1
|
Minoretti P, Emanuele E. From Agriculture to Clinics: Unlocking the Potential of Magnetized Water for Planetary and Human Health. Cureus 2024; 16:e64104. [PMID: 39114250 PMCID: PMC11305696 DOI: 10.7759/cureus.64104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Magnetized water (MW) is a form of liquid water that has been exposed to a magnetic field to alter its hydrogen bonding structure, resulting in the formation of water molecule clusters of various sizes and configurations connected by hydrogen bonds. This magnetization process induces several changes in the physicochemical properties of water, such as increased pH, electrical conductivity, and dissolved oxygen content, as well as decreased surface tension, density, and evaporation temperature compared to untreated water. In this narrative review, we explore the effective utilization of MW in agriculture, where it has a well-established history of applications, and its potential for direct applications in the medical field, which are currently at the forefront of research. MW is one of the most promising innovations for facilitating the transition from unsustainable to sustainable agriculture, which is expected to yield positive human health outcomes by promoting the consumption of less processed foods and reducing resource consumption. In addition to these indirect effects on human health, preclinical research utilizing animal models has demonstrated that water magnetization exerts beneficial effects on diabetes, renal function, bone health, and fertility. These health benefits appear to stem from the ability of MW to increase the activity of antioxidant enzymes while decreasing lipid peroxidation and inflammatory markers. In terms of direct human applications, MW has been primarily studied in the fields of dentistry and dermatology. MW mouthrinse has consistently shown efficacy against Streptococcus mutans, with studies reporting comparable effects to chlorhexidine. In dermatology, the topical application of MW has demonstrated improvements in skin biophysical parameters, increased hair count and hair mass index, and promoted the healing of challenging wounds. Intriguingly, these effects on human skin seem to be mediated by local activation of autophagy, potentially through mild alkaline stress. In conclusion, this review underscores the promising role of MW in promoting a holistic approach to planetary and human health. Future studies should focus on standardizing the magnetization process, exploring the molecular mechanisms underlying MW-induced autophagy, and investigating the potential of MW as a complementary strategy for treating human diseases characterized by impaired autophagy.
Collapse
|
2
|
García Martín Á, Santiago Sáez A, Gómez Serrano M, Liaño Riera M, Minoretti P. Topically Applied Magnetized Saline Water Activates Autophagy in the Scalp and Increases Hair Count and Hair Mass Index in Men With Mild-to-Moderate Androgenetic Alopecia. Cureus 2023; 15:e49565. [PMID: 38156152 PMCID: PMC10754093 DOI: 10.7759/cureus.49565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Introduction Water is essential for life and is vital for almost all functions of the human body. Recent studies have shown that treating water with magnets can alter its physicochemical properties, including intracluster bonds and water-ion interactions. Magnetized water also undergoes modifications in its physicochemical characteristics, such as pH, salinity, and dissolved oxygen. While there is a significant amount of literature on the use of magnetized water in agricultural settings, research on its potential biomedical applications is still limited. Based on previous findings indicating a potential relationship between autophagy activation and hair loss reversal, a pilot study was designed to explore the effects of topically applied magnetized saline water in patients with androgenetic alopecia. The hypothesis was that the process of water magnetization, which promotes the creation of hydroxyl ions, could potentially induce hair growth through the induction of alkali-induced autophagy in the scalp. Methods We recruited 20 Caucasian men with mild-to-moderate androgenetic alopecia (Norwood-Hamilton stages II-III). Initially, we conducted a 12-week open-label study to evaluate the potential of a topical lotion containing 95% magnetized saline water (2 mL applied once daily) to increase hair count and hair mass index (HMI). Subsequently, we investigated the effect of the lotion on two autophagy markers (Beclin-1 and LC3B) in scalp biopsies from a subgroup of 10 men. Results Hair count significantly increased after 12 weeks of topical treatment with magnetized saline water (from 20.6 ± 9.8 at baseline to 32.5 ± 12.4 at 12 weeks, P < 0.001). Similarly, the mean HMI increased from 37.8 ± 11.4 at baseline to 45.1 ± 13.6 at 12 weeks (P < 0.01). At the molecular level, the topical lotion effectively increased Beclin-1 levels in scalp biopsies by 44% at 12 weeks as compared to the baseline. Similarly, LC3B levels increased by 36% from baseline to 12 weeks, indicating that the lotion effectively activated autophagy in the scalp. Conclusions After 12 weeks of topical treatment, a lotion containing magnetized saline water activated scalp autophagy and significantly increased hair count and HMI in men with mild-to-moderate androgenetic alopecia.
Collapse
Affiliation(s)
- Ángel García Martín
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Andrés Santiago Sáez
- Legal Medicine, Psychiatry and Pathology, Hospital Clinico San Carlos, Madrid, ESP
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Manuel Gómez Serrano
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | - Miryam Liaño Riera
- Legal Medicine, Psychiatry and Pathology, Complutense University of Madrid, Madrid, ESP
| | | |
Collapse
|
3
|
Liu Y, Qiao Y, Pan S, Chen J, Mao Z, Ren K, Yang Y, Feng Q, Liu D, Liu Z. Broadening horizons: the contribution of mitochondria-associated endoplasmic reticulum membrane (MAM) dysfunction in diabetic kidney disease. Int J Biol Sci 2023; 19:4427-4441. [PMID: 37781026 PMCID: PMC10535705 DOI: 10.7150/ijbs.86608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic kidney disease (DKD) is a global health issue that presents a complex pathogenesis and limited treatment options. To provide guidance for precise therapies, it is crucial to accurately identify the pathogenesis of DKD. Several studies have recognized that mitochondrial and endoplasmic reticulum (ER) dysfunction are key drivers of the pathogenesis of DKD. The mitochondria-associated ER membrane (MAM) is a dynamic membrane contact site (MSC) that connects the ER and mitochondria and is essential in maintaining the normal function of the two organelles. MAM is involved in various cellular processes, including lipid synthesis and transport, calcium homeostasis, mitochondrial fusion and fission, and ER stress. Meanwhile, recent studies confirm that MAM plays a significant role in the pathogenesis of DKD by regulating glucose metabolism, lipid metabolism, inflammation, ER stress, mitochondrial fission and fusion, and autophagy. Herein, this review aims to provide a comprehensive summary of the physiological function of MAMs and their impact on the progression of DKD. Subsequently, we discuss the trend of pharmaceutical studies that target MAM resident proteins for treating DKD. Furthermore, we also explore the future development prospects of MAM in DKD research, thereby providing a new perspective for basic studies and clinical treatment of DKD.
Collapse
Affiliation(s)
- Yong Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Shaokang Pan
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Jingfang Chen
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zihui Mao
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Dongwei Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| | - Zhangsuo Liu
- Research Institute of Nephrology, Zhengzhou University, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
- Henan Province Research Center for Kidney Disease, Zhengzhou 450052, P. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, P. R. China
| |
Collapse
|
4
|
Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep 2021; 11:13519. [PMID: 34188150 PMCID: PMC8242002 DOI: 10.1038/s41598-021-92977-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most widely spread food additives that might cause male infertility. However, Nigella sativa L. seeds (NSS) could provide a solution. This study was designed to investigate the potential effects of NSS on rats ingesting MSG. To achieve this aim, adult male albino rats were randomly equally assigned into three groups for 21 days: control group received no treatment, MSG group received MSG as 30 g/kg feed, and MSG + NSS group received MSG as 30 g/kg and NSS as 30 g/kg feed. Testis histomorphometry showed marked deterioration by MSG as atrophic seminiferous tubules with degeneration of their lining cells, damaged Leydig cells and decreased germ cells number. Periodic Acid Schiff stain indicated irregular interrupted basement membranes. Glutathione reductase, superoxide dismutase 2 (SOD2), and caspase-3 immuno-expressions increased in testicular cells. Testosterone levels were significantly decreased in MSG challenged rats along with significant increase in luteinizing hormone levels, whereas NSS normalized this hormonal profile. MSG exposure also caused significantly increased lipid peroxides (LPO), glutathione-S-transferase, and total antioxidant capacity (TAC) whereas nitric oxide and SOD2 were significantly decreased. NSS succeeded in rebalance LPO and TAC and ameliorated the histoarchitectural disturbances. NSS mitigated MSG-induced testicular impairment by its antioxidant and cytoprotective activities.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- grid.252487.e0000 0000 8632 679XDepartment of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mokhless A. M. Abd El-Rahman
- grid.252487.e0000 0000 8632 679XDepartment of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- grid.252487.e0000 0000 8632 679XDepartment of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman S. Amer
- grid.252487.e0000 0000 8632 679XDepartment of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Kitada M, Xu J, Ogura Y, Monno I, Koya D. Manganese Superoxide Dismutase Dysfunction and the Pathogenesis of Kidney Disease. Front Physiol 2020; 11:755. [PMID: 32760286 PMCID: PMC7373076 DOI: 10.3389/fphys.2020.00755] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The mitochondria are a major source of reactive oxygen species (ROS). Superoxide anion (O2•–) is produced by the process of oxidative phosphorylation associated with glucose, amino acid, and fatty acid metabolism, resulting in the production of adenosine triphosphate (ATP) in the mitochondria. Excess production of reactive oxidants in the mitochondria, including O2•–, and its by-product, peroxynitrite (ONOO–), which is generated by a reaction between O2•– with nitric oxide (NO•), alters cellular function via oxidative modification of proteins, lipids, and nucleic acids. Mitochondria maintain an antioxidant enzyme system that eliminates excess ROS; manganese superoxide dismutase (Mn-SOD) is one of the major components of this system, as it catalyzes the first step involved in scavenging ROS. Reduced expression and/or the activity of Mn-SOD results in diminished mitochondrial antioxidant capacity; this can impair the overall health of the cell by altering mitochondrial function and may lead to the development and progression of kidney disease. Targeted therapeutic agents may protect mitochondrial proteins, including Mn-SOD against oxidative stress-induced dysfunction, and this may consequently lead to the protection of renal function. Here, we describe the biological function and regulation of Mn-SOD and review the significance of mitochondrial oxidative stress concerning the pathogenesis of kidney diseases, including chronic kidney disease (CKD) and acute kidney injury (AKI), with a focus on Mn-SOD dysfunction.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Itaru Monno
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
6
|
Sherif IO, Al-Shaalan NH, Sabry D. Ginkgo Biloba Extract Alleviates Methotrexate-Induced Renal Injury: New Impact on PI3K/Akt/mTOR Signaling and MALAT1 Expression. Biomolecules 2019; 9:biom9110691. [PMID: 31684190 PMCID: PMC6920877 DOI: 10.3390/biom9110691] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 12/15/2022] Open
Abstract
Renal injury induced by the chemotherapeutic agent methotrexate (MTX) is a serious adverse effect that has limited its use in the treatment of various clinical conditions. The antioxidant activity of Ginkgo biloba extract (GB) was reported to mitigate renal injury induced by MTX. Our research was conducted to examine the nephroprotective role of GB versus MTX-induced renal injury for the first time through its impact on the regulation of phosphatidylinositol 3-kinase/protein kinase B/ mammalian target of rapamycin (PI3K/Akt/mTOR) signaling together with the renal level of TGF-β mRNA and long non-coding RNA-metastasis-associated lung adenocarcinoma transcript-1 (MALAT1) expression. A group of adult rats was intraperitoneally (ip) injected with MTX 20 mg/kg as a single dose to induce kidney injury (MTX group). The other group of rats was orally administered with GB 60 mg/kg every day for 10 days (GB+ MTX group). The MTX increased the serum creatinine and urea levels, renal TGF-β mRNA and MALAT1 expression, in addition to dysregulation of the PI3K/Akt/mTOR signaling when compared with normal control rats that received saline only (NC group). Moreover, renal damage was reported histopathologically in the MTX group. The GB ameliorated the renal injury induced by MTX and reversed the changes of these biochemical analyses. The involvement of PI3K/Akt/mTOR signaling and downregulation of TGF-β mRNA and MALAT1 renal expressions were firstly reported in the nephroprotective molecular mechanism of GB versus MTX-induced renal injury.
Collapse
Affiliation(s)
- Iman O Sherif
- Emergency Hospital, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt.
| | - Nora H Al-Shaalan
- Chemistry Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia.
| | - Dina Sabry
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt.
| |
Collapse
|
7
|
2-Allylphenol Reduces IL-1 β and TNF- α, Promoting Antinociception through Adenosinergic, Anti-Inflammatory, and Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1346878. [PMID: 31049124 PMCID: PMC6462329 DOI: 10.1155/2019/1346878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
2-Allylphenol (2-AP) is a synthetic phenylpropanoid, structurally related to cardanol, thymol, and ortho-eugenol. Phenylpropanoids are described in the literature as being capable of promoting biological activity. Due to the similarity between 2-AP and other bioactive phenylpropanoids, the present research aims at evaluating the antioxidant, antinociceptive, and anti-inflammatory potential of 2-AP in silico, in vitro, and in vivo. At 30 min prior to the start of in vivo pharmacological testing, administration of 2-AP (25, 50, 75, and 100 mg/kg i.p.), morphine (6 mg/kg i.p.), dexamethasone (2 mg/kg s.c.), or vehicle alone was performed. In the acetic acid-induced abdominal writhing tests, pretreatment with 2-AP significantly reduced the number of abdominal writhes, as well as decreased licking times in the glutamate and formalin tests. Investigation of the mechanism of action using the formalin model led to the conclusion that the opioid system does not participate in its activity. However, the adenosinergic system is involved. In the peritonitis tests, 2-AP inhibited leukocyte migration and reduced releases of proinflammatory mediators TNF-α and IL-1β. In vitro antioxidant assays demonstrated that 2-AP presents significant ability to sequester superoxide radicals. In silico docking studies confirmed interaction between 2-AP and the adenosine A2a receptor through hydrogen bonds with the critical asparagine 253 residues present in the active site. Investigation of 2-AP demonstrated its nociception inhibition and ability to reduce reactive oxygen species. Its interaction with A2a receptors may well be related to proinflammatory cytokines TNF-α and IL-1β reduction activity, corroborating its antinociceptive effect.
Collapse
|
8
|
Saleh A, Anwar MM, Zayed AE, Ezz Eldeen MES, Afifi G, Alnashiri HM, Gomaa AMS, Abd-Elkareem M, Abou-Elhamd AS, Shaheen ES, Mohamed GA, Hetta HF, Kotb AM. Impact of Ginkgo biloba extract and magnetized water on the survival rate and functional capabilities of pancreatic β-cells in type 2 diabetic rat model. Diabetes Metab Syndr Obes 2019; 12:1339-1347. [PMID: 31496771 PMCID: PMC6689767 DOI: 10.2147/dmso.s209856] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/16/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a widely distributed disease that affects large population worldwide. This study aimed to verify the role of Ginkgo biloba (GB) extract and magnetized water (MW) on the survival rate and functional capabilities of pancreatic β-cells in type 2 diabetic rats. MATERIALS AND METHODS T2D was induced by feeding the rats on a high-fat diet (20% fat, 45% carbohydrate, 22% protein) for eight weeks followed by intra-peritoneal injection of a single low dose of streptozotocin (25mg/Kg). Forty rats were randomly assigned to four groups (n=10 rats) as follows: non treated control and three diabetic groups. One diabetic group served as a positive control (diabetic), while the other two groups were orally administered with water extract of GB leaves (0.11 g/kg/day) and MW (600 gauss) for four weeks, respectively. RESULTS The β-cell mass and insulin expression in these cells increased markedly after both treatments, particularly in GB treated group. In addition, the immune-expression of the two antioxidant enzymes; glutathione and superoxide dismutase 2 (SOD2) in the pancreatic tissue demonstrated a down-regulation in GB and MW treated groups as compared with the diabetic group. CONCLUSION A four-week treatment of GB and MW protected pancreatic β-cell cells and improved their insulin expression and antioxidant status in type 2 diabetic rats.
Collapse
Affiliation(s)
- Ahmed Saleh
- Department of Physics, Faculty of Science, Jazan University, Jazan, KSA
- Exploratory Center of Science and Technology
, Cairo, Egypt
| | - Mamdouh M Anwar
- Department of Pharmacology, Faculty of Pharmacy, Jazan University, Jazan, KSA
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed E Zayed
- Department of Biology, Faculty of Science, Jazan University, Jazan, KSA
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Manal El Sayed Ezz Eldeen
- Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Gamal Afifi
- Department of Physics, Faculty of Science, Jazan University, Jazan, KSA
- National Institute for Laser Enhanced Sciences, Cairo University
, Giza, Egypt
| | | | - Asmaa MS Gomaa
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| | - Alaa Sayed Abou-Elhamd
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Ghada A Mohamed
- Endocrine Unit, Department of Internal Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Correspondence: Helal F HettaDepartment of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, 231 Albert B. Sabin Way, PO Box 670595, OH45267-0595, USAEmail
| | - Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Egypt
| |
Collapse
|
9
|
Corrigendum to "Protective Effect of Ginkgo biloba and Magnetized Water on Nephropathy in Induced Type 2 Diabetes in Rat". OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1094650. [PMID: 30159109 PMCID: PMC6109572 DOI: 10.1155/2018/1094650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/22/2018] [Indexed: 11/18/2022]
|