or self-gated techniques still limit its widespread application. In this study, the application of tiny golden angle radial sparse MRI (tyGRASP) for real-time cardiac imaging was tested in 12 constitutive nexilin (Nexn) knock-out (KO) mice, both heterozygous (Het, N = 6) and wild-type (WT, N = 6), and the resulting functional parameters were compared with a well-established self-gating approach. Real-time images were reconstructed for different temporal resolutions of between 16.8 and 79.8 ms per image. The suggested approach was additionally tested for dobutamine stress and qualitative first-pass perfusion imaging. Measurements were repeated twice within 2 weeks for reproducibility assessment. In direct comparison with the high-quality, self-gated technique, the real-time approach did not show any significant differences in global function parameters for acquisition times below 50 ms (rest) and 31.5 ms (stress). Compared with WT, the end-diastolic volume (EDV) and end-systolic volume (ESV) were markedly higher (P < 0.05) and the ejection fraction (EF) was significantly lower in the Het Nexn-KO mice at rest (P < 0.001). For the stress investigation, a clear decrease of EDV and ESV, and an increase in EF, but maintained stroke volume, could be observed in both groups. Combined with ECG-triggering, tyGRASP provided first-pass perfusion data with a temporal resolution of one image per heartbeat, allowing the quantitative assessment of upslope curves in the blood-pool and myocardium. Excellent inter-study reproducibility was achieved in all the functional parameters. The tyGRASP is a valuable real-time MRI technique for mice, which significantly reduces the scan time in preclinical cardiac functional imaging, providing sufficient image quality for deriving accurate functional parameters, and has the potential to investigate real-time and beat-to-beat changes.
Collapse
Affiliation(s)
- Hao Li
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Patrick Metze
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
| | - Wolfgang Rottbauer
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Steffen Just
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| | - Qinghua Lu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Volker Rasche
- Core Facility Small Animal Imaging, Ulm University, Ulm, Germany
- Department of Internal Medicine II, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
8
|
Glasenapp A, Derlin K, Wang Y, Bankstahl M, Meier M, Wollert KC, Bengel FM, Thackeray JT. Multimodality Imaging of Inflammation and Ventricular Remodeling in Pressure-Overload Heart Failure. J Nucl Med 2019; 61:590-596. [PMID: 31653713 DOI: 10.2967/jnumed.119.232488] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
Inflammation contributes to ventricular remodeling after myocardial ischemia, but its role in nonischemic heart failure is poorly understood. Local tissue inflammation is difficult to assess serially during pathogenesis. Although 18F-FDG accumulates in inflammatory leukocytes and thus may identify inflammation in the myocardial microenvironment, it remains unclear whether this imaging technique can isolate diffuse leukocytes in pressure-overload heart failure. We aimed to evaluate whether inflammation with 18F-FDG can be serially imaged in the early stages of pressure-overload-induced heart failure and to compare the time course with functional impairment assessed by cardiac MRI. Methods: C57Bl6/N mice underwent transverse aortic constriction (TAC) (n = 22), sham surgery (n = 12), or coronary ligation as an inflammation-positive control (n = 5). MRI assessed ventricular geometry and contractile function at 2 and 8 d after TAC. Immunostaining identified the extent of inflammatory leukocyte infiltration early in pressure overload. 18F-FDG PET scans were acquired at 3 and 7 d after TAC, under ketamine-xylazine anesthesia to suppress cardiomyocyte glucose uptake. Results: Pressure overload evoked rapid left ventricular dilation compared with sham (end-systolic volume, day 2: 40.6 ± 10.2 μL vs. 23.8 ± 1.7 μL, P < 0.001). Contractile function was similarly impaired (ejection fraction, day 2: 40.9% ± 9.7% vs. 59.2% ± 4.4%, P < 0.001). The severity of contractile impairment was proportional to histology-defined myocardial macrophage density on day 8 (r = -0.669, P = 0.010). PET imaging identified significantly higher left ventricular 18F-FDG accumulation in TAC mice than in sham mice on day 3 (10.5 ± 4.1 percentage injected dose [%ID]/g vs. 3.8 ± 0.9 %ID/g, P < 0.001) and on day 7 (7.8 ± 3.7 %ID/g vs. 3.0 ± 0.8 %ID/g, P = 0.006), though the efficiency of cardiomyocyte suppression was variable among TAC mice. The 18F-FDG signal correlated with ejection fraction (r = -0.75, P = 0.01) and ventricular volume (r = 0.75, P < 0.01). Western immunoblotting demonstrated a 60% elevation of myocardial glucose transporter 4 expression in the left ventricle at 8 d after TAC, indicating altered glucose metabolism. Conclusion: TAC induces rapid changes in left ventricular geometry and contractile function, with a parallel modest infiltration of inflammatory macrophages. Metabolic remodeling overshadows inflammatory leukocyte signal using 18F-FDG PET imaging. More selective inflammatory tracers are requisite to identify the diffuse local inflammation in pressure overload.
Collapse
Affiliation(s)
- Aylina Glasenapp
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany.,Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Katja Derlin
- Department of Radiology, Hannover Medical School, Hannover, Germany
| | - Yong Wang
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Marion Bankstahl
- Central Laboratory Animal Facility and Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Central Laboratory Animal Facility and Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany; and
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - James T Thackeray
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Longitudinal observations of progressive cardiac dysfunction in a cardiomyopathic animal model by self-gated cine imaging based on 11.7-T magnetic resonance imaging. Sci Rep 2017; 7:9106. [PMID: 28831129 PMCID: PMC5567262 DOI: 10.1038/s41598-017-09755-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to longitudinally assess left ventricular function and wall thickness in a hamster model of cardiomyopathy using 11.7-T magnetic resonance imaging (MRI). MRI were performed for six cardiomyopathic J2N-k hamsters and six J2N-n hamsters at 5, 10, 15, and 20 weeks of age. Echocardiography was also performed at 20 weeks. The ejection fraction (EF) at 15 and 20 weeks of age in J2N-k hamsters showed a significant decrease compared with those in controls. Conversely, the end-systolic and end-diastolic volumes in cardiomyopathic hamsters showed a significant increase compared with those in controls. Moreover, the heart walls of J2N-k hamsters at 15 and 20 weeks were thicker than those of controls at end-systole; however, there were no significant differences at end-diastole. Optical microscopy with Masson’s trichrome staining depicted no fibrosis in the control myocardium, although it showed interstitial fibrosis in the 20-week-old J2N-k cardiomyopathic myocardium. There were no differences in EF and the wall thickness observed on MRI and those observed on echocardiography. These results indicate the presence of systolic dysfunction in cardiomyopathic hamsters. Self-gated cine imaging based on 11.7-T MRI can be used for serial measurements of cardiac function and wall thickness in a cardiomyopathic model.
Collapse
|