1
|
Chang WL, Peng JY, Hong CL, Li PC, Lu FJ, Chen CH. Parecoxib and 5-Fluorouracil Synergistically Inhibit EMT and Subsequent Metastasis in Colorectal Cancer by Targeting PI3K/Akt/NF-κB Signaling. Biomedicines 2024; 12:1526. [PMID: 39062099 PMCID: PMC11274433 DOI: 10.3390/biomedicines12071526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer is one of the most common causes of cancer mortality worldwide, and innovative drugs for the treatment of colorectal cancer are continually being developed. 5-Fluorouracil (5-FU) is a common clinical chemotherapeutic drug. Acquired resistance to 5-FU is a clinical challenge in colorectal cancer treatment. Parecoxib is a selective COX-2-specific inhibitor that was demonstrated to inhibit metastasis in colorectal cancers in our previous study. This study aimed to investigate the synergistic antimetastatic activities of parecoxib to 5-FU in human colorectal cancer cells and determine the underlying mechanisms. Parecoxib and 5-FU synergistically suppressed metastasis in colorectal cancer cells. Treatment with the parecoxib/5-FU combination induced an increase in E-cadherin and decrease in β-catenin expression. The parecoxib/5-FU combination inhibited MMP-9 activity, and the NF-κB pathway was suppressed as well. Mechanistic analysis denoted that the parecoxib/5-FU combination hindered the essential molecules of the PI3K/Akt route to obstruct metastatic colorectal cancer. Furthermore, the parecoxib/5-FU combination could inhibit reactive oxygen species. Our work showed the antimetastatic capacity of the parecoxib/5-FU combination for treating colorectal cancers via the targeting of the PI3K/Akt/NF-κB pathway.
Collapse
Affiliation(s)
- Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Jyun-Yu Peng
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Chain-Lang Hong
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Pei-Ching Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Puzi City 613016, Chiayi County, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City 402306, Taiwan;
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, National Chiayi University, Chiayi City 600355, Taiwan
| |
Collapse
|
2
|
Bhardwaj M, Sali VK, Malarvizhi R, Mani S, Padmavathy TK, Vasanthi HR. Methyldecanoate isolated from marine algae Turbinaria ornata enhances immunomodulation in LPS-induced inflammatory reactions in RAW 264.7 macrophages via iNOS/NFκB pathway. Inflammopharmacology 2023; 31:439-449. [PMID: 36566264 DOI: 10.1007/s10787-022-01116-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/10/2022] [Indexed: 12/25/2022]
Abstract
This study identifies the anti-inflammatory, antioxidant, and immunomodulatory potential of a fatty acid methyl ester segregated from the brown algae Turbinaria ornata and identified by nuclear magnetic resonance and mass spectrometry as methyl 6,12-dimethyltridecanoate (ET). Antioxidant and anti-inflammatory effects of ET were studied on lipopolysaccharide (LPS)-induced inflammatory reaction in RAW 264.7 macrophages. Moreover, in silico docking studies of isolated ET with inflammatory markers TNFα, NFκB, and COX-2 showed potent binding scores suggesting anti-inflammatory potential. ET significantly reduced LPO and increased LPS-induced SOD, catalase, and GSH levels. Molecular docking results were further confirmed by checking mRNA levels of selected cytokines (IL6 and IL10), followed by protein expression of iNOS and NFκB in LPS-induced macrophages. ET significantly upregulated the expression of IL10 and downregulated the expression of IL6, iNOS, and NFκB, confirming the inhibition of LPS-induced inflammation via the iNOS/NFκB pathway.
Collapse
Affiliation(s)
- Meenakshi Bhardwaj
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Veeresh Kumar Sali
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - R Malarvizhi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Sugumar Mani
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - T K Padmavathy
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Hannah Rachel Vasanthi
- Natural Products Research Laboratory, Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
3
|
Isopropyl Gallate, a Gallic Acid Derivative: In Silico and In Vitro Investigation of Its Effects on Leishmania major. Pharmaceutics 2022; 14:pharmaceutics14122701. [PMID: 36559198 PMCID: PMC9787715 DOI: 10.3390/pharmaceutics14122701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Isopropyl gallate (IPG) is a polyphenol obtained from alterations in the gallic acid molecule via acid catalysis with previously reported leishmanicidal and trypanocidal activities. The present study aims to evaluate in silico binding activity towards some targets for antileishmanial chemotherapy against Leishmania major species, and ADMET parameters for IPG, as well as in vitro antileishmanial and cytotoxic effects. Molecular docking was performed using AutoDockVina and BIOVIA Discovery Studio software, whereas in silico analysis used SwissADME, PreADMET and admetSAR software. In vitro antileishmanial activity on promastigotes and amastigotes of Leishmania major, cytotoxicity and macrophages activation were assessed. IPG exhibited affinity for pteridine reductase (PTR1; -8.2 kcal/mol) and oligopeptidase B (OPB; -8.0 kcal/mol) enzymes. ADMET assays demonstrated good lipophilicity, oral bioavailability, and skin permeability, as well as non-mutagenic, non-carcinogenic properties and low risk of cardiac toxicity for IPG. Moreover, IPG inhibited the in vitro growth of promastigotes (IC50 = 90.813 µM), presented significant activity against amastigotes (IC50 = 13.45 μM), promoted low cytotoxicity in macrophages (CC50 = 1260 μM), and increased phagocytic capacity. These results suggest IPG is more selectively toxic to the parasite than to mammalian cells. IPG demonstrated acceptable in silico pharmacokinetics parameters, and reduced infection and infectivity in parasitized macrophages, possibly involving macrophage activation pathways and inhibition of leishmania enzymes.
Collapse
|
4
|
Gallic Acid Enhances the Anti-Cancer Effect of Temozolomide in Human Glioma Cell Line via Inhibition of Akt and p38-MAPK Pathway. Processes (Basel) 2022. [DOI: 10.3390/pr10030448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
(1) Background: Temozolomide (TMZ), an oral alkylating agent, is used to treat malignant gliomas and other difficult-to-treat tumors. TMZ can enter the cerebrospinal fluid p.o. (per os) and does not need hepatic metabolism for activation of its use as a standard chemotherapeutic regimen after surgical resection of malignant glioma of the brain. However, the prognosis remains poor for most patients, and the survival rate is still unsatisfactory. Gallic acid (Ga) is a secondary metabolite existent in numerous plants. Ga shows various bioactivities, including antioxidant, anti-inflammatory, anticancer and antimicrobial effects. In this study, the latent enhanced anti-cancer efficacy of Ga in TMZ-treated U87MG cells (a human glioma line) was evaluated. (2) Methods: The U87MG cell line was cultured for 24 h. The cells were incubated with Ga alone, TMZ alone, or their combination for various time points. Cell viability and the drug combination index were evaluated by an XTT-based analysis and isobologram analysis, respectively. DNA destruction and intracellular reactive oxygen species (ROS) generation were analyzed by flow cytometer. The expression of various proteins was assessed via Western blotting. (3) Results: Compared with the action of TMZ alone or Ga alone, TMZ/Ga combination augmented the inhibition of cellular viability and apoptotic level in the U87MG glioma cell line. This enhanced anti-cancer effect correlated with the decreased expression of Bcl-2 and p-Akt, and corresponded with the activation of the p38 mitogen-activated protein kinase (MAPK) pathway. In addition, Ga suppressed the TMZ-promoted ROS generation. (4) Conclusions: Ga can augment the anti-cancer effect of TMZ via the repression of Bcl-2 expression and Akt activation and the enhancement of the p38 MAPK pathway. Our results offer a novel probable approach for the medical treatment of malignant glioma.
Collapse
|
5
|
Tang X, Cheng L, Li G, Yan YM, Su F, Huang DL, Zhang S, Liu Z, Qian M, Li J, Cheng YX, Liu B. A small-molecule compound D6 overcomes EGFR-T790M-mediated resistance in non-small cell lung cancer. Commun Biol 2021; 4:1391. [PMID: 34903832 PMCID: PMC8668973 DOI: 10.1038/s42003-021-02906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is a deadly and highly prevalent malignancy. Targeting activated-EGFR mutations in NSCLC via EGFR tyrosine kinase inhibitor (EGFR-TKI) initially achieves a profound therapeutic response, but resistance frequently evolves, reducing treatment options. Here, we present a small-molecule compound D6 which selectively inhibits tumor cell growth and migration in NSCLC cells with EGFR-TKI-resistant T790M-EGFR-activated mutations (T790M-EGFR-AM), e.g., L858R/T790M, 19Del/T790M and L858R/T790M/C797S. D6 mimics a natural product isolated from the roots of Codonopsis pilosula and selectively competes with T790M-EGFR-AM to bind to HSP90, thus facilitating the ubiquitination dependent proteasomal degradation of T790M-EGFR-AM. By contrast, D6 has little impact on typical HSP90 chaperone activity, suggesting low systemic toxicity. Promisingly, D6 combined with erlotinib or osimertinib shows efficacy in overcoming the EGFR-TKIs-resistance in NSCLCs. Our study raises an alternative strategy to overcome T790M-mediated EGFR-TKI resistance in NSCLC via targeting the protein-protein interaction of HSP90 and T790M-EGFR by intervention with D6.
Collapse
Affiliation(s)
- Xiaolong Tang
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.
| | - Lizhi Cheng
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Guo Li
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Ming Yan
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Fengting Su
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Dan-Ling Huang
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Shuping Zhang
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Zuojun Liu
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Minxian Qian
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China
| | - Ji Li
- grid.452223.00000 0004 1757 7615Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yong-Xian Cheng
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences; Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China. .,Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Shenzhen University, Shenzhen, China. .,National Engineering Research Center for Biotechnology (Shenzhen); Marshall Laboratory of Biomedical Engineering; International Cancer Center, Shenzhen University, Shenzhen, China. .,Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
6
|
Sabir F, Katona G, Ismail R, Sipos B, Ambrus R, Csóka I. Development and Characterization of n-Propyl Gallate Encapsulated Solid Lipid Nanoparticles-Loaded Hydrogel for Intranasal Delivery. Pharmaceuticals (Basel) 2021; 14:ph14070696. [PMID: 34358121 PMCID: PMC8308668 DOI: 10.3390/ph14070696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study was to develop n-propyl gallate-loaded solid lipid nanoparticles (PG-SLNs) in a hydrogel (HG) formulation using Transcutol-P (TC-P) as a permeation enhancer. Modified solvent injection technique was applied to produce optimized PG-SLNs via the Quality by Design approach and central composite design. The in vitro mucoadhesion, scavenging activity, drug release, permeation studies of PG from PG-SLNs-loaded HG were evaluated under simulated nasal conditions. Compared with in vitro release behavior of PG from SLNs, the drug release from the PG-SLNs-loaded HG showed a lower burst effect and sustained release profile. The cumulative permeation of PG from PG-SLNs-loaded HG with TC-P was 600 μg/cm2 within 60 min, which is 3–60-fold higher than PG-SLNs and native PG, respectively. Raman mapping showed that the distribution of PG-SLNs was more concentrated in HG having lower concentrations of hyaluronic acid. The scavenging assay demonstrated increased antioxidant activity at higher concentrations of HG. Due to enhanced stability and mucoadhesive properties, the developed HG-based SLNs can improve nasal absorption by increasing residence time on nasal mucosa. This study provides in vitro proof of the potential of combining the advantages of SLNs and HG for the intranasal delivery of antioxidants.
Collapse
Affiliation(s)
- Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
- Department of Applied & Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Béla sqr. 1, H-6720 Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Str. 6, H-6720 Szeged, Hungary; (F.S.); (G.K.); (R.I.); (B.S.); (R.A.)
- Correspondence: ; Tel.: +36-62-546-116
| |
Collapse
|
7
|
MicroRNA-144 represses gliomas progression and elevates susceptibility to Temozolomide by targeting CAV2 and FGF7. Sci Rep 2020; 10:4155. [PMID: 32139705 PMCID: PMC7058039 DOI: 10.1038/s41598-020-60218-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common tumor in central nervous system with poor prognosis. Due to the limitation of histological classification in earlier diagnosis and individualized medicine, it is necessary to combine the molecular signatures and the pathological characteristics of gliomas. Lots of microRNAs presented abnormal expression in gliomas and modulated gliomas development. Exploration the miRNAs profile is helpful for the diagnosis, therapy and prognosis of gliomas. It has been demonstrated that miR-144 plays important roles in solid tumors. However, the detail mechanisms remained unrevealed. In this study, we have demonstrated the level of miR-144 decreased in glioma tissues from patients, especially in gliomas with higher grades. MiR-144 was also validated have lower expression in glioma cell lines compared with cortical neuron cell by using qRT-PCR. The in vitro functional experiment indicated miR-144 improved gliomas progression through repressing proliferation, sensitizing to chemotherapeutics and inhibiting metastasis. We further identified fibroblast growth factor 7 (FGF7) and Caveolin 2 (CAV2) were target genes of miR-144 by luciferase reporter assay and western blotting. The mechanisms study suggested forced FGF7 expression elevated Akt activation and decreased reactive oxygen species (ROS) generation. The MTT and cell cycle assay indicated miR-144 suppressed glioma cells proliferation through modulating FGF mediated Akt signaling pathway. Meanwhile, miR-144 promoted Temozolomide (TMZ) induced apoptosis in glioma cells via increasing ROS production by using FACS. On the other hand, CAV2, as another target of miR-144, accelerated glioma cells migration and invasion via promoting glioma cells EMT progress. Retrieved expression of FGF7 or CAV2 rescued the proliferation and migration function mediated by miR-144. Furthermore, the in vivo experiments in PDX models displayed the anti-tumor function of miR-144, which could be retrieved by overexpression of FGF7 and CAV2. Taken together, these findings indicated miR-144 acted as a potential target against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new therapeutic strategy and prognostic indicator for gliomas.
Collapse
|
8
|
Bahadur S, Sahu AK, Baghel P, Saha S. Current promising treatment strategy for glioblastoma multiform: A review. Oncol Rev 2019; 13:417. [PMID: 31410248 PMCID: PMC6661528 DOI: 10.4081/oncol.2019.417] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/29/2019] [Indexed: 01/15/2023] Open
Abstract
Glioblastoma multiform (GBM) is a heterogeneous group of primary neoplasm resistant to conventional therapies. Due to their infiltrative nature it not fully isolated by aggressive surgery, radiation and chemotherapy showing poor prognosis in glioma patients. Unfortunately, diagnosed patients die within 1.5-2 year treatment schedule. Currently temozolomide (TMZ) is the first choice for the prognosis of GBM patients. TMZ metabolites methyl triazen imidazol carboxamide form complex with alkyl guanine alkyl transferase (O6 MGMT- DNA repair protein) induced DNA damage following resistance properties of TMZ and inhibit the overall survival of the patients. Last few decades different TMZ conjugated strategy is developed to overcome the resistance and enhance the chemotherapy efficacy. The main aim of this review is to introduce the new promising pharmaceutical candidates that significantly influence the therapeutic response of the TMZ in context of targeted therapy of glioblastoma patients. It is hoped that this proposed strategy are highly effective to overcome the current resistance limitations of TMZ in GBM patients and enhance the survival rate of the patients.
Collapse
Affiliation(s)
| | - Arvind Kumar Sahu
- Department of Pharmaceutics, Columbia Institute of Pharmacy, Near Vidhan Sabha, Raipur, Chhattisgarh, India
| | | | | |
Collapse
|
9
|
Liu J, Zhang Y, Sun S, Zhang G, Jiang K, Sun P, Zhang Y, Yao B, Sui R, Chen Y, Guo X, Tang T, Shi J, Liang H, Piao H. Bufalin Induces Apoptosis and Improves the Sensitivity of Human Glioma Stem-Like Cells to Temozolamide. Oncol Res 2019; 27:475-486. [PMID: 29793559 PMCID: PMC7848418 DOI: 10.3727/096504018x15270916676926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioma is the most common malignant tumor of the central nervous system, and it is characterized by high relapse and fatality rates and poor prognosis. Bufalin is one of the main ingredients of Chan-su, a traditional Chinese medicine (TCM) extracted from toad venom. Previous studies revealed that bufalin exerted inhibitory effects on a variety of tumor cells. To demonstrate the inhibitory effect of bufalin on glioma cells and glioma stem-like cells (GSCs) and discuss the underlying mechanism, the proliferation of glioma cells was detected by MTT and colony formation assays following treatment with bufalin. In addition, we investigated whether bufalin inhibits or kills GSCs using flow cytometry, Western blotting, and reverse transcription polymerase chain reaction analysis (RT-PCR). Finally, we investigated whether bufalin could improve the therapeutic effect of temozolomide (TMZ) and discussed the underlying mechanism. Taken together, our data demonstrated that bufalin inhibits glioma cell growth and proliferation, inhibits GSC proliferation, and kills GSCs. Bufalin was found to induce the apoptosis of GSCs by upregulating the expression of the apoptotic proteins cleaved caspase 3 and poly(ADP-ribose) polymerase (PARP) and by downregulating the expression of human telomerase reverse transcriptase, which is a marker of telomerase activity. Bufalin also improved the inhibitory effect of TMZ on GSCs by activating the mitochondrial apoptotic pathway. These results suggest that bufalin damages GSCs, induces apoptosis, and enhances the sensitivity of GSCs to TMZ.
Collapse
Affiliation(s)
- Jia Liu
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Ying Zhang
- †Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning Province, P.R. China
| | - Shulan Sun
- ‡Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Guirong Zhang
- ‡Central Laboratory, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Ke Jiang
- §Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning Province, P.R. China
| | - Peixin Sun
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Ye Zhang
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Bing Yao
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Rui Sui
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Yi Chen
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Xu Guo
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Tao Tang
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Ji Shi
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Haiyang Liang
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| | - Haozhe Piao
- *Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning Province, P.R. China
| |
Collapse
|
10
|
Wei PL, Huang CY, Chang YJ. Propyl gallate inhibits hepatocellular carcinoma cell growth through the induction of ROS and the activation of autophagy. PLoS One 2019; 14:e0210513. [PMID: 30653551 PMCID: PMC6336332 DOI: 10.1371/journal.pone.0210513] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022] Open
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) has been attributed to a high frequency of tumor metastasis and recurrence even after successful surgical resection. With less than 30% of patients benefiting from curative treatment, alternative treatment regimens for patients with advanced HCC are needed. Propyl gallate (PG), a synthetic antioxidant used in preserving food and medicinal preparations, has been shown to induce cancer cell death, but the anticancer effects of PG in HCC are unclear. In the present study, we demonstrated that PG inhibited HCC cell proliferation in vitro and in zebrafish models in vivo in a dose- and time-dependent manner. PG also induced cell apoptosis and increased the number of necrotic cells in a time- and dose-dependent manner as determined using a high-content analysis system. We found that PG also increased the intracellular levels of superoxide and reactive oxidative stress as well as the formation of autophagosomes and lysosomes. Regarding the molecular mechanism, PG did not alter the levels of autophagy-related 5 (ATG5), ATG5/12 or Beclin-1 but increased the rate of the LC3-I to LC3-II conversion, suggesting autophagy induction. PG exposure increased the levels of the pro-apoptotic proteins cleaved caspase-3, cleaved PARP, Bax, and Bad and a decreased level of the anti-apoptotic protein Bcl-2. In conclusion, we demonstrate that PG inhibits HCC cell proliferation through enhanced ROS production and autophagy activation. Finally, PG-treated cells induced cell apoptosis and may be a new candidate for HCC therapy.
Collapse
Affiliation(s)
- Po-Li Wei
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chien-Yu Huang
- Department of Surgery, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (CYH)
| | - Yu-Jia Chang
- Cancer Research Center and Translational Laboratory, Department of Medical Research, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- International PhD Program in Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (YJC); (CYH)
| |
Collapse
|
11
|
Dominiak K, Koziel A, Jarmuszkiewicz W. The interplay between mitochondrial reactive oxygen species formation and the coenzyme Q reduction level. Redox Biol 2018; 18:256-265. [PMID: 30059902 PMCID: PMC6078054 DOI: 10.1016/j.redox.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022] Open
Abstract
Our aim was to elucidate the relationship between the rate of mitochondrial reactive oxygen species (mROS) formation and the reduction level of the mitochondrial coenzyme Q (mQ) pool under various levels of engagement of the mQ-reducing pathway (succinate dehydrogenase, complex II) and mQH2-oxidizing pathways (the cytochrome pathway and alternative oxidase pathway, (AOX)) in mitochondria isolated from the amoeba Acanthamoeba castellanii. The mQ pool was shifted to a more reduced state by inhibition of mQH2-oxidizing pathways (complex III and complex IV of the cytochrome pathway, and AOX) and the oxidative phosphorylation system. The mQ reduction level was lowered by decreasing the electron supply from succinate dehydrogenase and by stimulating the activity of the cytochrome or AOX pathways. The results indicate a direct dependence of mROS formation on the reduction level of the mQ pool for both mQH2-oxidizing pathways. A higher mQ reduction level leads to a higher mROS formation. For the cytochrome pathway, mROS generation depends nonlinearly upon the mQ reduction level, with a stronger dependency observed at values higher than the mQ reduction level of the phosphorylating state (~ 35%). AOX becomes more engaged at higher mQ pool reduction levels (above 40%), when mROS production via the cytochrome pathway increases. We propose that the mQ pool reduction level (endogenous mQ redox state) could be a useful endogenous reporter that allows indirect assessment of overall mROS production in mitochondria. mROS generation depends on the reduction level of the endogenous mQ pool. A stronger dependency is observed above mQ reduction level of phosphorylating state. The mQ reduction level can be an endogenous reporter of overall mROS production.
Collapse
Affiliation(s)
- Karolina Dominiak
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Koziel
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
12
|
Liu GL, Han NZ, Liu SS. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF-κB signaling. Biomed Pharmacother 2018; 99:825-831. [DOI: 10.1016/j.biopha.2018.01.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 11/24/2022] Open
|