1
|
Yang Q, Lin Z, Xue M, Jiang Y, Chen L, Chen J, Liao Y, Lv J, Guo B, Zheng P, Huang H, Sun B. Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways. J Transl Med 2024; 22:219. [PMID: 38424541 PMCID: PMC10905948 DOI: 10.1186/s12967-024-05022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.
Collapse
Affiliation(s)
- Qianyue Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhiwei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Respiratory Mechanics Laboratory, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Yueting Jiang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Libing Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiahong Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuhong Liao
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiali Lv
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baojun Guo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
2
|
Balasubramanian P, Vijayarangam V, Deviparasakthi MKG, Palaniyandi T, Ravi M, Natarajan S, Viswanathan S, Baskar G, Wahab MRA, Surendran H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol Res Pract 2024; 254:155080. [PMID: 38219498 DOI: 10.1016/j.prp.2023.155080] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
Peroxiredoxin 2 (PRDX2), a characteristic 2-Cys enzyme is one of the foremost effective scavenger proteins against reactive oxygen species (ROS) and hydrogen peroxide (H2O2) defending cells against oxidative stress. Dysregulation of this antioxidant raises the quantity of ROS and oxidative stress implicated in several diseases. PRDX2 lowers the generation of ROS that takes part in controlling several signalling pathways occurring in neurons, protecting them from stress caused by oxidation and an inflammatory harm. Depending on the aetiological variables, the kind of cancer, and the stage of tumour development, PRDX2 may behave either as an onco-suppressor or a promoter. However, overexpression of PRDX2 may be linked to the development of numerous cancers, including those of the colon, cervix, breast, and prostate. PRDX2 also plays a beneficial effect in inflammatory diseases. PRDX2 being a thiol-specific peroxidase, is known to control proinflammatory reactions. The spilling of PRDX2, on the other hand, accelerates cognitive impairment following a stroke by triggering an inflammatory reflex. PRDX2 expression patterns in vascular cells tend to be crucial to its involvement in cardiovascular diseases. In vascular smooth muscle cells, if the protein tyrosine phosphatase is restricted, PRDX2 could avoid the neointimal thickening which relies on platelet derived growth factor (PDGF), a vital component of vascular remodelling. A proper PRDX2 balance is therefore crucial. The imbalance causes a number of illnesses, including cancers, inflammatory diseases, cardiovascular ailments, and neurological and neurodegenerative problems which are discussed in this review.
Collapse
Affiliation(s)
| | - Varshini Vijayarangam
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India; Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, India.
| | - Maddaly Ravi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sudhakar Natarajan
- Department of Tuberculosis, ICMR - National Institute for Research in Tuberculosis (NIRT), Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| | | | - Hemapreethi Surendran
- Department of Biotechnology, Dr. M.G.R. Educational and Research Institute, Chennai, India
| |
Collapse
|
3
|
Li M, Wang P, Zou Y, Wang W, Zhao Y, Liu M, Wu J, Zhang Y, Zhang N, Sun Y. Spleen tyrosine kinase (SYK) signals are implicated in cardio-cerebrovascular diseases. Heliyon 2023; 9:e15625. [PMID: 37180910 PMCID: PMC10172877 DOI: 10.1016/j.heliyon.2023.e15625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
Post-translational modifications regulate numerous biochemical reactions and functions through covalent attachment to proteins. Phosphorylation, acetylation and ubiquitination account for over 90% of all reported post-translational modifications. As one of the tyrosine protein kinases, spleen tyrosine kinase (SYK) plays crucial roles in many pathophysiological processes and affects the pathogenesis and progression of various diseases. SYK is expressed in tissues outside the hematopoietic system, especially the heart, and is involved in the progression of various cardio-cerebrovascular diseases, such as atherosclerosis, heart failure, diabetic cardiomyopathy, stroke and others. Knowledge on the role of SYK in the progress of cardio-cerebrovascular diseases is accumulating, and many related mechanisms have been discovered and validated. This review summarizes the role of SYK in the progression of various cardio-cerebrovascular diseases, and aims to provide a theoretical basis for future experimental and clinical research targeting SYK as a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Mohan Li
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Pengbo Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wenbin Wang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanhui Zhao
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Mengke Liu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Jianlong Wu
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
- Corresponding author. Department of Cardiology, First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
4
|
Sun J, Ge X, Wang Y, Niu L, Tang L, Pan S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol Res 2022; 176:105962. [PMID: 34756923 DOI: 10.1016/j.phrs.2021.105962] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Acute kidney injury (AKI) is a serious complication of sepsis. This study was performed to explore the mechanism that THBS1 mediated pyroptosis by regulating the TGF-β signaling pathway in sepsis-induced AKI. METHODS Gene expression microarray related to sepsis-induced AKI was obtained from the GEO database, and the mechanism in sepsis-induced AKI was predicted by bioinformatics analysis. qRT-PCR and ELISA were performed to detect expressions of THBS1, USF2, TNF-α, IL-1β, and IL-18 in sepsis-induced AKI patients and healthy volunteers. The mouse model of sepsis-induced AKI was established, with serum creatinine, urea nitrogen, 24-h urine output measured, and renal tissue lesions observed by HE staining. The cell model of sepsis-induced AKI was cultured in vitro, with expressions of TNF-α, IL-1β, and IL-18, pyroptosis, Caspase-1 and GSDMD-N, and activation of TGF-β/Smad3 pathway detected. The upstream transcription factor USF2 was knocked down in cells to explore its effect on sepsis-induced AKI. RESULTS THBS1 and USF2 were highly expressed in patients with sepsis-induced AKI. Silencing THBS1 protected mice against sepsis-induced AKI, and significantly decreased the expressions of NLRP3, Caspase-1, GSDMD-N, IL-1β, and IL-18, increased cell viability, and decreased LDH activity, thus partially reversing the changes in cell morphology. Mechanistically, USF2 promoted oxidative stress responses by transcriptionally activating THBS1 to activate the TGF-β/Smad3/NLRP3/Caspase-1 signaling pathway and stimulate pyroptosis, and finally exacerbated sepsis-induced AKI. CONCLUSION USF2 knockdown downregulates THBS1 to inhibit the TGF-β/Smad3 signaling pathway and reduce pyroptosis and further ameliorate sepsis-induced AKI.
Collapse
Affiliation(s)
- Jian Sun
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Xiaoli Ge
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Yang Wang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lei Niu
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Lujia Tang
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China
| | - Shuming Pan
- Department of Emergency, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai 518110, China.
| |
Collapse
|
5
|
Harada J, Miyata Y, Araki K, Matsuda T, Nagashima Y, Mukae Y, Mitsunari K, Matsuo T, Ohba K, Mochizuki Y, Sakai H. Pathological Significance and Prognostic Roles of Thrombospondin-3, 4 and 5 in Bladder Cancer. In Vivo 2021; 35:1693-1701. [PMID: 33910854 PMCID: PMC8193323 DOI: 10.21873/invivo.12429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The pathological significance of thrombospondin (TSP)-1 and -2 in bladder cancer (BC) is well-known whereas that of TSP-3, 4 and 5 remains unclear. Our aim is to clarify the pathological significance and prognostic roles of TSP-3 to 5 expression in BC patients. PATIENTS AND METHODS TSP-3 to 5 expression, proliferation index (PI), apoptotic index (AI) and microvessel density (MVD) were evaluated in 206 BC patients by immunohistochemical techniques. RESULTS TSP-5 expression was positively associated with grade, T stage, metastasis, and worse prognosis. PI in TSP-5-positive tissues was significantly higher compared to negative tissues. In contrast, AI in TSP-5-positive tissues was significantly lower compared to negative tissues. Expressions of TSP-3 and 4 were not associated with any clinicopathological features, survival, PI, or AI. CONCLUSION TSP-5 plays important roles in malignant behavior via cell survival regulation whereas the pathological significance of TSP-3 and TSP-4 in BC might be minimal.
Collapse
Affiliation(s)
- Junki Harada
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasuyoshi Miyata
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Araki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tsuyoshi Matsuda
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yoshiaki Nagashima
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuta Mukae
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kensuke Mitsunari
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiro Matsuo
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kojiro Ohba
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yasushi Mochizuki
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hideki Sakai
- Department of Urology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
6
|
Li Y, Wang J, Chen S, Wu P, Xu S, Wang C, Shi H, Bihl J. miR-137 boosts the neuroprotective effect of endothelial progenitor cell-derived exosomes in oxyhemoglobin-treated SH-SY5Y cells partially via COX2/PGE2 pathway. Stem Cell Res Ther 2020; 11:330. [PMID: 33100224 PMCID: PMC7586676 DOI: 10.1186/s13287-020-01836-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/10/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023] Open
Abstract
Background We have previously verified the beneficial effects of exosomes from endothelial progenitor cells (EPC-EXs) in ischemic stroke. However, the effects of EPC-EXs in hemorrhagic stroke have not been investigated. Additionally, miR-137 is reported to regulate ferroptosis and to be involved in the neuroprotection against ischemic stroke. Hence, the present work explored the effects of miR-137-overexpressing EPC-EXs on apoptosis, mitochondrial dysfunction, and ferroptosis in oxyhemoglobin (oxyHb)-injured SH-SY5Y cells. Methods The lentiviral miR-137 was transfected into EPCs and then the EPC-EXs were collected. RT-PCR was used to detect the miR-137 level in EPCs, EXs, and neurons. The uptake mechanisms of EPC-EXs in SH-SY5Y cells were explored by the co-incubation of Dynasore, Pitstop 2, Ly294002, and Genistein. After the transfection of different types of EPC-EXs, flow cytometry and expression of cytochrome c and cleaved caspase-3 were used to detect the apoptosis of oxyHb-injured neurons. Neuronal mitochondrial function was assessed by reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) depolarization, and cellular ATP content. Cell ferroptosis was measured by lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4. Additionally, recombinational PGE2 was used to detect if activation of COX2/PGE2 pathway could reverse the protection of miR-137 overexpression. Results The present work showed (1) EPC-EXs could be taken in by SH-SY5Y cells via caveolin-/clathrin-mediated pathways and macropinocytosis; (2) miR-137 was decreased in neurons after oxyHb treatment, and EXsmiR-137 could restore the miR-137 levels; (3) EXsmiR-137 worked better than EXs in reducing the number of apoptotic neurons and pro-apoptotic protein expression after oxyHb treatment; (4) EXsmiR-137 are more effective in improving the cellular MMP, ROS, and ATP level; (5) EXsmiR-137, but not EXs, protected oxyHb-treated SH-SY5Y cells against lipid peroxidation, iron overload, degradation of glutathione, and glutathione peroxidase 4; and (6) EXsmiR-137 suppressed the expression of the COX2/PGE2 pathway, and activation of the pathway could partially reverse the neuroprotective effects of EXsmiR-137. Conclusion miR-137 overexpression boosts the neuroprotective effects of EPC-EXs against apoptosis and mitochondrial dysfunction in oxyHb-treated SH-SY5Y cells. Furthermore, EXsmiR-137 rather than EXs can restore the decrease in miR-137 levels and inhibit ferroptosis, and the protection mechanism might involve the miR-137-COX2/PGE2 signaling pathway.
Collapse
Affiliation(s)
- Yuchen Li
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA.,Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Jinju Wang
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Shuzhen Chen
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Shancai Xu
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Chunlei Wang
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Huaizhang Shi
- Department of Neurosurgery, The First Affiliated Hospital, Harbin Medical University, Harbin, 150000, Heilongjiang, China.
| | - Ji Bihl
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, 45435, USA. .,Department of Biomedical Science, Joan C. Edwards School of Medicine, Marshall University, Huntingto, WV, 25755, China.
| |
Collapse
|
7
|
Recent Advancements in CD47 Signal Transduction Pathways Involved in Vascular Diseases. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4749135. [PMID: 32733941 PMCID: PMC7378613 DOI: 10.1155/2020/4749135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/09/2020] [Indexed: 12/18/2022]
Abstract
Cardiovascular and cerebrovascular diseases caused by atherosclerosis have a high disability rate and reduce the quality of life of the population. Therefore, understanding the mechanism of atherosclerosis and its control may interfere with the progression of atherosclerosis and thus control the occurrence of diseases closely related to atherosclerosis. TSP-1 is a factor that has been found to have an antiangiogenic effect, and CD47, as the receptor of TSP-1, can participate in the regulation of antiangiogenesis of atherosclerosis. VEGF is an important regulator of angiogenesis, and TSP-1/CD47 can cause VEGF and its downstream expression. Therefore, the TSP-1/CD47/VEGF/VEGFR2 signal may have an important influence on atherosclerosis. In addition, some inflammatory factors, such as IL-1 and NLRP3, can also affect atherosclerosis. This review will be expounded focusing on the pathogenesis and influencing factors of atherosclerosis.
Collapse
|
8
|
Zhang ZY, Fang YJ, Luo YJ, Lenahan C, Zhang JM, Chen S. The role of medical gas in stroke: an updated review. Med Gas Res 2020; 9:221-228. [PMID: 31898607 PMCID: PMC7802415 DOI: 10.4103/2045-9912.273960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Medical gas is a large class of bioactive gases used in clinical medicine and basic scientific research. At present, the role of medical gas in neuroprotection has received growing attention. Stroke is a leading cause of death and disability in adults worldwide, but current treatment is still very limited. The common pathological changes of these two types of stroke may include excitotoxicity, free radical release, inflammation, cell death, mitochondrial disorder, and blood-brain barrier disruption. In this review, we will discuss the pathological mechanisms of stroke and the role of two medical gases (hydrogen and hydrogen sulfide) in stroke, which may potentially provide a new insight into the treatment of stroke.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yuan-Jian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yu-Jie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM; Center for Neuroscience Research, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Jian-Ming Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
9
|
Liu J, Su G, Gao J, Tian Y, Liu X, Zhang Z. Effects of Peroxiredoxin 2 in Neurological Disorders: A Review of its Molecular Mechanisms. Neurochem Res 2020; 45:720-730. [PMID: 32002772 DOI: 10.1007/s11064-020-02971-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/15/2019] [Accepted: 01/20/2020] [Indexed: 12/25/2022]
Abstract
Oxidative stress and neuroinflammation are closely related to the pathological processes of neurological disorders. Peroxiredoxin 2 (Prdx2) is an abundant antioxidant enzyme in the central nervous system. Prdx2 reduces the production of reactive oxygen species and participates in regulating various signaling pathways in neurons by catalyzing hydrogen peroxide (H2O2), thereby protecting neurons against oxidative stress and an inflammatory injury. However, the spillage of Prdx2, as damage-associated molecular patterns, accelerates brain damage after stroke by activating an inflammatory response. The post-translational modifications of Prdx2 also affect its enzyme activity. This review focuses on the effects of Prdx2 and its molecular mechanisms in various neurological disorders.
Collapse
Affiliation(s)
- Jifei Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Ye Tian
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoyan Liu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
10
|
Kawakita F, Kanamaru H, Asada R, Suzuki H. Potential roles of matricellular proteins in stroke. Exp Neurol 2019; 322:113057. [DOI: 10.1016/j.expneurol.2019.113057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022]
|
11
|
Jiang XX, Song Y, Hu CR, Wang LH, Liu L, Zhang YJ. Impact of contrast-enhanced transcranial Doppler ultrasound diagnosis for young adult with cryptogenic stroke: A protocol of systematic review. Medicine (Baltimore) 2019; 98:e18236. [PMID: 31852088 PMCID: PMC6922455 DOI: 10.1097/md.0000000000018236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND This study aims to assess the impact of contrast-enhanced transcranial Doppler ultrasound (cTCD) diagnosis for young adult with cryptogenic stroke (CS). METHODS This study will analyze data from case-controlled studies investigating the impact of cTCD diagnosis for young adult with CS. A comprehensive literature search will be performed from PUBMED, EMBASE, Cochrane Library, Web of Science, Cumulative Index to Nursing and Allied Health Literature, Chinese Biomedical Literature Database, China National Knowledge Infrastructure, and Wanfang Data from their inceptions up to the August 1, 2019. All databases will be searched with no language limitations. Two researchers will independently carry out study selection, data collection, and study quality assessment. Any discrepancies between two researchers will be solved by a third researcher. We will apply RevMan 5.3 software and Stata 12.0 software for statistical analysis. RESULTS Outcomes consist of sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio for determination of cTCD diagnosis for young adult with CS. CONCLUSION The results of this study may summarize up-to-date evidence of cTCD diagnosis for young adult with CS. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42019145641.
Collapse
Affiliation(s)
| | | | - Chun-rong Hu
- Department of Quality Control, First Affiliated Hospital of Jiamusi University, Jiamusi, China
| | | | | | | |
Collapse
|
12
|
Thrombospondin 1 Is Increased in the Aorta and Plasma of Patients With Acute Aortic Dissection. Can J Cardiol 2019; 35:42-50. [DOI: 10.1016/j.cjca.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022] Open
|