1
|
Vergnes L, Foucaud B, Cepeda C, Espinosa-Jeffrey A. Metabolomics Profile of the Secretome of Space-Flown Oligodendrocytes. Cells 2023; 12:2249. [PMID: 37759473 PMCID: PMC10528075 DOI: 10.3390/cells12182249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Intracranial hypertension (ICP) and visual impairment intracranial pressure (VIIP) are some of the sequels of long-term space missions. Here we sought to determine how space microgravity (µG) impacts the metabolomics profile of oligodendrocyte progenitors (OLPs), the myelin-forming cells in the central nervous system. We report increased glutamate and energy metabolism while the OLPs were in space for 26 days. We also show that after space flight, OLPs (SPC OLPs) display significantly increased mitochondrial respiration and glycolysis. These data are in agreement with our previous work using simulated microgravity. In addition, our global metabolomics approach allowed for the discovery of endogenous metabolites secreted by OLPs while in space that are significantly modulated by microgravity. Our results provide, for the first time, relevant information about the energetic state of OLPs while in space and after space flight. The functional and molecular relevance of these specific pathways are promising targets for therapeutic intervention for humans in long-term space missions to the moon, Mars and beyond.
Collapse
Affiliation(s)
- Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Bernard Foucaud
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.F.); (C.C.)
| | - Carlos Cepeda
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.F.); (C.C.)
| | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA 90095, USA; (B.F.); (C.C.)
| |
Collapse
|
2
|
Ding Y, Hu L, Wang X, Sun Q, Hu T, Liu J, Shen D, Zhang Y, Chen W, Wei C, Liu M, Liu D, Wang P, Zhang C, Zhang J, Li Q, Yang F. The contribution of spinal dorsal horn astrocytes in neuropathic pain at the early stage of EAE. Neurobiol Dis 2022; 175:105914. [DOI: 10.1016/j.nbd.2022.105914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
3
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
4
|
Mirabelli E, Elkabes S. Neuropathic Pain in Multiple Sclerosis and Its Animal Models: Focus on Mechanisms, Knowledge Gaps and Future Directions. Front Neurol 2022; 12:793745. [PMID: 34975739 PMCID: PMC8716468 DOI: 10.3389/fneur.2021.793745] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is a multifaceted, complex and chronic neurological disease that leads to motor, sensory and cognitive deficits. MS symptoms are unpredictable and exceedingly variable. Pain is a frequent symptom of MS and manifests as nociceptive or neuropathic pain, even at early disease stages. Neuropathic pain is one of the most debilitating symptoms that reduces quality of life and interferes with daily activities, particularly because conventional pharmacotherapies do not adequately alleviate neuropathic pain. Despite advances, the mechanisms underlying neuropathic pain in MS remain elusive. The majority of the studies investigating the pathophysiology of MS-associated neuropathic pain have been performed in animal models that replicate some of the clinical and neuropathological features of MS. Experimental autoimmune encephalomyelitis (EAE) is one of the best-characterized and most commonly used animal models of MS. As in the case of individuals with MS, rodents affected by EAE manifest increased sensitivity to pain which can be assessed by well-established assays. Investigations on EAE provided valuable insights into the pathophysiology of neuropathic pain. Nevertheless, additional investigations are warranted to better understand the events that lead to the onset and maintenance of neuropathic pain in order to identify targets that can facilitate the development of more effective therapeutic interventions. The goal of the present review is to provide an overview of several mechanisms implicated in neuropathic pain in EAE by summarizing published reports. We discuss current knowledge gaps and future research directions, especially based on information obtained by use of other animal models of neuropathic pain such as nerve injury.
Collapse
Affiliation(s)
- Ersilia Mirabelli
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States.,Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA, United States
| | - Stella Elkabes
- Reynolds Family Spine Laboratory, Department of Neurosurgery, New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
5
|
Rzepiński Ł, Kośliński P, Gackowski M, Koba M, Maciejek Z. Amino Acid Levels as Potential Biomarkers of Multiple Sclerosis in Elderly Patients: Preliminary Report. J Clin Neurol 2022; 18:529-534. [PMID: 36062770 PMCID: PMC9444553 DOI: 10.3988/jcn.2022.18.5.529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Łukasz Rzepiński
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
- Sanitas-Neurology Outpatient Clinic, Bydgoszcz, Poland
| | - Piotr Kośliński
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marcin Gackowski
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marcin Koba
- Department of Toxicology and Bromatology, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Zdzisław Maciejek
- Department of Neurology, 10th Military Research Hospital and Polyclinic, Bydgoszcz, Poland
- Sanitas-Neurology Outpatient Clinic, Bydgoszcz, Poland
| |
Collapse
|
6
|
Roth LM, Akay-Espinoza C, Grinspan JB, Jordan-Sciutto KL. HIV-induced neuroinflammation inhibits oligodendrocyte maturation via glutamate-dependent activation of the PERK arm of the integrated stress response. Glia 2021; 69:2252-2271. [PMID: 34058792 DOI: 10.1002/glia.24033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/15/2022]
Abstract
Despite combined antiretroviral therapy (cART), HIV-associated neurocognitive disorder (HAND) affects 30-50% of HIV-positive patients. Importantly, persistent white matter pathologies, specifically corpus callosum thinning and disruption of white matter microstructures observed in patients with HAND despite viral control through cART, raise the possibility that HIV infection in the setting of suboptimal cART may perturb oligodendrocyte (OL) maturation, function and/or survival, influencing HAND persistence in the cART era. To examine the effect of HIV infection on OL maturation, we used supernatants of primary human monocyte-derived macrophages infected with HIV (HIV/MDMs) to treat primary cultures of rat oligodendrocyte precursor cells (OPCs) during their differentiation to mature OLs. Using immunostaining for lineage-specific markers, we found that HIV/MDMs significantly inhibited OPC maturation. Based on our previous studies, we examined the potential role of several signaling pathways, including ionotropic glutamate receptors and the integrated stress response (ISR), and found that AMPA receptors (AMPAR)/kainic acid (KA) receptors (KARs) mediated the HIV/MDMs-induced defect in OL maturation. We also found that the treatment of OPC cultures with glutamate or AMPAR/KAR agonists phenocopied this effect. Blocking ISR activation, specifically the PERK arm of the ISR, protected OPCs from HIV/MDMs-mediated inhibition of OL maturation. Further, while glutamate, AMPA, and KA activated the ISR, inhibition of AMPAR/KAR activation prevented ISR induction in OPCs and rescued OL maturation. Collectively, these data identify glutamate signaling via ISR activation as a potential therapeutic pathway to ameliorate white matter pathologies in HAND and highlight the need for further investigation of their contribution to cognitive impairment.
Collapse
Affiliation(s)
- Lindsay M Roth
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Cagla Akay-Espinoza
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Judith B Grinspan
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kelly L Jordan-Sciutto
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Roles of astrocytes in response to aging, Alzheimer's disease and multiple sclerosis. Brain Res 2021; 1764:147464. [PMID: 33812850 DOI: 10.1016/j.brainres.2021.147464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 01/08/2023]
Abstract
Astrocytes are traditionally recognized for their multiple roles in support of brain function. However, additional changes in these roles are evident in response to brain diseases. In this review, we highlight positive and negative effects of astrocytes in response to aging, Alzheimer's disease and Multiple Sclerosis. We summarize data suggesting that reactive astrocytes may perform critical functions that might be relevant to the etiology of these conditions. In particular, we relate astrocytes effects to actions on synaptic transmission, cognition, and myelination. We suggest that a better understanding of astrocyte functions and how these become altered in response to aging or disease will lead to the appreciation of these cells as useful therapeutic targets.
Collapse
|
8
|
Sharquie IK, Gawwam GA, Abdullah SF. Serum Glial Fibrillary Acidic Protein: A Surrogate Marker of the Activity of Multiple Sclerosis. Medeni Med J 2020; 35:212-218. [PMID: 33110673 PMCID: PMC7584269 DOI: 10.5222/mmj.2020.48265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/12/2020] [Indexed: 11/08/2022] Open
Abstract
Objective Multiple sclerosis (MS) is a neurodegenerative disorder with various clinical types. Glial fibrillary acidic protein (GFAP) is significantly elevated in the cerebrospinal fluid (CSF) of MS patients compared with that of healthy controls. The aim of this study is to evaluate serum levels of GFAP in relation to disease activity in relapsing-remitting MS patients and to compare them with those of healthy controls. Method This study involved 58 MS patients of relapsing-remitting MS (RRMS) type, 22 in an active stage of the disease and 36 in remission, and 50 healthy individuals as age- and sex-matched controls. Blood samples were taken from the patients at the MS Clinic of the Baghdad Teaching Hospital, and the serum levels of GFAP were determined using the enzyme-linked immunosorbent assay (ELISA) technique. Results Mean GFAP serum levels in 22 patients presenting in the active state of the disease (6.47±3.39 ng/ml) and 36 cases in remission were (5.33±2.82 ng/ml) (p=0.074) were determined as indicated. When RRMS patients (n=58) were compared with the healthy controls (n=50, 1.89±1.21), the difference in serum levels of GFAP was statistically significant (p<0.001). The area under the curve of the serum measures of GFAP obtained through the receiver operating characteristics was 0.903, which was also statistically significant (p<0.001). Conclusion GFAP biomarker is an indicator of disease activity in RRMS patients, and its serum level may correlate with the state of remission or exacerbation.
Collapse
Affiliation(s)
- Inas K Sharquie
- University of Baghdad, College of Medicine, Department of Microbiology & Immunology, Baghdad, Iraq
| | - Gheyath Al Gawwam
- University of Baghdad, College of Medicine, Baghdad Teaching Hospital, Department of Neurology, Baghdad, Iraq
| | - Shatha F Abdullah
- University of Baghdad, College of Medicine, Department of Microbiology & Immunology, Baghdad, Iraq
| |
Collapse
|
9
|
Nonionotropic Action of Endothelial NMDA Receptors on Blood-Brain Barrier Permeability via Rho/ROCK-Mediated Phosphorylation of Myosin. J Neurosci 2020; 40:1778-1787. [PMID: 31953371 DOI: 10.1523/jneurosci.0969-19.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/14/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
Increase in blood-brain barrier (BBB) permeability is a crucial step in neuroinflammatory processes. We previously showed that N Methyl D Aspartate Receptor (NMDARs), expressed on cerebral endothelial cells forming the BBB, regulate immune cell infiltration across this barrier in the mouse. Here, we describe the mechanism responsible for the action of NMDARs on BBB permeabilization. We report that mouse CNS endothelial NMDARs display the regulatory GluN3A subunit. This composition confers to NMDARs' unconventional properties: these receptors do not induce Ca2+ influx but rather show nonionotropic properties. In inflammatory conditions, costimulation of human brain endothelial cells by NMDA agonists (NMDA or glycine) and the serine protease tissue plasminogen activator, previously shown to potentiate NMDAR activity, induces metabotropic signaling via the Rho/ROCK pathway. This pathway leads to an increase in permeability via phosphorylation of myosin light chain and subsequent shrinkage of human brain endothelial cells. Together, these data draw a link between NMDARs and the cytoskeleton in brain endothelial cells that regulates BBB permeability in inflammatory conditions.SIGNIFICANCE STATEMENT The authors describe how NMDARs expressed on endothelial cells regulate blood-brain barrier function via myosin light chain phosphorylation and increase in permeability. They report that these non-neuronal NMDARs display distinct structural, functional, and pharmacological features than their neuronal counterparts.
Collapse
|
10
|
de Santiago L, Ortiz del Castillo M, Garcia-Martin E, Rodrigo MJ, Sánchez Morla EM, Cavaliere C, Cordón B, Miguel JM, López A, Boquete L. Empirical Mode Decomposition-Based Filter Applied to Multifocal Electroretinograms in Multiple Sclerosis Diagnosis. SENSORS (BASEL, SWITZERLAND) 2019; 20:E7. [PMID: 31861282 PMCID: PMC6983250 DOI: 10.3390/s20010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022]
Abstract
As multiple sclerosis (MS) usually affects the visual pathway, visual electrophysiological tests can be used to diagnose it. The objective of this paper is to research methods for processing multifocal electroretinogram (mfERG) recordings to improve the capacity to diagnose MS. MfERG recordings from 15 early-stage MS patients without a history of optic neuritis and from 6 control subjects were examined. A normative database was built from the control subject signals. The mfERG recordings were filtered using empirical mode decomposition (EMD). The correlation with the signals in a normative database was used as the classification feature. Using EMD-based filtering and performance correlation, the mean area under the curve (AUC) value was 0.90. The greatest discriminant capacity was obtained in ring 4 and in the inferior nasal quadrant (AUC values of 0.96 and 0.94, respectively). Our results suggest that the combination of filtering mfERG recordings using EMD and calculating the correlation with a normative database would make mfERG waveform analysis applicable to assessment of multiple sclerosis in early-stage patients.
Collapse
Affiliation(s)
- Luis de Santiago
- Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain; (L.d.S.); (C.C.); (J.M.M.); (A.L.)
| | | | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.G.-M.); (B.C.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
| | - María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.G.-M.); (B.C.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
| | - Eva M. Sánchez Morla
- Department of Psychiatry, Research Institute Hospital 12 de Octubre (i+12), 28041 Madrid, Spain;
- Faculty of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERSAM: Biomedical Research Networking Centre in Mental Health, 28029 Madrid, Spain
| | - Carlo Cavaliere
- Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain; (L.d.S.); (C.C.); (J.M.M.); (A.L.)
| | - Beatriz Cordón
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (E.G.-M.); (B.C.)
- Aragon Institute for Health Research (IIS Aragon), Miguel Servet Ophthalmology Innovation and Research Group (GIMSO), University of Zaragoza, 50009 Zaragoza, Spain
| | - Juan Manuel Miguel
- Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain; (L.d.S.); (C.C.); (J.M.M.); (A.L.)
| | - Almudena López
- Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain; (L.d.S.); (C.C.); (J.M.M.); (A.L.)
| | - Luciano Boquete
- Biomedical Engineering Group, Department of Electronics, University of Alcala, 28801 Alcala de Henares, Spain; (L.d.S.); (C.C.); (J.M.M.); (A.L.)
- RETICS-Oftared: Thematic Networks for Co-operative Research in Health for Ocular Diseases, 28040 Madrid, Spain
| |
Collapse
|
11
|
Tobore TO. Towards a comprehensive etiopathogenetic and pathophysiological theory of multiple sclerosis. Int J Neurosci 2019; 130:279-300. [PMID: 31588832 DOI: 10.1080/00207454.2019.1677648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Multiple sclerosis (MS) is a neurodegenerative disease caused by dysfunction of the immune system that affects the central nervous system (CNS). It is characterized by demyelination, chronic inflammation, neuronal and oligodendrocyte loss and reactive astrogliosis. It can result in physical disability and acute neurological and cognitive problems. Despite the gains in knowledge of immunology, cell biology, and genetics in the last five decades, the ultimate etiology or specific elements that trigger MS remain unknown. The objective of this review is to propose a theoretical basis for MS etiopathogenesis.Methods: Search was done by accessing PubMed/Medline, EBSCO, and PsycINFO databases. The search string used was "(multiple sclerosis* OR EAE) AND (pathophysiology* OR etiopathogenesis)". The electronic databases were searched for titles or abstracts containing these terms in all published articles between January 1, 1960, and June 30, 2019. The search was filtered down to 362 articles which were included in this review.Results: A framework to better understand the etiopathogenesis and pathophysiology of MS can be derived from four essential factors; mitochondria dysfunction (MtD) & oxidative stress (OS), vitamin D (VD), sex hormones and thyroid hormones. These factors play a direct role in MS etiopathogenesis and have a modulatory effect on many other factors involved in the disease.Conclusions: For better MS prevention and treatment outcomes, efforts should be geared towards treating thyroid problems, sex hormone alterations, VD deficiency, sleep problems and melatonin alterations. MS patients should be encouraged to engage in activities that boost total antioxidant capacity (TAC) including diet and regular exercise and discouraged from activities that promote OS including smoking and alcohol consumption.
Collapse
|
12
|
Subclinical cochlear dysfunction in newly diagnosed relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2019; 33:55-60. [DOI: 10.1016/j.msard.2019.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/23/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023]
|
13
|
Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun 2019; 80:10-24. [PMID: 31125711 DOI: 10.1016/j.bbi.2019.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/18/2022] Open
Abstract
Neuropathology in the human autoimmune disease multiple sclerosis (MS) is considered to be mediated by autoreactive leukocytes, such as T cells, B cells, and macrophages. However, the inflammation and tissue damage in MS and its animal model experimental autoimmune encephalomyelitis (EAE) is also critically regulated by astrocytes, the most abundant cell population in the central nervous system (CNS). Under physiological conditions, astrocytes are integral to the development and function of the CNS, whereas in CNS autoimmunity, astrocytes influence the pathogenesis, progression, and recovery of the diseases. In this review, we summarize recent advances in astrocytic functions in the context of MS and EAE, which are categorized into two opposite aspects, one being detrimental and the other beneficial. Inhibition of the detrimental functions and/or enhancement of the beneficial functions of astrocytes might be favorable for the treatment of MS.
Collapse
|
14
|
Ceprian M, Fulton D. Glial Cell AMPA Receptors in Nervous System Health, Injury and Disease. Int J Mol Sci 2019; 20:E2450. [PMID: 31108947 PMCID: PMC6566241 DOI: 10.3390/ijms20102450] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/11/2019] [Accepted: 04/22/2019] [Indexed: 12/16/2022] Open
Abstract
Glia form a central component of the nervous system whose varied activities sustain an environment that is optimised for healthy development and neuronal function. Alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA)-type glutamate receptors (AMPAR) are a central mediator of glutamatergic excitatory synaptic transmission, yet they are also expressed in a wide range of glial cells where they influence a variety of important cellular functions. AMPAR enable glial cells to sense the activity of neighbouring axons and synapses, and as such many aspects of glial cell development and function are influenced by the activity of neural circuits. However, these AMPAR also render glia sensitive to elevations of the extracellular concentration of glutamate, which are associated with a broad range of pathological conditions. Excessive activation of AMPAR under these conditions may induce excitotoxic injury in glial cells, and trigger pathophysiological responses threatening other neural cells and amplifying ongoing disease processes. The aim of this review is to gather information on AMPAR function from across the broad diversity of glial cells, identify their contribution to pathophysiological processes, and highlight new areas of research whose progress may increase our understanding of nervous system dysfunction and disease.
Collapse
Affiliation(s)
- Maria Ceprian
- Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain.
- Departamento de Bioquímica y Biología Molecular, CIBERNED, IRICYS. Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Daniel Fulton
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
15
|
Integrated Lipidomics and Metabolomics Analysis of Tears in Multiple Sclerosis: An Insight into Diagnostic Potential of Lacrimal Fluid. Int J Mol Sci 2019; 20:ijms20061265. [PMID: 30871169 PMCID: PMC6471885 DOI: 10.3390/ijms20061265] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 01/08/2023] Open
Abstract
Metabolomics based on mass spectrometry represents an innovative approach to characterize multifactorial diseases, such as multiple sclerosis (MuS). To date, the most important biomarker source for MuS diagnosis is the cerebrospinal fluid. However, an important goal for research is to identify new molecules in more easily accessible biological fluids. A very interesting biofluid in MuS is represented by tears, considered as an intermediate fluid between the cerebrospinal fluid and serum. In this work, we developed a merged strategy for the analysis of lipids containing choline by Liquid Chromatography coupled to Tandem Mass Spectrometry (LC-MS/MS), as well as for the targeted analysis of free carnitine, acylcarnitines and aminoacids by direct infusion mass spectrometry. Samples for both metabolomics and lipidomics approaches were obtained in a single extraction procedure from tears of patients affected by MuS and healthy controls. Tear lipidomics showed 30 phospholipids significantly modulated and, notably, many sphingomyelins resulted lower in MuS. Moreover, the metabolomics approach carried out both on tears and serum highlighted the diagnostic potential of specific aminoacids and acylcarnitines. In conclusion, the metabolic profiling of tears appears to reflect the pathological conditions of the central nervous system, suggesting that the molecular repository of tears can be considered as a source of potential biomarkers for MuS.
Collapse
|
16
|
Bai W, Zhou YG. Homeostasis of the Intraparenchymal-Blood Glutamate Concentration Gradient: Maintenance, Imbalance, and Regulation. Front Mol Neurosci 2017; 10:400. [PMID: 29259540 PMCID: PMC5723322 DOI: 10.3389/fnmol.2017.00400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022] Open
Abstract
It is widely accepted that glutamate is the most important excitatory neurotransmitter in the central nervous system (CNS). However, there is also a large amount of glutamate in the blood. Generally, the concentration gradient of glutamate between intraparenchymal and blood environments is stable. However, this gradient is dramatically disrupted under a variety of pathological conditions, resulting in an amplifying cascade that causes a series of pathological reactions in the CNS and peripheral organs. This eventually seriously worsens a patient’s prognosis. These two “isolated” systems are rarely considered as a whole even though they mutually influence each other. In this review, we summarize what is currently known regarding the maintenance, imbalance and regulatory mechanisms that control the intraparenchymal-blood glutamate concentration gradient, discuss the interrelationships between these systems and further explore their significance in clinical practice.
Collapse
Affiliation(s)
- Wei Bai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|