1
|
Lu T, Yang L, Li Z, Liu Y, Xu S, Ye C. Immediate implantation of ultrafine fiber slow-release system based on cell electrospinning to induce osteogenesis of mesenchymal stem cells. Regen Biomater 2023; 11:rbad113. [PMID: 38225955 PMCID: PMC10789307 DOI: 10.1093/rb/rbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/21/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
This study presents the development and evaluation of a poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P34HB) ultrafine fiber slow-release system for in vivo osteogenic induction of human umbilical cord mesenchymal stem cells (HUCMSCs). Utilizing dual-nozzle and cell electrospinning techniques, the system encapsulates L-ascorbic acid-2-phosphate magnesium (ASP), β-glycerophosphate sodium and dexamethasone (DEX) within the fibers, ensuring sustained osteogenic differentiation. The scaffold's morphology, characterization, hydrophilicity, mechanical properties and cellular behavior were examined. Immediate subcutaneous implantation in rabbits was conducted to observe its ectopic osteogenic induction effect. Successfully fabricated P34HB ultrafine fiber slow-release system. Characterization confirmed the uniform distribution of HUCMSCs and inducing components within the scaffold, with no chemical reactions affecting the active components. In vitro tests showcased a prolonged release of DEX and ASP, while biocompatibility assays highlighted the scaffold's suitability for cellular growth. Alizarin Red, type I collagen, and osteopontin (OPN) staining verified the scaffold's potent osteogenic induction effect on HUCMSCs. Notably, immediate implantation into New Zealand White rabbits led to significant new bone formation within 8 weeks. These findings underscore the system's potential for immediate in vivo implantation without prior in vitro induction, marking a promising advancement in bone tissue engineering.
Collapse
Affiliation(s)
- Tao Lu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Department of Orthopaedics, The First People’s Hospital of Guiyang, Guiyang 550004, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| | - Zhuoyang Li
- Department of Otolaryngology Head and Neck Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing 400037, China
| | - Yin Liu
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
- Department of Dental implant, Stomatological Hospital of Guiyang, Guiyang 550000, China
| | - Shun'en Xu
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
2
|
Ahuja V, Bhatt AK, Banu JR, Kumar V, Kumar G, Yang YH, Bhatia SK. Microbial Exopolysaccharide Composites in Biomedicine and Healthcare: Trends and Advances. Polymers (Basel) 2023; 15:polym15071801. [PMID: 37050415 PMCID: PMC10098801 DOI: 10.3390/polym15071801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications.
Collapse
Affiliation(s)
- Vishal Ahuja
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
- University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Shimla 171005, Himachal Pradesh, India
| | - J. Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, P.O. Box 8600 Forus, 4036 Stavanger, Norway
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Electrospun egg white protein/polyvinyl alcohol/graphene oxide fibrous wound dressing: Fabrication, antibacterial, cytocompatibility and wound healing assay. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Movahedi M, Karbasi S. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering. Int J Biol Macromol 2022; 214:301-311. [PMID: 35714870 DOI: 10.1016/j.ijbiomac.2022.06.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Articular cartilage is a connective load-bearing tissue with a low rate of regeneration due to slow metabolism. Fabricating tissue-like structure modified based on natural features can improve healing process. Fibrous scaffolds based on the composition of hydrophobic polyhydroxybutyrate (PHB) and hydrophilic starch reinforced using halloysite nanotubes (HNTs) with appropriate physico-chemical and biological properties was produced via electrospinning technique for long-term applications like cartilage regeneration. Textural properties were analyzed through SEM imaging that showed incorporating HNTs up to 2 wt% decreased mean fiber diameter to 158 ± 48 nm with larger pore size and appropriate porosity percentage. Moreover, the tensile strength was improved up to 4.21 ± 0.31 MPa after HNTs incorporation support chondrocyte cell growth. Furthermore, incorporating HNTs induced surface hydrophilicity and in vitro degradation. The biological assays both MTT assay and cell attachment of chondrocyte cells on 2 wt% HNTs incorporated into PHB-starch fibers indicated that HNTs incorporation can support cell growth and attachment without any toxicity for biomedical applications. To conclude, the obtained results demonstrated PHB-starch/HNTs fibrous scaffold could be potential for further experimental studies for tissue engineering applications like cartilage.
Collapse
Affiliation(s)
- Mehdi Movahedi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Xu S, Yang L, Wu X, Yang Y, Zhou Y, Ye C. Rapid in situ hepatic hemostasis using a P34HB/tranexamic acid fibrous membrane delivered by a handheld electrospinning apparatus. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Azuraini MJ, Vigneswari S, Huong KH, Khairul WM, H.P.S. AK, Ramakrishna S, Amirul AAA. Surface Modification of Sponge-like Porous Poly(3-hydroxybutyrate- co-4-hydroxybutyrate)/Gelatine Blend Scaffolds for Potential Biomedical Applications. Polymers (Basel) 2022; 14:1710. [PMID: 35566880 PMCID: PMC9104733 DOI: 10.3390/polym14091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
In this study, we described the preparation of sponge-like porous scaffolds that are feasible for medical applications. A porous structure provides a good microenvironment for cell attachment and proliferation. In this study, a biocompatible PHA, poly(3-hydroxybutyrate-co-4-hydroxybutyrate) was blended with gelatine to improve the copolymer's hydrophilicity, while structural porosity was introduced into the scaffold via a combination of solvent casting and freeze-drying techniques. Scanning electron microscopy results revealed that the blended scaffolds exhibited higher porosity when the 4HB compositions of P(3HB-co-4HB) ranged from 27 mol% to 50 mol%, but porosity decreased with a high 4HB monomer composition of 82 mol%. The pore size, water absorption capacity, and cell proliferation assay results showed significant improvement after the final weight of blend scaffolds was reduced by half from the initial 0.79 g to 0.4 g. The pore size of 0.79g-(P27mol%G10) increased three-fold while the water absorption capacity of 0.4g-(P50mol%G10) increased to 325%. Meanwhile, the cell proliferation and attachment of 0.4g-(P50mol%G10) and 0.4g-(P82mol%G7.5) increased as compared to the initial seeding number. Based on the overall data obtained, we can conclude that the introduction of a small amount of gelatine into P(3HB-co-4HB) improved the physical and biological properties of blend scaffolds, and the 0.4g-(P50mol%G10) shows great potential for medical applications considering its unique structure and properties.
Collapse
Affiliation(s)
- Mat Junoh Azuraini
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
| | - Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (S.V.); (W.M.K.)
| | - Kai-Hee Huong
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
- Centre of Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | - Wan M. Khairul
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Malaysia; (S.V.); (W.M.K.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 119260, Singapore;
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (M.J.A.); (K.-H.H.)
- Centre of Chemical Biology, Universiti Sains Malaysia, Penang 11900, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, Penang 11700, Malaysia
| |
Collapse
|
7
|
Xu S, Lu T, Yang L, Luo S, Wang Z, Ye C. In situ cell electrospun using a portable handheld electrospinning apparatus for the repair of wound healing in rats. Int Wound J 2022; 19:1693-1704. [PMID: 35142063 PMCID: PMC9615271 DOI: 10.1111/iwj.13769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 11/29/2022] Open
Abstract
Slow or non‐healing wounds caused by full‐thickness skin wounds of various origins have become a difficult challenge in clinical wound treatment. In particular, large full‐thickness skin wounds often lead to serious chronic skin wounds that do not heal. Electrospinning technology and stem cell treatment for wound repair have attracted much attention due to its unique advantages. In the current study, we electrospun polyvinyl alcohol (PVA) and bone marrow–derived stem cells (BMSCs) by a handheld electrospinning device, the distribution and interaction of cells and fibres were determined by light and electron microscopy and the cell viability and proliferation were determined by live/dead cell staining. The tissues were analysed by histology with Haematoxylin and Eosin (H&E) and Masson staining and immunohistochemical staining. We found that the fibres were distributed uniformly and BMSCs were distributed between the fibres. Cytotoxicity and cell proliferation tests proved its good biocompatibility. Histological staining shows it can accelerate wound healing and appendages regeneration by promoting granulation tissue repair. The instant PVA/stem cell fibres prepared by a handheld electrospinning device strongly promote the repair of full‐thickness skin wounds in rats. The proposed electrospinning technology is expected to have great potential in household, outdoor and battlefield first aid.
Collapse
Affiliation(s)
- Shunen Xu
- Medical College of Soochow University, Suzhou, China.,Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Tao Lu
- Department of Orthopaedics, The First People's Hospital of Guiyang, Guiyang, China
| | - Long Yang
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Siwei Luo
- Guizhou Medical University, Guiyang, China
| | - Zhen Wang
- Guizhou Medical University, Guiyang, China
| | - Chuan Ye
- Department of Orthopaedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Key Laboratory of Adult Stem Cell Transformation Research, Chinese Academy of Medical Sciences, Guiyang, China.,Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, China
| |
Collapse
|
8
|
Mohapatra B, Rautray TR. Facile fabrication of Luffa cylindrica-assisted 3D hydroxyapatite scaffolds. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2021. [DOI: 10.1680/jbibn.20.00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The incidence of bone-related disorders is abruptly increasing worldwide, and the current therapies available are not sufficient to fulfill the growing demands of patients. Porous three-dimensional (3D) structures cast in combination with ceramics and polymers, with an intention to mimic native bone tissues, are gaining importance because of their better physicochemical and biological activities. The purpose of this study is to prepare a porous scaffold using Luffa cylindrica (LC) as a template coated with hydroxyapatite and gelatin. Guar gum (GG) was used as a binder, and hydroxyapatite powder was added to slurry of 10% gelatin and 1% GG in which pieces of LC were dipped followed by sintering at 900°C. The fabricated scaffolds (LC-GG) were analyzed by using different characterization techniques along with evaluation of porosity and water retention ability. The results revealed that the as-formed scaffolds have 70% porosity with more than 90% water retention ability. The degree of spreading of lymphocytes over the scaffold surface was less in comparison with that of the control, which showed the immunocompatibility of the fabricated scaffold. Based on the aforementioned findings, it is assumed that the synthesized porous structures can suitably be used for biomedical applications.
Collapse
Affiliation(s)
- Bijayinee Mohapatra
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, India
| | - Tapash R Rautray
- Biomaterials and Tissue Regeneration Laboratory, Centre of Excellence in Theoretical and Mathematical Sciences, Siksha ‘O’ Anusandhan University, Bhubaneswar, India
| |
Collapse
|
9
|
Electrospun egg white/polyvinyl alcohol fiber dressing to accelerate wound healing. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02422-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Vigneswari S, Chai JM, Kamarudin KH, Amirul AAA, Focarete ML, Ramakrishna S. Elucidating the Surface Functionality of Biomimetic RGD Peptides Immobilized on Nano-P(3HB- co-4HB) for H9c2 Myoblast Cell Proliferation. Front Bioeng Biotechnol 2020; 8:567693. [PMID: 33195129 PMCID: PMC7653028 DOI: 10.3389/fbioe.2020.567693] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022] Open
Abstract
Biomaterial scaffolds play crucial role to promote cell proliferation and foster the regeneration of new tissues. The progress in material science has paved the way for the generation of ingenious biomaterials. However, these biomaterials require further optimization to be effectively used in existing clinical treatments. It is crucial to develop biomaterials which mimics structure that can be actively involved in delivering signals to cells for the formation of the regenerated tissue. In this research we nanoengineered a functional scaffold to support the proliferation of myoblast cells. Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer is chosen as scaffold material owing to its desirable mechanical and physical properties combined with good biocompatibility, thus eliciting appropriate host tissue responses. In this study P(3HB-co-4HB) copolymer was biosynthesized using Cupriavidus malaysiensis USMAA1020 transformant harboring additional PHA synthase gene, and the viability of a novel P(3HB-co-4HB) electrospun nanofiber scaffold, surface functionalized with RGD peptides, was explored. In order to immobilize RGD peptides molecules onto the P(3HB-co-4HB) nanofibers surface, an aminolysis reaction was performed. The nanoengineered scaffolds were characterized using SEM, organic elemental analysis (CHN analysis), FTIR, surface wettability and their in vitro degradation behavior was evaluated. The cell culture study using H9c2 myoblast cells was conducted to assess the in vitro cellular response of the engineered scaffold. Our results demonstrated that nano-P(3HB-co-4HB)-RGD scaffold possessed an average fiber diameter distribution between 200 and 300 nm, closely biomimicking, from a morphological point of view, the structural ECM components, thus acting as potential ECM analogs. This study indicates that the surface conjugation of biomimetic RGD peptide to the nano-P(3HB-co-4HB) fibers increased the surface wettability (15 ± 2°) and enhanced H9c2 myoblast cells attachment and proliferation. In summary, the study reveals that nano-P(3HB-co-4HB)-RGD scaffold can be considered a promising candidate to be further explored as cardiac construct for building cardiac construct.
Collapse
Affiliation(s)
- Sevakumaran Vigneswari
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Jun Meng Chai
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Khadijah Hilmun Kamarudin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, George Town, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Malaysia
| | - Maria Letizia Focarete
- Department of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Bologna, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Ozzano Emilia, Italy
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Zhou C, Ye C, Zhao C, Liao J, Li Y, Chen H, Huang W. A Composite Tissue Engineered Bone Material Consisting of Bone Mesenchymal Stem Cells, Bone Morphogenetic Protein 9 (BMP9) Gene Lentiviral Vector, and P3HB4HB Thermogel (BMSCs-LV-BMP9-P3HB4HB) Repairs Calvarial Skull Defects in Rats by Expression of Osteogenic Factors. Med Sci Monit 2020; 26:e924666. [PMID: 32894745 PMCID: PMC7496453 DOI: 10.12659/msm.924666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Bone tissue engineering has been proven to be an appropriate approach for treating bone defects. This study aimed to investigate the effects and mechanism of a composite tissue engineered bone material consisting of bone mesenchymal stem cells (BMSCs), bone morphogenetic protein (BMP9) gene lentiviral vector, and P3HB4HB thermogel (BMSCs-LV-BMP9-P3HB4HB) on calvarial skull defects in rats. Material/Methods LV-BMP9 viral vector was structured and infected to BMSCs-P3HB4HB composite scaffold, which was named as BMSCs-P3HB4HB composite bone repair material. Adipogenic differentiation was determined by oil-red O (ORO) and alkaline phosphatase (ALP) staining. Osteogenic differentiation was measured using Alizarin red staining. Cell viability was examined using Cell-Counting Kit-8 (CCK-8) assay. Protein expression of osteogenic factors, including BMP9, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteopontin (OPN), and osterix (OSX), was detected with Western blot assay and immunohistochemistry. mRNA of these osteogenic factors was examined by RT-PCR. Histological changes were examined with hematoxylin and eosin (H&E) and Masson’s trichrome staining. Bone repair was measured using micro-computed tomography (micro-CT). Results BMSCs and LV-BMP9-infected BMSCs demonstrated adipogenic and osteogenic differentiation potential. BMSCs-P3HB4HB scaffold demonstrated good cell-tissue compatibility. BMSCs-LV-BMP9-P3HB4HB exhibited significantly higher osteogenic ability and cell viability of BMSCs compared to BMSCs-LV-P3HB4HB (p<0.05). BMSCs-LV-BMP9-P3HB4HB significantly promoted osteogenic factors (RUNX2, OCN, OPN, and OSX) expression compared to the BMSCs-LV-P3HB4HB group (p<0.05) in both BMSCs and in calvarial defect rats. BMSCs-LV-BMP9-P3HB4HB demonstrated stronger repair ability. BMSCs-LV-BMP9-P3HB4HB significantly alleviated pathological injury and increased collagen fiber production compared to the BMSCs-LV-P3HB4HB group (p<0.05). Conclusions BMSCs-LV-BMP9-P3HB4HB composite bone repair material can effectively repair injured skull tissues of calvarial defect rats through triggering osteogenic factors expression. The present generated bone repair material may have applications in tissue engineering in regeneration of bone defects.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Chuan Ye
- Department of Orthopedics, Affiliated Hospital of Guizhou Medical University, Guizhou, Guiyang, China (mainland)
| | - Chen Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Junyi Liao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Yuwan Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China (mainland)
| |
Collapse
|
12
|
Electrospun and Electrosprayed Scaffolds for Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:79-100. [PMID: 30357619 DOI: 10.1007/978-981-13-0950-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrospinning and electrospraying technologies provide an accessible and universal synthesis method for the continuous preparation of nanostructured materials. This chapter introduces recent uses of electrospun and electrosprayed scaffolds for tissue regeneration applications. More recent in vitro and in vivo of electrospun fibers are also discussed in relation to soft and hard tissue engineering applications. The focus is made on the bone, vascular, skin, neural and soft tissue regeneration. An introduction is presented regarding the production of biomaterials made by synthetic and natural polymers and inorganic and metallic materials for use in the production of scaffolds for regenerative medicine. For this proposal, the following techniques are discussed: electrospraying, co-axial and emulsion electrospinning and bio-electrospraying. Tissue engineering is an exciting and rapidly developing field for the understanding of how to regenerate the human body.
Collapse
|