1
|
Abbas K, Mubarak M. Expanding role of antibodies in kidney transplantation. World J Transplant 2025; 15:99220. [DOI: 10.5500/wjt.v15.i1.99220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
The role of antibodies in kidney transplant (KT) has evolved significantly over the past few decades. This role of antibodies in KT is multifaceted, encompassing both the challenges they pose in terms of antibody-mediated rejection (AMR) and the opportunities for improving transplant outcomes through better detection, prevention, and treatment strategies. As our understanding of the immunological mechanisms continues to evolve, so too will the approaches to managing and harnessing the power of antibodies in KT, ultimately leading to improved patient and graft survival. This narrative review explores the multifaceted roles of antibodies in KT, including their involvement in rejection mechanisms, advancements in desensitization protocols, AMR treatments, and their potential role in monitoring and improving graft survival.
Collapse
Affiliation(s)
- Khawar Abbas
- Department of Transplant Immunology, Sindh Institute of Urology & Transplantation, Karachi 74200, Sindh, Pakistan
| | - Muhammed Mubarak
- Javed I. Kazi Department of Histopathology, Sindh Institute of Urology & Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
2
|
Rroji M, Figurek A, Spasovski G. Advancing kidney transplant outcomes: the role of urinary proteomics in graft function monitoring and rejection detection. Expert Rev Proteomics 2024; 21:297-316. [PMID: 39133121 DOI: 10.1080/14789450.2024.2389829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Kidney transplantation significantly improves the lives of those with end-stage kidney disease, offering best alternative to dialysis. However, transplant success is threatened by the acute and chronic rejection mechanisms due to complex immune responses against the new organ. AREAS COVERED The ongoing research into biomarkers holds promise for revolutionizing the early detection and monitoring of the graft health. Liquid biopsy techniques offer a new avenue, with several diagnostic, predictive, and prognostic biomarkers showing promise in detecting and monitoring kidney diseases and an early and chronic allograft rejection. EXPERT OPINION Evaluating the protein composition related to kidney transplant results could lead to identifying biomarkers that provide insights into the graft functionality. Non-invasive proteomic biomarkers can drastically enhance clinical outcomes and change the way how kidney transplants are evaluated for patients and physicians if they succeed in this transition. Hence, the advancement in proteomic technologies, leads toward a significant improvement in understanding of the protein markers and molecular mechanisms linked to the outcomes of kidney transplants. However, the road from discovery to the use of such proteins in clinical practice is long, with a need for continuous validation and beyond the singular research team with comprehensive infrastructure and across research groups collaboration.
Collapse
Affiliation(s)
- Merita Rroji
- Faculty of Medicine, University Department of Nephrology, University of Medicine Tirana, Tirana, Albania
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Goce Spasovski
- Medical Faculty, University Department of Nephrology, University of Skopje, Skopje, Macedonia
| |
Collapse
|
3
|
Mubarak M, Raza A, Rashid R, Shakeel S. Evolution of human kidney allograft pathology diagnostics through 30 years of the Banff classification process. World J Transplant 2023; 13:221-238. [PMID: 37746037 PMCID: PMC10514746 DOI: 10.5500/wjt.v13.i5.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
The second half of the previous century witnessed a tremendous rise in the number of clinical kidney transplants worldwide. This activity was, however, accompanied by many issues and challenges. An accurate diagnosis and appropriate management of causes of graft dysfunction were and still are, a big challenge. Kidney allograft biopsy played a vital role in addressing the above challenge. However, its interpretation was not standardized for many years until, in 1991, the Banff process was started to fill this void. Thereafter, regular Banff meetings took place every 2 years for the past 30 years. Marked changes have taken place in the interpretation of kidney allograft biopsies, diagnosis, and classification of rejection and other non-rejection pathologies from the original Banff 93 classification. This review attempts to summarize those changes for increasing the awareness and understanding of kidney allograft pathology through the eyes of the Banff process. It will interest the transplant surgeons, physicians, pathologists, and allied professionals associated with the care of kidney transplant patients.
Collapse
Affiliation(s)
- Muhammed Mubarak
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Amber Raza
- Department of Nephrology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Rahma Rashid
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| | - Shaheera Shakeel
- Department of Histopathology, Sindh Institute of Urology and Transplantation, Karachi 74200, Sindh, Pakistan
| |
Collapse
|
4
|
Ren ZY, Pan B, Wang FF, Lyu SC, He Q. Effects of different preservation methods of human iliac veins. Cell Tissue Bank 2023; 24:571-582. [PMID: 36441442 DOI: 10.1007/s10561-022-10055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022]
Abstract
With the progress of vascular anastomosis technology, the radical resection surgery of cancer combining with vascular resection and reconstruction has been focused by surgeon. As a natural substitute material for blood vessel, vascular allografts have good vascular compliance and histocompatibility. Generally, the donated veins could not be used immediately, and need to be well preserved. So, it is greatly significant to do research in the preservation effects of different preservation methods on veins. In this study, the effects of different preservative methods of human iliac veins were compared and analyzed in terms of cell viability, vascular wall structure and tension resistance. The donated human iliac veins were randomly divided into three groups: Cold Storage Group (4 °C) (CSG), Frozen Storage Group (-186 °C) (FSG)and Fresh Control Group (FCG). Six detection time-points of preservation for 1, 3, 5, 7, 14, 28 days were set respectively. There are ten samples in each group and each time-point separately. Survival and apoptosis of vascular cell were evaluated by MTT assay and Tunel fluorescence staining. Tensile test was used to evaluate mechanical properties of vessels. The changes of vascular endothelial cells, smooth muscle cells, collagen fibers and elastic fibers were evaluated by HE staining, Masson staining and EVG staining. Furthermore, the changes of organelles were observed by transmission electron microscope. With the extension of preservation period, the vascular cell viability and tension resistance of two groups decreased, and the apoptotic cells increased gradually. The apoptosis index of CSG was higher than FSG at each time point (P < 0.05). In terms of cell viability, CSG was higher within 3 days (P < 0.05), both groups were same between 3 and 14 days, and then CSG lower than FSG after 14 days (P < 0.05). In terms of tension resistance, CSG was stronger than FSG (P < 0.05) in first 7 days, both groups were same in 2nd week, and then CSG was weaker in 4th week (P < 0.05). In terms of vascular wall structure, in CSG, vascular endothelial cells were damaged and shed, smooth muscle cells were edema after 14 days, but the cell membrane and intercellular connection were still intact. In 4th week, endothelial cells were completely damaged and shed, the boundary of smooth muscle cell membrane was unclear, intercellular connection was damaged. Moreover, organelles were destroyed and disappeared, perinuclear condensation of chromatin was observed, and some cells had incomplete nuclear membrane or nuclear fragmentation; However, there were no obvious changes in the FSG within 28 days. Finally, local exfoliation and destruction of endothelial cells and edema-like changes of organelles were observed; the collagen fibers and elastic fibers of blood vessels in the two groups had no obvious damage and change within 28 days. For excised human iliac vein, cold and frozen storage can effectively preserve the cell viability, wall structure and tension resistance of blood vessels. With the extension of preservation time, the related performance of vessels declined in varying degrees. Within first week, the effect of cold storage is better than frozen storage, but frozen storage is significantly better than cold storage after 2 weeks.
Collapse
Affiliation(s)
- Zhang-Yong Ren
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Bing Pan
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fang-Fei Wang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Shao-Cheng Lyu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Qiang He
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
5
|
Pace A, Steiner ME, Vercellotti GM, Somani A. Endothelial cell provenance: an unclear role in transplant medicine. FRONTIERS IN TRANSPLANTATION 2023; 2:1130941. [PMID: 38993867 PMCID: PMC11235371 DOI: 10.3389/frtra.2023.1130941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/11/2023] [Indexed: 07/13/2024]
Abstract
An understanding of the interplay between both donor endothelial progenitors and the recipient endothelium (in the case of hematopoietic cell transplant) and recipient endothelial provenance upon the established donor endothelium (in the case of solid organ transplant) is unknown. It is postulated that this interplay and consequences of purported dual endothelial populations may be a component of the post-transplant disease process and contribute to complications of engraftment or rejection. To address this potential confounding and often overlooked arena of vascular biology, a directed brief overview primarily focused on literature presented over the last decade is presented herein.
Collapse
Affiliation(s)
- Autumn Pace
- University of Minnesota Medical School, Minneapolis, MN, United States
| | - Marie E. Steiner
- Department of Pediatrics, Division of Hematology/Oncology, University of Minnesota Medical School, Minneapolis, MN, United States
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Gregory M. Vercellotti
- Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Arif Somani
- Department of Pediatrics, Division of Critical Care Medicine, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
6
|
Role of the Immune System in Renal Transplantation, Types of Response, Technical Approaches and Current Challenges. IMMUNO 2022. [DOI: 10.3390/immuno2040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advances over the last decades have made renal transplantation an important therapy for patients with end-stage renal disease, as the incidences of acute rejection and short-term transplant loss have been significantly reduced. However, long-term transplant survival remains a challenge in the renal transplantation community. The main causes of long-term graft loss are acute and chronic rejection, as well as the complications related to immunosuppression therapy. In spite of the breakthroughs achieved in recent years, histology is the gold standard technique to confirm the activation of the immune system against the graft with all the ensuing problems that taking biopsies brings to immunosuppressed patients. For this reason, several assays have been developed to try to monitor the immune function, but they show serious constraints owing to the fact that they require substantial laboratory work, they are not clinically available and they provide controversial results, so the combination of multiple assays is often needed to obtain a reliable diagnosis. Thus, the aim of this review is to perform a retrospective study of the immune system in renal transplantation, with special emphasis on the cutting-edge technological developments for monitoring, classification and early detection of rejection episodes in order to contribute to a better adjustment of immunosuppressive therapies and, hence, to a more personalized medicine that improves the quality of life of patients.
Collapse
|
7
|
Merino A, Sablik M, Korevaar SS, López-Iglesias C, Ortiz-Virumbrales M, Baan CC, Lombardo E, Hoogduijn MJ. Membrane Particles Derived From Adipose Tissue Mesenchymal Stromal Cells Improve Endothelial Cell Barrier Integrity. Front Immunol 2021; 12:650522. [PMID: 33897698 PMCID: PMC8058477 DOI: 10.3389/fimmu.2021.650522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Proinflammatory stimuli lead to endothelial injury, which results in pathologies such as cardiovascular diseases, autoimmune diseases, and contributes to alloimmune responses after organ transplantation. Both mesenchymal stromal cells (MSC) and the extracellular vesicles (EV) released by them are widely studied as regenerative therapy for the endothelium. However, for therapeutic application, the manipulation of living MSC and large-scale production of EV are major challenges. Membrane particles (MP) generated from MSC may be an alternative to the use of whole MSC or EV. MP are nanovesicles artificially generated from the membranes of MSC and possess some of the therapeutic properties of MSC. In the present study we investigated whether MP conserve the beneficial MSC effects on endothelial cell repair processes under inflammatory conditions. MP were generated by hypotonic shock and extrusion of MSC membranes. The average size of MP was 120 nm, and they showed a spherical shape. The effects of two ratios of MP (50,000; 100,000 MP per target cell) on human umbilical vein endothelial cells (HUVEC) were tested in a model of inflammation induced by TNFα. Confocal microscopy and flow cytometry showed that within 24 hours >90% of HUVEC had taken up MP. Moreover, MP ended up in the lysosomes of the HUVEC. In a co-culture system of monocytes and TNFα activated HUVEC, MP did not affect monocyte adherence to HUVEC, but reduced the transmigration of monocytes across the endothelial layer from 138 ± 61 monocytes per microscopic field in TNFα activated HUVEC to 61 ± 45 monocytes. TNFα stimulation induced a 2-fold increase in the permeability of the HUVEC monolayer measured by the translocation of FITC-dextran to the lower compartment of a transwell system. At a dose of 1:100,000 MP significantly decreased endothelial permeability (1.5-fold) respect to TNFα Stimulated HUVEC. Finally, MP enhanced the angiogenic potential of HUVEC in an in vitro Matrigel assay by stimulating the formation of angiogenic structures, such as percentage of covered area, total tube length, total branching points, total loops. In conclusion, MP show regenerative effects on endothelial cells, opening a new avenue for treatment of vascular diseases where inflammatory processes damage the endothelium.
Collapse
Affiliation(s)
- Ana Merino
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Marta Sablik
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Sander S Korevaar
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute, FHML Maastricht University, Maastricht, Netherlands
| | | | - Carla C Baan
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | | | - Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
8
|
Kuan K, Schwartz D. Educational Case: Kidney Transplant Rejection. Acad Pathol 2021; 8:23742895211006832. [PMID: 33889718 PMCID: PMC8040549 DOI: 10.1177/23742895211006832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 12/30/2020] [Accepted: 01/14/2021] [Indexed: 11/17/2022] Open
Abstract
The following fictional case is intended as a learning tool within the Pathology Competencies for Medical Education (PCME), a set of national standards for teaching pathology. These are divided into three basic competencies: Disease Mechanisms and Processes, Organ System Pathology, and Diagnostic Medicine and Therapeutic Pathology. For additional information, and a full list of learning objectives for all three competencies, see http://journals.sagepub.com/doi/10.1177/2374289517715040.1.
Collapse
Affiliation(s)
- Kevin Kuan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Schwartz
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niu Y, Li Y, Famure O, Bozovic A, Kulasingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvet S, Jurisica I, Chruscinski A, John R, Konvalinka A. Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020; 31:2705-2724. [PMID: 32900843 DOI: 10.1681/asn.2020030286] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie Anh Dung Van
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Madhurangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun Niu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peixuen Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Joseph Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Emilie Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Syed Ashiqur Rahman
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Iwasaki K, Hamana H, Kishi H, Yamamoto T, Hiramitsu T, Okad M, Tomosugi T, Takeda A, Narumi S, Watarai Y, Miwa Y, Okumura M, Matsuoka Y, Horimi K, Muraguchi A, Kobayash T. The suppressive effect on CD4 T cell alloresponse against endothelial HLA-DR via PD-L1 induced by anti-A/B ligation. Clin Exp Immunol 2020; 202:249-261. [PMID: 32578199 DOI: 10.1111/cei.13482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022] Open
Abstract
While donor-specific human leukocyte antigen (HLA) antibodies are a frequent cause for chronic antibody-mediated rejection in organ transplantation, this is not the case for antibodies targeting blood group antigens, as ABO-incompatible (ABO-I) organ transplantation has been associated with a favorable graft outcome. Here, we explored the role of CD4 T cell-mediated alloresponses against endothelial HLA-D-related (DR) in the presence of anti-HLA class I or anti-A/B antibodies. CD4 T cells, notably CD45RA-memory CD4 T cells, undergo extensive proliferation in response to endothelial HLA-DR. The CD4 T cell proliferative response was enhanced in the presence of anti-HLA class I, but attenuated in the presence of anti-A/B antibodies. Microarray analysis and molecular profiling demonstrated that the expression of CD274 programmed cell death ligand 1 (PD-L1) increased in response to anti-A/B ligation-mediated extracellular signal-regulated kinase (ERK) inactivation in endothelial cells that were detected even in the presence of interferon-γ stimulation. Anti-PD-1 antibody enhanced CD4 T cell proliferation, and blocked the suppressive effect of the anti-A/B antibodies. Educated CD25+ CD127- regulatory T cells (edu.Tregs ) were more effective at preventing CD4 T cell alloresponses to endothelial cells compared with naive Treg ; anti-A/B antibodies were not involved in the Treg -mediated events. Finally, amplified expression of transcript encoding PD-L1 was observed in biopsy samples from ABO-I renal transplants when compared with those from ABO-identical/compatible transplants. Taken together, our findings identified a possible factor that might prevent graft rejection and thus contribute to a favorable outcome in ABO-I renal transplantation.
Collapse
Affiliation(s)
- K Iwasaki
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - H Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - H Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Yamamoto
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Hiramitsu
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - M Okad
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - T Tomosugi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - A Takeda
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - S Narumi
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Watarai
- Department of Transplant Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Y Miwa
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - M Okumura
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Y Matsuoka
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - K Horimi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - A Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - T Kobayash
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
11
|
Louis K, Hertig A, Taupin JL, Buob D, Jamme M, Brocheriou I, Luque Y, Jouanneau C, Ouali N, Audouin M, Rondeau E, Xu-Dubois YC. Markers of graft microvascular endothelial injury may identify harmful donor-specific anti-HLA antibodies and predict kidney allograft loss. Am J Transplant 2019; 19:2434-2445. [PMID: 30836425 DOI: 10.1111/ajt.15340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 01/25/2023]
Abstract
Graft microvasculature is a major target of donor-specific antibodies (DSA) and endothelial damage is direct evidence of antibody-mediated rejection (ABMR). Using immunohistochemistry, we analyzed the expression of three microvascular endothelial activation markers (fascin, vimentin, and hsp47), suggestive of endothelial-to-mesenchymal transition (EndMT) in 351 graft biopsies from 248 kidney recipients, with concomitant screening of circulating antihuman leukocyte antigen (HLA) DSA at the time of the biopsy. The factors associated with EndMT marker expression were DSA and the presence of microvascular inflammation (MI). EndMT expressing grafts had significantly more allograft loss compared to EndMT negative grafts (P < .0001). The expression of EndMT markers positively correlated with anti-HLA DSA class II mean fluorescence intensity (MFI) levels and especially identified DQ and DR antibodies as being more closely associated with microvascular injury. Moreover, only DSA linked to positive EndMT score affected allograft survival, regardless of DSA MFI levels or presence of C4d deposition. Thus, EndMT markers could represent a clinically relevant tool for early identification of ongoing endothelial injury, harmful DSA, and patients at high risk for allograft failure.
Collapse
Affiliation(s)
- Kevin Louis
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Alexandre Hertig
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1155, Paris, France
| | - Jean-Luc Taupin
- AP-HP, Hôpital Saint Louis, Laboratoire d'immunologie et d'histocompatibilité, Paris, France
| | - David Buob
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1155, Paris, France.,AP-HP, Hôpital Tenon, Service d'Anatomo-Pathologie, Paris, France
| | - Matthieu Jamme
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Isabelle Brocheriou
- Sorbonne Universités, UPMC Université Paris 06, UMR S 1155, Paris, France.,AP-HP, Hôpital Pitié-Salpétrière, Service d'Anatomo-Pathologie, Paris, France
| | - Yosu Luque
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1155, Paris, France
| | - Chantal Jouanneau
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Nacera Ouali
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France
| | - Marie Audouin
- APHP, Hôpital Tenon, Service d'urologie, Paris, France
| | - Eric Rondeau
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France.,Sorbonne Universités, UPMC Université Paris 06, UMR S 1155, Paris, France
| | - Yi-Chun Xu-Dubois
- Sorbonne University, Inserm UMR_S1155, AP-HP, Hôpital Tenon, F-75020, Paris, France.,APHP, Hôpital Tenon, Service de Santé publique, Paris, France
| |
Collapse
|
12
|
Corrigendum to "Endothelial Cells in Antibody-Mediated Rejection of Kidney Transplantation: Pathogenesis Mechanisms and Therapeutic Implications". J Immunol Res 2019; 2019:9691679. [PMID: 30984792 PMCID: PMC6431480 DOI: 10.1155/2019/9691679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
|
13
|
Pelikant-Małecka I, Smoleński RT, Słomińska EM. Metabolism of 4-pyridone-3-carboxamide-1β-d-ribonucleoside (4PYR) in primary murine brain microvascular endothelial cells (mBMECs). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 37:639-644. [PMID: 30663501 DOI: 10.1080/15257770.2018.1535122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) is a derivative of nicotinamide found physiologically in human body fluids that can be metabolized to mono-, di- or triphosphate derivatives (4PYMP, 4PYDP and 4PYTP respectively) and an analogue of NAD - the 1-β-D-ribonucleoside-4-pyridone-3-carboxamide adenine dinucleotide (4PYRAD) in human cells. The European Uremic Toxin Work Group (EUTox) has classified 4PYR as a uremic toxin that adversely affects endothelium. This study aimed to investigate the metabolism of 4PYR in murine brain microvascular endothelial cells (mBMECs). Incubation of mBMECs with 4PYR was carried out for 0, 24, 48 or 72 h. After incubation, a medium was removed and cellular concentrations of ATP, ADP, NAD, 4PYMP and 4PYRAD were analyzed using reversed-phase HPLC. 4PYR was metabolized by mBMECs to 4PYMP and 4PYRAD that reached concentrations of 2 ± 0.7 and 0.6 ± 0.2 nmol/mg protein (mean ± SEM), respectively, after 72 h incubation. However, unlike with endothelial cells studied so far this process has no effect on energy balance in the cell as indicated by maintained ATP/ADP ratio and adenine and nicotinamide intracellular pools. Further studies are required to explain whether the difference in 4PYR metabolism is related to differences between species or organs.
Collapse
Affiliation(s)
- Iwona Pelikant-Małecka
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland.,b Department of Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens , Medical University of Gdansk , Poland.,c Biobanking and Biomolecular Resources Research Infrastructure Poland (BBMRI.PL) , Gdansk , Poland
| | - Ryszard T Smoleński
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| | - Ewa M Słomińska
- a Department of Biochemistry , Medical University of Gdansk , Gdansk , Poland
| |
Collapse
|
14
|
GPIHBP1 autoantibody syndrome during interferon β1a treatment. J Clin Lipidol 2018; 13:62-69. [PMID: 30514621 DOI: 10.1016/j.jacl.2018.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/21/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Autoantibodies against glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) cause chylomicronemia by blocking the ability of GPIHBP1 to bind lipoprotein lipase (LPL) and transport the enzyme to its site of action in the capillary lumen. OBJECTIVE A patient with multiple sclerosis developed chylomicronemia during interferon (IFN) β1a therapy. The chylomicronemia resolved when the IFN β1a therapy was discontinued. Here, we sought to determine whether the drug-induced chylomicronemia was caused by GPIHBP1 autoantibodies. METHODS We tested plasma samples collected during and after IFN β1a therapy for GPIHBP1 autoantibodies (by western blotting and with enzyme-linked immunosorbent assays). We also tested whether the patient's plasma blocked the binding of LPL to GPIHBP1 on GPIHBP1-expressing cells. RESULTS During IFN β1a therapy, the plasma contained GPIHBP1 autoantibodies, and those autoantibodies blocked GPIHBP1's ability to bind LPL. Thus, the chylomicronemia was because of the GPIHBP1 autoantibody syndrome. Consistent with that diagnosis, the plasma levels of GPIHBP1 and LPL were very low. After IFN β1a therapy was stopped, the plasma triglyceride levels returned to normal, and GPIHBP1 autoantibodies were undetectable. CONCLUSION The appearance of GPIHBP1 autoantibodies during IFN β1a therapy caused chylomicronemia. The GPIHBP1 autoantibodies disappeared when the IFN β1a therapy was stopped, and the plasma triglyceride levels fell within the normal range.
Collapse
|
15
|
Wu H, Malone AF, Donnelly EL, Kirita Y, Uchimura K, Ramakrishnan SM, Gaut JP, Humphreys BD. Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. J Am Soc Nephrol 2018; 29:2069-2080. [PMID: 29980650 DOI: 10.1681/asn.2018020125] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/05/2018] [Indexed: 01/11/2023] Open
Abstract
Background Single-cell genomics techniques are revolutionizing our ability to characterize complex tissues. By contrast, the techniques used to analyze renal biopsy specimens have changed little over several decades. We tested the hypothesis that single-cell RNA-sequencing can comprehensively describe cell types and states in a human kidney biopsy specimen.Methods We generated 8746 single-cell transcriptomes from a healthy adult kidney and a single kidney transplant biopsy core by single-cell RNA-sequencing. Unsupervised clustering analysis of the biopsy specimen was performed to identify 16 distinct cell types, including all of the major immune cell types and most native kidney cell types, in this biopsy specimen, for which the histologic read was mixed rejection.Results Monocytes formed two subclusters representing a nonclassical CD16+ group and a classic CD16- group expressing dendritic cell maturation markers. The presence of both monocyte cell subtypes was validated by staining of independent transplant biopsy specimens. Comparison of healthy kidney epithelial transcriptomes with biopsy specimen counterparts identified novel segment-specific proinflammatory responses in rejection. Endothelial cells formed three distinct subclusters: resting cells and two activated endothelial cell groups. One activated endothelial cell group expressed Fc receptor pathway activation and Ig internalization genes, consistent with the pathologic diagnosis of antibody-mediated rejection. We mapped previously defined genes that associate with rejection outcomes to single cell types and generated a searchable online gene expression database.Conclusions We present the first step toward incorporation of single-cell transcriptomics into kidney biopsy specimen interpretation, describe a heterogeneous immune response in mixed rejection, and provide a searchable resource for the scientific community.
Collapse
Affiliation(s)
- Haojia Wu
- Division of Nephrology, Department of Medicine and Departments of
| | - Andrew F Malone
- Division of Nephrology, Department of Medicine and Departments of
| | - Erinn L Donnelly
- Division of Nephrology, Department of Medicine and Departments of
| | - Yuhei Kirita
- Division of Nephrology, Department of Medicine and Departments of
| | - Kohei Uchimura
- Division of Nephrology, Department of Medicine and Departments of
| | | | | | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine and Departments of .,Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| |
Collapse
|
16
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
17
|
Tietjen GT, Hosgood SA, DiRito J, Cui J, Deep D, Song E, Kraehling JR, Piotrowski-Daspit AS, Kirkiles-Smith NC, Al-Lamki R, Thiru S, Bradley JA, Saeb-Parsy K, Bradley JR, Nicholson ML, Saltzman WM, Pober JS. Nanoparticle targeting to the endothelium during normothermic machine perfusion of human kidneys. Sci Transl Med 2017; 9:eaam6764. [PMID: 29187644 PMCID: PMC5931373 DOI: 10.1126/scitranslmed.aam6764] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/11/2017] [Indexed: 01/18/2023]
Abstract
Ex vivo normothermic machine perfusion (NMP) is a new clinical strategy to assess and resuscitate organs likely to be declined for transplantation, thereby increasing the number of viable organs available. Short periods of NMP provide a window of opportunity to deliver therapeutics directly to the organ and, in particular, to the vascular endothelial cells (ECs) that constitute the first point of contact with the recipient's immune system. ECs are the primary targets of both ischemia-reperfusion injury and damage from preformed antidonor antibodies, and reduction of perioperative EC injury could have long-term benefits by reducing the intensity of the host's alloimmune response. Using NMP to administer therapeutics directly to the graft avoids many of the limitations associated with systemic drug delivery. We have previously shown that polymeric nanoparticles (NPs) can serve as depots for long-term drug release, but ensuring robust NP accumulation within a target cell type (graft ECs in this case) remains a fundamental challenge of nanomedicine. We show that surface conjugation of an anti-CD31 antibody enhances targeting of NPs to graft ECs of human kidneys undergoing NMP. Using a two-color quantitative microscopy approach, we demonstrate that targeting can enhance EC accumulation by about 5- to 10-fold or higher in discrete regions of the renal vasculature. In addition, our studies reveal that NPs can also nonspecifically accumulate within obstructed regions of the vasculature that are poorly perfused. These quantitative preclinical human studies demonstrate the therapeutic potential for targeted nanomedicines delivered during ex vivo NMP.
Collapse
Affiliation(s)
- Gregory T Tietjen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Sarah A Hosgood
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Jenna DiRito
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Jiajia Cui
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Deeksha Deep
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Eric Song
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Jan R Kraehling
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | | | | | - Rafia Al-Lamki
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sathia Thiru
- Department of Pathology, University of Cambridge, Cambridge CB2 0QQ, UK
| | - J Andrew Bradley
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - John R Bradley
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA.
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|