1
|
Zhou YM, Li C, Liu L, Shen Y. Preparation of sludge-based micro-electrolysis filler and its application in pharmaceutical wastewater treatment by an up-flow aerated filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:65762-65778. [PMID: 37093373 DOI: 10.1007/s11356-023-27115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Sewage sludge (SS) and raw pharmaceutical wastewater (RPW) are both toxic and harmful wastes, which are a menace to human and animal health and the ecosystem. A sludge-base micro-electrolysis filler (SMEF) was gained by SS and Fe powder as the primary raw materials. The preparation process of the SMEF was achieved based on the tetracycline hydrochloride (TCH) removal efficiency. The physicochemical characteristics (e.g., surface area, morphology features, function groups, and valence state of Fe) of the obtained SMEF were decided. With an Fe/SS ratio of 1/2, a sintering temperature of 1050 °C, a sintering time of 30 min, an initial pH of 3, and a filler dosage of 100 g/L, the SMEF demonstrated a high degradation ability for TCH with a removal rate reached 95.62% in 24 h. Kinetic analysis showed that the adsorption process of TCH was consistent with the pseudo-first-order Lagergren kinetic model. Moreover, degradation mechanism analysis showed that TCH was gradually degraded through dehydroxylation, demethylation, ring opening, oxidation, and reduction in solution. The SMEF had a good continuous removal performance for contaminants in RPW in an up-flow aerated filter. The removal efficiency of TOC and TN reached 46.60 and 42.27% within 24 h, respectively. The treated pharmaceutical wastewater was considered non-biotoxic after 24-h treatment with the SMEF. This study presents a innovative Fe-C micro-electrolysis filler based on SS and is important to the environmental-friendly recycling of SS and sustainable treatment of RPW, achieving the purpose of waste disposal.
Collapse
Affiliation(s)
- Yue-Ming Zhou
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, 19 Xuefu Avenue, Nan'an, Chongqing, 400067, China
- Chongqing South-to-Thais Environmental Protection Technology Research Lnstitute Co., Ltd, 19 Xuefu Avenue, Nan'an, Chongqing, 400060, China
| | - Chao Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, 19 Xuefu Avenue, Nan'an, Chongqing, 400067, China
| | - Li Liu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, 19 Xuefu Avenue, Nan'an, Chongqing, 400067, China
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, 19 Xuefu Avenue, Nan'an, Chongqing, 400067, China.
- Chongqing South-to-Thais Environmental Protection Technology Research Lnstitute Co., Ltd, 19 Xuefu Avenue, Nan'an, Chongqing, 400060, China.
| |
Collapse
|
2
|
Song H, Zhou J, He S, Ma Q, Peng L, Yin M, Lin H, Zeng Q. Efficient Removal of Heavy Metals from Contaminated Sunflower Straw by an Acid-Assisted Hydrothermal Process. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1311. [PMID: 36674067 PMCID: PMC9858727 DOI: 10.3390/ijerph20021311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The removal of heavy metals is crucial to the utilization of contaminated biomass resources. In this study, we report an efficient process of hydrothermal conversion (HTC) of sunflower straw (Helianthus annuus L.) to remove heavy metals. The effect of different HTC temperatures and concentrations of HCl additives on heavy metal removal efficiency was investigated. The results revealed that increasing the temperature or concentration of HCl promoted the transfer of heavy metals from hydrochar to liquid products during HTC. The heavy metals removed to the liquid products included up to 99% of Zn and Cd, 94% of Cu, and 87% of Pb after hydrothermal conversion with a temperature of 200 °C and HCl 2%. The species of heavy metals in hydrochars converted from unstable to stable with an increase in temperature from 160 °C to 280 °C. The stable fractions of heavy metals in the acidic condition decreased as the acid concentration increased. This aligns well with the high transfer efficiency of heavy metals from the solid phase to the liquid phase under acidic conditions. The FTIR indicated that the carboxy and hydroxy groups decreased significantly as the temperature increased and the concentration of HCl increased, which promoted the degradation of sunflower straw. A scan electron microscope showed that the deepening of the destruction of the initial microstructure promotes the transfer of heavy metals from hydrochars to liquid phase products. This acid-assisted hydrothermal process is an efficient method to treat biomass containing heavy metals.
Collapse
Affiliation(s)
- Huijuan Song
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Jun Zhou
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Shilong He
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Ma
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Liang Peng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Miaogen Yin
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Hui Lin
- Department of Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Qingru Zeng
- Department of Environmental Science & Engineering, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Sewage Sludge Treatment by Hydrothermal Carbonization: Feasibility Study for Sustainable Nutrient Recovery and Fuel Production. ENERGIES 2021. [DOI: 10.3390/en14092697] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Phosphorus recovery from waste biomass is becoming increasingly important, given that phosphorus is an exhaustible non-renewable resource. For the recovery of plant nutrients and production of climate-neutral fuel from wet waste streams, hydrothermal carbonization (HTC) has been suggested as a promising technology. In this study, digested sewage sludge (DSS) was used as waste material for phosphorus and nitrogen recovery. HTC was conducted at 200 °C for 4 h, followed by phosphorus stripping (PS) or leaching (PL) at room temperature. The results showed that for PS and PL around 84% and 71% of phosphorus, as well as 53% and 54% of nitrogen, respectively, could be recovered in the liquid phase (process water and/or extract). Heavy metals were mainly transferred to the hydrochar and only <1 ppm of Cd and 21–43 ppm of Zn were found to be in the liquid phase of the acid treatments. According to the economic feasibility calculation, the HTC-treatment per dry ton DSS with an industrial-scale plant would cost around 608 USD. Between 349–406 kg of sulfuric acid are required per dry ton DSS to achieve a high yield in phosphorus recovery, which causes additional costs of 96–118 USD. Compared to current sewage sludge treatment costs in Switzerland, which range between 669 USD and 1173 USD, HTC can be an economically feasible process for DSS treatment and nutrient recovery.
Collapse
|
4
|
Wang Q, Zhang C, Jung H, Liu P, Patel D, Pavlostathis SG, Tang Y. Transformation and Mobility of Cu, Zn, and Cr in Sewage Sludge during Anaerobic Digestion with Pre- or Interstage Hydrothermal Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1615-1625. [PMID: 33461291 DOI: 10.1021/acs.est.0c05164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) combined with hydrothermal treatment (HT) is an attractive technology for sewage sludge treatment and resource recovery. The fate and distribution of heavy metals in the sludge during combined HT/AD significantly affect the sludge final disposal/utilization options, yet such information is still lacking. This study systematically characterizes the transformation of important heavy metals Cu, Zn, and Cr in sewage sludge during AD with pre- or interstage HT (i.e., HT-AD or AD-HT-AD, respectively). Complementary sequential chemical extraction and X-ray absorption spectroscopy were used to characterize the speciation and mobility of metals. For the HT-AD system, both Cu and Zn predominantly occur as sulfides in HT hydrochars. Subsequent AD favors the formation of Cu2S and partial transformation of nano-ZnS to adsorbed and organo-complexed Zn species. HT favors the formation of Cr-bearing silicates in hydrochars, whereas Fe(III)-Cr(III)-hydroxide and Cr(III)-humic complex are the predominant Cr species in AD solids. Similar reaction pathways occur in the AD-HT-AD system with some minor differences in metal species and contents, as the first-stage AD changed the sludge matrix. These findings have important implications for understanding the fate and mobility of heavy metals in sludge-derived hydrochars and AD solids.
Collapse
Affiliation(s)
- Qian Wang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Chiqian Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Haesung Jung
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Pan Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Dhara Patel
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| | - Yuanzhi Tang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0340, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, Georgia 30332-0512, United States
| |
Collapse
|