1
|
Ma J, Wang W, Zhang W, Xu D, Ding J, Wang F, Peng X, Wang D, Li Y. The recent advances in cell delivery approaches, biochemical and engineering procedures of cell therapy applied to coronary heart disease. Biomed Pharmacother 2023; 169:115870. [PMID: 37952359 DOI: 10.1016/j.biopha.2023.115870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Cell therapy is an important topic in the field of regeneration medicine that is gaining attention within the scientific community. However, its potential for treatment in coronary heart disease (CHD) has yet to be established. Several various strategies, types of cells, routes of distribution, and supporting procedures have been tried and refined to trigger heart rejuvenation in CHD. However, only a few of them result in a real considerable promise for clinical usage. In this review, we give an update on techniques and clinical studies of cell treatment as used to cure CHD that are now ongoing or have been completed in the previous five years. We also highlight the emerging efficacy of stem cell treatment for CHD. We specifically examine and comment on current breakthroughs in cell treatment applied to CHD, including the most effective types of cells, transport modalities, engineering, and biochemical approaches used in this context. We believe the current review will be helpful for the researcher to distill this information and design future studies to overcome the challenges faced by this revolutionary approach for CHD.
Collapse
Affiliation(s)
- Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 13000, China
| | - Wenhai Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Wenbin Zhang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dexin Xu
- Department of Orthopedics, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Jian Ding
- Department of Electrodiagnosis, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Fang Wang
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Xia Peng
- Department of Cardiology, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Dahai Wang
- Department of Rehabilitation, Jilin Province FAW General Hospital, Changchun 130000, China
| | - Yanwei Li
- Department of General Practice and Family Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
2
|
Bahrami N, Ale-Ebrahim M, Asadi Y, Barikrow N, Salimi A, Roholah F. Combined Application of Human Amniotic Membrane Mesenchymal Stem Cells and a Modified PGS-co-PCL Film in an Experimental Model of Myocardial Ischemia-Reperfusion Injury. Appl Biochem Biotechnol 2023; 195:7502-7519. [PMID: 37010740 DOI: 10.1007/s12010-023-04446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/04/2023]
Abstract
According to the World Health Organization (WHO), about 3.9 million people die annually of ischemic heart disease (IHD). Several clinical trials have shown that stem cell therapy is a promising therapeutic approach to IHD. Human amniotic membrane mesenchymal stem cells (hAMSCs) positively affect the repair of myocardial ischemia-reperfusion (MI/R) injury by stimulating endogenous repair mechanisms. The differentiated hAMSCs with and without modified PGS-co-PCL film were applied in the myocardium. MI/R injury was induced by ligating the left anterior descending artery in 48 male Wistar rats. The rats were divided into four groups, (n = 12) animals: heart failure (HF) as the control group, HF + MSCs, HF + MSCs + film, and HF + film. Echocardiography was performed 2 and 4 weeks after MI/R injury moreover the expression of the VEGF protein was assessed in the rat heart tissue via immunohistochemistry. In vitro, our result shows fantastic cell survival when seeded on film. In vivo, the left ventricle ejection fraction (LEVD), fractional shortening (FS), end-diastolic (EDV), and stroke volume (SV) have been increased and systolic volumes decreased in all treatment groups in comparison with control. Although combination therapy has a more positive effect on hemodynamic parameters, there is no significant difference between HF + MSCs + film with other treatment groups. Also, In the IHC assay, expression of the VEGF protein significantly increased in all intervention groups. The implantation of MSCs and the modified film significantly enhanced the cardiac functional outcome; in this regard, enhancement in cell survival and VEGF expression are involved as underlying mechanisms in which cardiac film and MSCs exert a beneficial effect.
Collapse
Affiliation(s)
- Nastaran Bahrami
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yasin Asadi
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nooshin Barikrow
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Roholah
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Kiss E, Fischer C, Sauter JM, Sun J, Ullrich ND. The Structural and the Functional Aspects of Intercellular Communication in iPSC-Cardiomyocytes. Int J Mol Sci 2022; 23:ijms23084460. [PMID: 35457277 PMCID: PMC9031673 DOI: 10.3390/ijms23084460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in the technology of producing novel cardiomyocytes from induced pluripotent stem cells (iPSC-cardiomyocytes) fuel new hope for future clinical applications. The use of iPSC-cardiomyocytes is particularly promising for the therapy of cardiac diseases such as myocardial infarction, where these cells could replace scar tissue and restore the functionality of the heart. Despite successful cardiogenic differentiation, medical applications of iPSC-cardiomyocytes are currently limited by their pronounced immature structural and functional phenotype. This review focuses on gap junction function in iPSC-cardiomyocytes and portrays our current understanding around the structural and the functional limitations of intercellular coupling and viable cardiac graft formation involving these novel cardiac muscle cells. We further highlight the role of the gap junction protein connexin 43 as a potential target for improving cell–cell communication and electrical signal propagation across cardiac tissue engineered from iPSC-cardiomyocytes. Better insight into the mechanisms that promote functional intercellular coupling is the foundation that will allow the development of novel strategies to combat the immaturity of iPSC-cardiomyocytes and pave the way toward cardiac tissue regeneration.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany;
- George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania
| | - Carolin Fischer
- Center of Neurology, Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Otfried-Müller-Straße 27, 72076 Tübingen, Germany;
| | - Jan-Mischa Sauter
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; (J.-M.S.); (J.S.)
| | - Jinmeng Sun
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; (J.-M.S.); (J.S.)
| | - Nina D. Ullrich
- Division of Cardiovascular Physiology, Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany; (J.-M.S.); (J.S.)
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg-Mannheim, 10785 Berlin, Germany
- Correspondence:
| |
Collapse
|
4
|
Yousefi-Ahmadipour A, Asadi F, Pirsadeghi A, Nazeri N, Vahidi R, Abazari MF, Afgar A, Mirzaei-Parsa MJ. Current Status of Stem Cell Therapy and Nanofibrous Scaffolds in Cardiovascular Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00230-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Mini review: Biomaterials in repair and regeneration of nerve in a volumetric muscle loss. Neurosci Lett 2021; 762:136145. [PMID: 34332029 DOI: 10.1016/j.neulet.2021.136145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 01/23/2023]
Abstract
Volumetric muscle loss (VML) following a severe trauma or injury is beyond the intrinsic regenerative capacity of muscle tissues, and hence interventional therapy is required. Extensive muscle loss concomitant with damage to neuromuscular components overwhelms the muscles' remarkable regenerative capacity. The loss of nervous and vascular tissue leads to further damage and atrophy, so a combined treatment for neuromuscular junction (NMJ) along with the volumetric muscle regeneration is important. There have been immense advances in the field of tissue engineering for skeletal muscle tissue and peripheral nerve regeneration, but very few address the interdependence of the tissues and the need for combined therapies to repair and regenerate fully functional muscle tissue. This review addresses the problem and presents an overview of the biomaterials that have been studied for tissue engineering of neuromuscular tissues associated with skeletal muscles.
Collapse
|
6
|
Chan JL, Miller JG, Zhou Y, Robey PG, Stroncek DF, Arai AE, Sachdev V, Horvath KA. Intramyocardial Bone Marrow Stem Cells in Patients Undergoing Cardiac Surgical Revascularization. Ann Thorac Surg 2020; 109:1142-1149. [PMID: 31526779 PMCID: PMC8045460 DOI: 10.1016/j.athoracsur.2019.07.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/04/2019] [Accepted: 07/29/2019] [Indexed: 01/14/2023]
Abstract
BACKGROUND Bone marrow stromal or stem cells (BMSCs) remain a promising potential therapy for ischemic cardiomyopathy. The primary objective of this study was to evaluate the safety and feasibility of direct intramyocardial injection of autologous BMSCs in patients undergoing transmyocardial revascularization (TMR) or coronary artery bypass graft surgery (CABG). METHODS A phase I trial was conducted on adult patients who had ischemic heart disease with depressed left ventricular ejection fraction and who were scheduled to undergo TMR or CABG. Autologous BMSCs were expanded for 3 weeks before the scheduled surgery. After completion of surgical revascularization, BMSCs were directly injected into ischemic myocardium. Safety and feasibility of therapy were assessed. Cardiac functional status and changes in quality of life were evaluated at 1 year. RESULTS A total of 14 patients underwent simultaneous BMSC and surgical revascularization therapy (TMR+BMSCs = 10; CABG+BMSCs = 4). BMSCs were successfully expanded, and no significant complications occurred as a result of the procedure. Regional contractility in the cell-treated areas demonstrated improvement at 12 months compared with baseline (TMR+BMSCs Δ strain: -4.6% ± 2.1%; P = .02; CABG+MSCs Δ strain: -4.2% ± 6.0%; P = .30). Quality of life was enhanced, with substantial reduction in angina scores at 1 year after treatment (TMR+BMSCs: 1.3 ± 1.2; CABG+MSCs: 1.0 ± 1.4). CONCLUSIONS In this phase I trial, direct intramyocardial injection of autologous BMSCs in conjunction with TMR or CABG was technically feasible and could be performed safely. Preliminary results demonstrate improved cardiac function and quality of life in patients at 1 year after treatment.
Collapse
Affiliation(s)
- Joshua L Chan
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Justin G Miller
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Yifu Zhou
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Pamela G Robey
- NIH Bone Marrow Stromal Cell Transplantation Center, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - David F Stroncek
- Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andrew E Arai
- Advanced Cardiovascular Imaging Group, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Vandana Sachdev
- Echocardiography Laboratory, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Keith A Horvath
- Cardiothoracic Surgery Research Program, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
7
|
Barisic D, Erb M, Follo M, Al-Mudaris D, Rolauffs B, Hart ML. Lack of a skeletal muscle phenotype in adult human bone marrow stromal cells following xenogeneic-free expansion. Stem Cell Res Ther 2020; 11:79. [PMID: 32087752 PMCID: PMC7036219 DOI: 10.1186/s13287-020-1587-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/22/2020] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Many studies have elegantly shown that murine and rat bone marrow-derived mesenchymal stromal cells (bmMSCs) contribute to muscle regeneration and improve muscle function. Yet, the ability of transplanted human bmMSCs to manifest myogenic potential shows conflicting results. While human adipose- and umbilical cord-derived MSCs can be differentiated into a skeletal muscle phenotype using horse serum (HS), bmMSCs have only been shown to differentiate towards the skeletal muscle lineage using a complex mixture of cytokines followed by transfection with notch intracellular domain. Methods Since xenogeneic-free growth supplements are increasingly being used in the expansion of bmMSCs in clinical trials, we investigated the effects of human plasma and platelet lysate (P/PL) on the expression of neuromuscular markers and whether P/PL-expanded human bmMSCs could be differentiated towards a skeletal myogenic phenotype. Neuromuscular markers were measured using the highly sensitive droplet digital polymerase chain reaction for measuring the expression of Myf5, MyoD, MyoG, ACTA1, Desmin, GAP-43, and Coronin 1b transcripts, by performing immunofluorescence for the expression of Desmin, GAP-43, and MEF2, and flow cytometry for the expression of CD56/neural cell adhesion molecule (NCAM). Results Despite that bmMSCs expressed the myogenic regulatory factor (MRF) MEF2 after expansion in P/PL, bmMSCs cultured under such conditions did not express other essential MRFs including Myf5, MyoD, MyoG, or ACTA1 needed for myogenesis. Moreover, HS did not induce myogenesis of bmMSCs and hence did not induce the expression of any of these myogenic markers. P/PL, however, did lead to a significant increase in neurogenic GAP-43, as well as Desmin expression, and resulted in a high baseline expression of the neurogenic gene Coronin 1b which was sustained under further P/PL or HS culture conditions. Fetal bovine serum resulted in equally high levels of GAP-43 and Coronin 1b. Moreover, the proportion of CD56/NCAM-positive bmMSCs cultured in P/PL was 5.9 ± 2.1. Conclusions These data suggest that P/PL may prime a small portion of bmMSCs towards an early neural precursor cell type. Collectively, this shows that P/PL partially primes the cells towards a neurogenic phenotype, but does not prime adult human bmMSCs towards the skeletal muscle lineage.
Collapse
Affiliation(s)
- Dominik Barisic
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marita Erb
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dahlia Al-Mudaris
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernd Rolauffs
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie L Hart
- G.E.R.N. Center for Tissue Replacement, Regeneration and Neogenesis, Department of Orthopaedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Sharma A, Sinha M, Pandey NN, Chandrashekhara SH. Stem cell therapy in critical limb ischemia: Current scenario and future trends. Indian J Radiol Imaging 2019; 29:397-403. [PMID: 31949342 PMCID: PMC6958876 DOI: 10.4103/ijri.ijri_385_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 12/31/2022] Open
Abstract
Critical limb ischemia (CLI) represents the most severe manifestation of peripheral arterial disease (PAD). It imposes a huge economic burden and is associated with high short-term mortality and adverse cardiovascular outcomes. Prompt recognition and early revascularization, surgical or endovascular, with the aim of improving the inline bloodflow to the ischemic limb, are currently the standard of care. However, this strategy may not always be feasible or effective; hence, evaluation of newer pharmacological or angiogenic therapies for alleviating the symptoms of this alarming condition is of utmost importance. Cell-based therapies have shown promise in smaller studies; however, large-scale studies, demonstrating definite survival benefits, are entailed to ascertain their role in the management of CLI.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Mumun Sinha
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - Niraj Nirmal Pandey
- Department of Cardiovascular Radiology and Endovascular Interventions, All India Institute of Medical Sciences, New Delhi, India
| | - S H Chandrashekhara
- Department of Radiodiagnosis, BRAIRCH, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
9
|
Pooria A, Pourya A, Gheini A. Animal- and human-based evidence for the protective effects of stem cell therapy against cardiovascular disorders. J Cell Physiol 2019; 234:14927-14940. [PMID: 30811030 DOI: 10.1002/jcp.28330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/06/2018] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
The increasing rate of mortality and morbidity because of cardiac diseases has called for efficient therapeutic needs. With the advancement in cell-based therapies, stem cells are abundantly studied in this area. Nearly, all sources of stem cells are experimented to treat cardiac injuries. Tissue engineering has also backed this technique by providing an advantageous platform to improve stem cell therapy. After in vitro studies, primary treatment-based research studies comprise small and large animal studies. Furthermore, these studies are implemented in human models in the form of clinical trials. Purpose of this review is to highlight the animal- and human-based studies, exploiting various stem cell sources, to treat cardiovascular disorders.
Collapse
Affiliation(s)
- Ali Pooria
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Afsoun Pourya
- Student of Research committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Gheini
- Department of Cardiology, Lorestan University of Medical Sciences, Khoramabad, Iran
| |
Collapse
|
10
|
Hobby ARH, Sharp TE, Berretta RM, Borghetti G, Feldsott E, Mohsin S, Houser SR. Cortical bone-derived stem cell therapy reduces apoptosis after myocardial infarction. Am J Physiol Heart Circ Physiol 2019; 317:H820-H829. [PMID: 31441690 DOI: 10.1152/ajpheart.00144.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ischemic heart diseases such as myocardial infarction (MI) are the largest contributors to cardiovascular disease worldwide. The resulting cardiac cell death impairs function of the heart and can lead to heart failure and death. Reperfusion of the ischemic tissue is necessary but causes damage to the surrounding tissue by reperfusion injury. Cortical bone stem cells (CBSCs) have been shown to increase pump function and decrease scar size in a large animal swine model of MI. To investigate the potential mechanism for these changes, we hypothesized that CBSCs were altering cardiac cell death after reperfusion. To test this, we performed TUNEL staining for apoptosis and antibody-based immunohistochemistry on tissue from Göttingen miniswine that underwent 90 min of lateral anterior descending coronary artery ischemia followed by 3 or 7 days of reperfusion to assess changes in cardiomyocyte and noncardiomyocyte cell death. Our findings indicate that although myocyte apoptosis is present 3 days after ischemia and is lower in CBSC-treated animals, myocyte apoptosis accounts for <2% of all apoptosis in the reperfused heart. In addition, nonmyocyte apoptosis trends toward decreased in CBSC-treated hearts, and although CBSCs increase macrophage and T-cell populations in the infarct region, the occurrence of apoptosis in CD45+ cells in the myocardium is not different between groups. From these data, we conclude that CBSCs may be influencing cardiomyocyte and noncardiomyocyte cell death and immune cell recruitment dynamics in the heart after MI, and these changes may account for some of the beneficial effects conferred by CBSC treatment.NEW & NOTEWORTHY The following research explores aspects of cell death and inflammation that have not been previously studied in a large animal model. In addition, apoptosis and cell death have not been studied in the context of cell therapy and myocardial infarction. In this article, we describe interactions between cell therapy and inflammation and the potential implications for cardiac wound healing.
Collapse
Affiliation(s)
- Alexander R H Hobby
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Thomas E Sharp
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Remus M Berretta
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Giulia Borghetti
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Eric Feldsott
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Sadia Mohsin
- Department of Pharmacology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Steven R Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Qasim M, Arunkumar P, Powell HM, Khan M. Current research trends and challenges in tissue engineering for mending broken hearts. Life Sci 2019; 229:233-250. [PMID: 31103607 PMCID: PMC6799998 DOI: 10.1016/j.lfs.2019.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease (CVD) is among the leading causes of mortality worldwide. The shortage of donor hearts to treat end-stage heart failure patients is a critical problem. An average of 3500 heart transplant surgeries are performed globally, half of these transplants are performed in the US alone. Stem cell therapy is growing rapidly as an alternative strategy to repair or replace the damaged heart tissue after a myocardial infarction (MI). Nevertheless, the relatively poor survival of the stem cells in the ischemic heart is a major challenge to the therapeutic efficacy of stem-cell transplantation. Recent advancements in tissue engineering offer novel biomaterials and innovative technologies to improve upon the survival of stem cells as well as to repair the damaged heart tissue following a myocardial infarction (MI). However, there are several limitations in tissue engineering technologies to develop a fully functional, beating cardiac tissue. Therefore, the main goal of this review article is to address the current advancements and barriers in cardiac tissue engineering to augment the survival and retention of stem cells in the ischemic heart.
Collapse
Affiliation(s)
- Muhammad Qasim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Center (SRC), Konkuk University, Seoul, Republic of Korea
| | - Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States; Research Department, Shriners Hospitals for Children, Cincinnati, OH, United States
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States; Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| |
Collapse
|
12
|
Abstract
Cardiovascular disease (CVD) is a major health problem worldwide. Since adult cardiomyocytes irreversibly withdraw from the cell cycle soon after birth, it is hard for cardiac cells to proliferate and regenerate after myocardial injury, such as that caused myocardial infarction (MI). Live cell-based therapies, which we term as first generation of therapeutic strategies, have been widely used for the treatment of many diseases, including CVD. However, cellular approaches have the problems of poor retention of the transplanted cells and the significant entrapment of the cells in the lungs when delivered intravenously. Another big problem is the low storage/shipping stability of live cells, which limits the manufacturability of living cell products. The field of chemical engineering focuses on designing large-scale processes to convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products. By definition, chemical engineers conceive and design processes to produce, transform, and transport materials. This matches the direction that cell therapies are heading toward: "produce", from live cells to synthetic artificial cells; "transform", from bare cells to cell/matrix/factor combinations; and "transport". from simple systemic injections to targeted delivery. Thus, we hereby introduce the "chemical engineering of cell therapies" as a concept. In this Account, we summarize our recent efforts to develop chemical engineering approaches to repair injured hearts. To address the limitations of poor cellular retention and integration, the first step was the artificial manipulation of stem cells before injections (we term this the second generation of therapeutic strategies). For example, we took advantage of the natural infarct-targeting ability of platelet membranes by fusing them onto the surface of cardiac stromal/stem cells (CSCs). By doing so, we improved the rate at which they were delivered through the vasculature to sites of MI. In addition to modifying natural CSCs, we described a bioengineering approach that involved the encapsulation of CSCs in a polymeric microneedle patch for myocardium regeneration. The painless microneedle patches were used as an in situ delivery device, which directly transported the loaded CSCs to the MI heart. In addition to low cell retention, there are some other barriers that need to be addressed before further clinical application is viable, including the storage/shipping stability of and the evident safety concerns about live cells. Therefore, we developed the third generation of therapeutic strategies, which utilize cell-free approaches for cardiac cell therapies. Numerous studies have indicated that paracrine mechanisms reasonably explain stem cell based heart repair. By imitating or adapting natural stem cells, as well as their secretions, and using them in conjunction with biocompatible materials, we can simulate the function of natural stem cells while avoiding the complications association with the first and second generation therapeutic options. Additionally, we can develop approaches to capture endogenous stem cells and directly transport them to the infarct site. Using these third generation therapeutic strategies, we can provide unprecedented opportunities for cardiac cell therapies. We hope that our designs will promote the use of chemical engineering approaches to transform, transport, and fabricate cell-free systems as novel cardiac cell therapeutic agents for clinical applications.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
13
|
IGF-1-Overexpressing Mesenchymal Stem/Stromal Cells Promote Immunomodulatory and Proregenerative Effects in Chronic Experimental Chagas Disease. Stem Cells Int 2018; 2018:9108681. [PMID: 30140292 PMCID: PMC6081563 DOI: 10.1155/2018/9108681] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have been investigated for the treatment of diseases that affect the cardiovascular system, including Chagas disease. MSCs are able to promote their beneficial actions through the secretion of proregenerative and immunomodulatory factors, including insulin-like growth factor-1 (IGF-1), which has proregenerative actions in the heart and skeletal muscle. Here, we evaluated the therapeutic potential of IGF-1-overexpressing MSCs (MSC_IGF-1) in a mouse model of chronic Chagas disease. C57BL/6 mice were infected with Colombian strain Trypanosoma cruzi and treated with MSCs, MSC_IGF-1, or vehicle (saline) six months after infection. RT-qPCR analysis confirmed the presence of transplanted cells in both the heart and skeletal muscle tissues. Transplantation of either MSCs or MSC_IGF-1 reduced the number of inflammatory cells in the heart when compared to saline controls. Moreover, treatment with MSCs or MSC_IGF-1 significantly reduced TNF-α, but only MSC treatment reduced IFN-γ production compared to the saline group. Skeletal muscle sections of both MSC- and MSC_IGF-1-treated mice showed a reduction in fibrosis compared to saline controls. Importantly, the myofiber area was reduced in T. cruzi-infected mice, and this was recovered after treatment with MSC_IGF-1. Gene expression analysis in the skeletal muscle showed a higher expression of pro- and anti-inflammatory molecules in MSC_IGF-1-treated mice compared to MSCs alone, which significantly reduced the expression of TNF-α and IL-1β. In conclusion, our results indicate the therapeutic potential of MSC_IGF-1, with combined immunomodulatory and proregenerative actions to the cardiac and skeletal muscles.
Collapse
|
14
|
Grimaldi V, Zullo A, Donatelli F, Mancini FP, Cacciatore F, Napoli C. Potential clinical benefits of cell therapy in coronary heart disease: an update. J Thorac Dis 2018; 10:S2412-S2422. [PMID: 30123579 DOI: 10.21037/jtd.2018.04.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell therapy is a central issue of regenerative medicine and is raising a growing interest in the scientific community, but its full therapeutic potential in coronary heart disease (CHD) has not been reached yet. Several different methods, cell types, delivery routes, and supporting techniques have been attempted and improved to elicit cardiac regeneration in CHD, but only some of them showed a really convincing potential for the use in clinical practice. Here we provide an update on approaches and clinical trials of cell therapy applied to CHD, which are ongoing or that have been realized in the last 5 years. Moreover, we discuss the evidence collected so far in favor or against the validity of stem cell therapy for CHD. In particular, we review and comment the recent advances in cell therapy applied to CHD, the most promising cell types, delivery strategies, biochemical and engineering techniques that have been adopted in this context.
Collapse
Affiliation(s)
- Vincenzo Grimaldi
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Alberto Zullo
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Donatelli
- Department of Clinical and Community Sciences University of Milan, Milan, Italy.,Department of Cardiac Surgery, Ospedale Monaldi, Azienda dei Colli, 80131 Naples, Italy
| | | | - Francesco Cacciatore
- Department of Clinical and Community Sciences University of Milan, Milan, Italy.,Department of Cardiac Surgery, Ospedale Monaldi, Azienda dei Colli, 80131 Naples, Italy.,Department of Translational Medical Sciences, "Federico II" University of Naples, 80131 Naples, Italy.,Fondazione Salvatore Maugeri, IRCCS, Telese Terme, Benevento, Italy
| | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology, Department of Internal Medicine and Specialistics, Azienda Ospedaliera Universitaria, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute of Diagnostic and Nuclear Development (SDN), IRCCS, Naples, Italy
| |
Collapse
|
15
|
In situ formation of interpenetrating polymer network using sequential thermal and click crosslinking for enhanced retention of transplanted cells. Biomaterials 2018; 170:12-25. [PMID: 29635108 DOI: 10.1016/j.biomaterials.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/19/2018] [Accepted: 04/02/2018] [Indexed: 12/22/2022]
Abstract
Injectable hydrogels, which are used as scaffolds in cell therapy, provide a minimally invasive strategy to enhance cell retention and survival at injection site. However, till now, slow in situ gelation, undesired mechanical properties, and weak cell adhesion characteristics of reported hydrogels, have led to improper results. Here, we developed an injectable fully-interpenetrated polymer network (f-IPN) by integration of Diels-Alder (DA) crosslinked network and thermosensitive injectable hydrogel. The proposed DA hydrogels were formed in a slow manner showing robust mechanical properties. Interpenetration of thermosensitive network into DA hydrogel accelerated in situ gel-formation and masked the slow reaction rate of DA crosslinking while keeping its unique features. Two networks were formed by simple syringe injection without the need of any initiator, catalyst, or double barrel syringe. The DA and f-IPN hydrogels showed comparable viscoelastic properties along with outstanding load-bearing and shape-recovery even under high levels of compression. The subcutaneous administration of cardiomyocytes-laden f-IPN hydrogel into nude mice revealed high cell retention and survival after two weeks. Additionally, the cardiomyocyte's identity of retained cells was confirmed by detection of human and cardiac-related markers. Our results indicate that the thermosensitive-covalent networks can open a new horizon within the injection-based cell therapy applications.
Collapse
|
16
|
Barwinska D, Traktuev DO, Merfeld-Clauss S, Cook TG, Lu H, Petrache I, March KL. Cigarette Smoking Impairs Adipose Stromal Cell Vasculogenic Activity and Abrogates Potency to Ameliorate Ischemia. Stem Cells 2018; 36:856-867. [PMID: 29589872 DOI: 10.1002/stem.2813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/17/2022]
Abstract
Cigarette smoking (CS) adversely affects the physiologic function of endothelial progenitor, hematopoietic stem and progenitor cells. However, the effect of CS on the ability of adipose stem/stromal cells (ASC) to promote vasculogenesis and rescue perfusion in the context of ischemia is unknown. To evaluate this, ASC from nonsmokers (nCS-ASC) and smokers (CS-ASC), and their activity to promote perfusion in hindlimb ischemia models, as well as endothelial cell (EC) survival and vascular morphogenesis in vitro were assessed. While nCS-ASC improved perfusion in ischemic limbs, CS-ASC completely lost this therapeutic effect. In vitro vasculogenesis assays revealed that human CS-ASC and ASC from CS-exposed mice showed compromised support of EC morphogenesis into vascular tubes, and the CS-ASC secretome was less potent in supporting EC survival/proliferation. Comparative secretome analysis revealed that CS-ASC produced lower amounts of hepatocyte growth factor (HGF) and stromal cell-derived growth factor 1 (SDF-1). Conversely, CS-ASC secreted the angiostatic/pro-inflammatory factor Activin A, which was not detected in nCS-ASC conditioned media (CM). Furthermore, higher Activin A levels were measured in EC/CS-ASC cocultures than in EC/nCS-ASC cocultures. CS-ASC also responded to inflammatory cytokines with 5.2-fold increase in Activin A secretion, whereas nCS-ASC showed minimal Activin A induction. Supplementation of EC/CS-ASC cocultures with nCS-ASC CM or with recombinant vascular endothelial growth factor, HGF, or SDF-1 did not rescue vasculogenesis, whereas inhibition of Activin A expression or activity improved network formation up to the level found in EC/nCS-ASC cocultures. In conclusion, ASC of CS individuals manifest compromised in vitro vasculogenic activity as well as in vivo therapeutic activity. Stem Cells 2018;36:856-867.
Collapse
Affiliation(s)
- Daria Barwinska
- Department of Cellular and Integrative Physiology.,Krannert Institute of Cardiology.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Dmitry O Traktuev
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| | - Stephanie Merfeld-Clauss
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| | - Todd G Cook
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Hongyan Lu
- Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA
| | - Irina Petrache
- Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Department of Medicine, National Jewish Health and University of Colorado, Denver, Colorado, USA
| | - Keith L March
- Department of Cellular and Integrative Physiology.,Krannert Institute of Cardiology.,Division of Cardiology.,Department of Medicine, Indiana University, Indianapolis, Indiana, USA.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Center for Regenerative Medicine, Department of Medicine University of Florida, Gainesville, Florida, USA
| |
Collapse
|
17
|
Abstract
Major cardiovascular events including myocardial infarction (MI) continue to dominate morbidity rates in the developed world. Although multiple device therapies and various pharmacological agents have been shown to improve patient care and reduce mortality rates, clinicians and researchers alike still lack a true panacea to regenerate damaged cardiac tissue. Over the previous two to three decades, cardiovascular stem cell therapies have held great promise. Several stem cell-based approaches have now been shown to improve ventricular function and are documented in preclinical animal models as well as phase I and phase II clinical trials. More recently, the cardiac progenitor cell has begun to gain momentum as an ideal candidate for stem cell therapy in heart disease. Here, we will highlight the most recent advances in cardiac stem/progenitor cell biology in regard to both the basics and applied settings.
Collapse
|
18
|
Rosengart TK, Patel V, Sellke FW. Cardiac stem cell trials and the new world of cellular reprogramming: Time to move on. J Thorac Cardiovasc Surg 2017; 155:1642-1646. [PMID: 29397153 DOI: 10.1016/j.jtcvs.2017.11.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Todd K Rosengart
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex.
| | - Vivek Patel
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Tex
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Brown Medical School, Providence, RI
| |
Collapse
|
19
|
Katarzyna R. Adult Stem Cell Therapy for Cardiac Repair in Patients After Acute Myocardial Infarction Leading to Ischemic Heart Failure: An Overview of Evidence from the Recent Clinical Trials. Curr Cardiol Rev 2017; 13:223-231. [PMID: 28464769 PMCID: PMC5633717 DOI: 10.2174/1573403x13666170502103833] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/28/2022] Open
Abstract
Background: Cardiovascular diseases (CVD) still represent the leading cause of mortality worldwide, despite the remarkable advances in interventional cardiology, cardiac surgery, and modern pharmacotherapy, particularly in the setting of acute myocardial infarction (AMI), chronic ischemic heart failure (HF), cardiomyopathy (CM), and the associated left ventricular (LV) dysfunction. A significant loss of cardiomyocytes that underlies all of these conditions was previously considered irreversible. However, current evidence indicates that the human heart has some potential for repair, and over the past decade, many research studies have been exploring the use of stem cells (SCs) to facilitate restoration of myocardium. Consequently, the safety, feasibility, and effectiveness of SC therapy have been reported in many randomized clinical trials (RCTs), using different lineages of adult SCs. Nevertheless, the clinical benefits of SC therapy are not yet well established. In the near future, understanding of the complex interrelations between SCs, paracrine factors, genetic or epigenetic pre-dispositions, and myocardial microenvironment, in the context of an individual patient, will be crucial for translation of this knowledge into practical development of successful, long-term regenerative SC therapeutic applications, in a growing population of patients suffering from previous myocardial in-farction (MI) leading to chronic ischemic cardiomyopathy. Conclusion: This overview highlights the therapeutic potential of adult SCs in terms of their possible regenerative capacity, safety, and clinical outcomes, in patients with AMI, and/or subsequent HF (due to chronic ischemic cardiomyopathy). This review was based upon PubMed database search for trials on SC therapy, in patients with AMI and HF, and the main timeframe was set from 2006 to 2016.
Collapse
Affiliation(s)
- Rygiel Katarzyna
- Department of Family Practice, Medical University of Silesia (SUM), Katowice-Zabrze, Poland
| |
Collapse
|
20
|
Thrombospondins: A Role in Cardiovascular Disease. Int J Mol Sci 2017; 18:ijms18071540. [PMID: 28714932 PMCID: PMC5536028 DOI: 10.3390/ijms18071540] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/05/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Thrombospondins (TSPs) represent extracellular matrix (ECM) proteins belonging to the TSP family that comprises five members. All TSPs have a complex multidomain structure that permits the interaction with various partners including other ECM proteins, cytokines, receptors, growth factors, etc. Among TSPs, TSP1, TSP2, and TSP4 are the most studied and functionally tested. TSP1 possesses anti-angiogenic activity and is able to activate transforming growth factor (TGF)-β, a potent profibrotic and anti-inflammatory factor. Both TSP2 and TSP4 are implicated in the control of ECM composition in hypertrophic hearts. TSP1, TSP2, and TSP4 also influence cardiac remodeling by affecting collagen production, activity of matrix metalloproteinases and TGF-β signaling, myofibroblast differentiation, cardiomyocyte apoptosis, and stretch-mediated enhancement of myocardial contraction. The development and evaluation of TSP-deficient animal models provided an option to assess the contribution of TSPs to cardiovascular pathology such as (myocardial infarction) MI, cardiac hypertrophy, heart failure, atherosclerosis, and aortic valve stenosis. Targeting of TSPs has a significant therapeutic value for treatment of cardiovascular disease. The activation of cardiac TSP signaling in stress and pressure overload may be therefore beneficial.
Collapse
|