1
|
Le X, Fan YF. ADAM17 regulates the proliferation and extracellular matrix of keloid fibroblasts by mediating the EGFR/ERK signaling pathway. J Plast Surg Hand Surg 2023; 57:129-136. [PMID: 34978504 DOI: 10.1080/2000656x.2021.2017944] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
To investigate the role of a disintegrin and metalloprotease protein 17 (ADAM17) in regulating the proliferation and extracellular matrix (ECM) expression of keloid fibroblasts (KFs) via the epidermal growth factor receptor (EGFR)/extracellular signal-regulated kinase (ERK) pathway. ADAM17 expression in keloid tissues was detected by western blotting. KFs were isolated, cultured and divided into the control, shNC (negative control), shADAM17, transforming growth factor-β1 (TGF-β1), TGF-β1 + shNC and TGF-β1 + shADAM17 groups. The expression of ECM was detected by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Western blotting was performed to detect the expression of proteins. Cell proliferation was detected by a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, while cell invasion and migration were examined by Transwell and wound healing assays. The expression of ADAM17 was increased in keloid tissues and KFs. Compared with the control group, the expression of p-EGFR and p-ERK/1/2/ERK1/2, as well as the expression of collagen I, collagen III, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA), were decreased in KFs from the shADAM17 group, with decreased cell proliferation, invasion and migration. In contrast, the TGF-β1 group presented the opposite trend in these aspects. In addition, compared with the TGF-β1 group, KFs from the TGF-β1 + shADAM17 group had decreased ECM expression, proliferation, invasion and migration. ADAM17 expression was upregulated in keloid tissues. Silencing ADAM17 may inhibit the activity of the EGFR/ERK pathway to limit the deposition of ECM in KFs with reduced proliferation, invasion and migration.
Collapse
Affiliation(s)
- Xin Le
- Department of Burn, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - You-Fen Fan
- Department of Burn, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
2
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
3
|
Tang BY, Ge J, Wu Y, Wen J, Tang XH. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J Cardiovasc Transl Res 2022; 15:1283-1296. [PMID: 35648358 DOI: 10.1007/s12265-022-10275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Bai-Yi Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Ge
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yang Wu
- Department of Cardiology, Third Hospital of Changsha, 176 W. Laodong Road, Changsha, 410015, Hunan, China
| | - Juan Wen
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xiao-Hong Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Sun K, Jiang J, Wang Y, Sun X, Zhu J, Xu X, Sun J, Shi J. The role of nerve fibers and their neurotransmitters in regulating intervertebral disc degeneration. Ageing Res Rev 2022; 81:101733. [PMID: 36113765 DOI: 10.1016/j.arr.2022.101733] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/11/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Intervertebral disc degeneration (IVDD) has been the major contributor to chronic lower back pain (LBP). Abnormal apoptosis, senescence, and pyroptosis of IVD cells, extracellular matrix (ECM) degradation, and infiltration of immune cells are the major molecular alternations during IVDD. Changes at tissue level frequently occur at advanced IVD tissue. Ectopic ingrowth of nerves within inner annulus fibrosus (AF) and nucleus pulposus (NP) tissue has been considered as the primary cause for LBP. Innervation at IVD tissue mainly included sensory and sympathetic nerves, and many markers for these two types of nerves have been detected since 1940. In fact, in osteoarthritis (OA), beyond pain transmission, the direct regulation of neuropeptides on functions of chondrocytes have attracted researchers' great attention recently. Many physical and pathological similarities between joint and IVD have shed us the light on the neurogenic mechanism involved in IVDD. Here, an overview of the advances in the nervous system within IVD tissue will be performed, with a discussion on in the role of nerve fibers and their neurotransmitters in regulating IVDD. We hope this review can attract more research interest to address neuromodulation and IVDD itself, which will enhance our understanding of the contribution of neuromodulation to the structural changes within IVD tissue and inflammatory responses and will help identify novel therapeutic targets and enable the effective treatment of IVDD disease.
Collapse
Affiliation(s)
- Kaiqiang Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China; Department of Orthopedics, Naval Medical Center of PLA, China
| | - Jialin Jiang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Yuan Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Xiaofei Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jian Zhu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Ximing Xu
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| | - Jiangang Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Navy Medical University, No.415 Fengyang Road, Shanghai 200003, China.
| |
Collapse
|
5
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
6
|
FNDC5 Attenuates Oxidative Stress and NLRP3 Inflammasome Activation in Vascular Smooth Muscle Cells via Activating the AMPK-SIRT1 Signal Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6384803. [PMID: 32509148 PMCID: PMC7254086 DOI: 10.1155/2020/6384803] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Vascular oxidative stress and inflammation play a major role in vascular diseases. This study was aimed at determining the protective roles of fibronectin type III domain-containing 5 (FNDC5) in angiotensin II- (Ang II-) induced vascular oxidative stress and inflammation and underlying mechanisms. Wild-type (WT) and FNDC5−/− mice, primary mouse vascular smooth muscle cells (VSMCs), and the rat aortic smooth muscle cell line (A7R5) were used in the present study. Subcutaneous infusion of Ang II caused more serious hypertension, vascular remodeling, oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in the aorta of FNDC5−/− mice than those of WT mice. Exogenous FNDC5 attenuated Ang II-induced superoxide generation, NADPH oxidase 2 (NOX2) and NLRP3 upregulation, mature caspase-1, and interleukin-1β (IL-1β) production in A7R5 cells. The protective roles of FNDC5 were prevented by SIRT-1 inhibitor EX527, AMPK inhibitor compound C, or integrin receptor inhibitor GLPG0187. FNDC5 attenuated the Ang II-induced inhibition in SIRT1 activity, SIRT1 protein expression, and AMPKα phosphorylation in A7R5 cells, which were prevented by compound C, EX527, and GLPG0187. FNDC5 deficiency deteriorated Ang II-induced oxidative stress, NLRP3 inflammasome activation, AMPK phosphorylation inhibition, and SIRT1 downregulation in primary aortic VSMCs of mice, which were prevented by exogenous FNDC5. These results indicate that FNDC5 deficiency aggravates while exogenous FNDC5 alleviates the Ang II-induced vascular oxidative stress and NLRP3 inflammasome activation via the AMPK-SIRT1 signal pathway in VSMCs.
Collapse
|
7
|
Liu YW, Hui HY, Tan ZJ. Gastrointestinal peptide hormones associated with brain-intestinal axis. Shijie Huaren Xiaohua Zazhi 2019; 27:1007-1012. [DOI: 10.11569/wcjd.v27.i16.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The brain-intestinal axis is the interaction between biochemical signals of the digestive tract and the central nervous system, controls the two-way information exchange between the intestine and brain, and is composed of immune, vagus nerve, and neuroendocrine pathways. Brain-gut peptide (BGP) is a small molecule polypeptide that regulates gastrointestinal function and participates in regulating gastrointestinal physiological activities in the brain-intestinal axis, and is involved in the pathogenesis of gastrointestinal diseases by regulating brain-intestinal interaction. As a molecular basis of BGP, gastrointestinal peptide hormones not only affect the functional movement of the gastrointestinal tract, but also regulate the metabolism, cardiovascular function, and even human behavior of the whole body through inflammatory reactions and immune responses. This article reviews the interaction between gastrointestinal peptide hormones and the brain-intestinal axis, with an aim to provide clues and ideas for the treatment of related diseases.
Collapse
Affiliation(s)
- Ya-Wei Liu
- Hu'nan University of Chinese Medicine, Changsha 410208, Hu'nan Province, China
| | - Hua-Ying Hui
- Hu'nan University of Chinese Medicine, Changsha 410208, Hu'nan Province, China
| | - Zhou-Jin Tan
- Hu'nan University of Chinese Medicine, Changsha 410208, Hu'nan Province, China
| |
Collapse
|
8
|
Han M, Hu L, Chen Y. Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury. Drug Des Devel Ther 2019; 13:2923-2931. [PMID: 31692511 PMCID: PMC6708397 DOI: 10.2147/dddt.s216156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cerebral ischemia-reperfusion (CI/R) injury is a more serious brain injury caused by the recovery of blood supply after cerebral ischemia for a certain period of time. Rutaecarpine (Rut) is an alkaloid isolated from Evodia officinalis with various biological activities. Previous studies have shown that Rut has a certain protective effect on ischemic brain injury, but the specific molecular mechanism is still unknown. METHODS In this study, a rat model of CI/R was established to explore the effects and potential molecular mechanisms of Rut on CI/R injury in rats. RESULTS The results showed that Rut alleviated neuronal injury induced by CI/R in a dose-dependent manner. Besides, Rut inhibited neuronal apoptosis by inhibiting the activation of caspase 3 and the expression of Bax. In addition, Rut alleviated the inflammatory response and oxidative stress caused by CI/R through inhibiting the production of pro-inflammatory factors (IL-6 and IL-1β), lactate dehydrogenase (LDH), malondialdehyde (MDA) and ROS, and increased the levels of anti-inflammatory factors (IL-4 and IL-10) and superoxide dismutase (SOD). Biochemically, Western blot analyses showed that Rut inhibited the phosphorylation of ERK1/2 and promoted the expression of nuclear factor-erythroid 2 related factor 2 (Nrf2) pathway-related proteins (Nrf2, heme oxygenase 1 (HO-1) and NAD (P) H-quinone oxidoreductase 1) in a dose-dependent manner. These results show that Rut may alleviate brain injury induced by CI/R by regulating the expression of ERK1/2 and the activation of Nrf2/HO-1 pathway. CONCLUSION In conclusion, these results suggest that Rut may be used as an effective therapeutic agent for damage caused by CI/R.
Collapse
Affiliation(s)
- Meiyu Han
- Department of Internal Medicine, The Second People’s Hospital of Dongying City, Dongying City, Shandong Province257335, People’s Republic of China
| | - Lin Hu
- Department of Critical Care Medicine ICU, Zoucheng People’s Hospital, Zoucheng, Shandong Province273500, People’s Republic of China
| | - Yang Chen
- Department of Internal Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai201399, People’s Republic of China
| |
Collapse
|
9
|
Kumar A, Potts JD, DiPette DJ. Protective Role of α-Calcitonin Gene-Related Peptide in Cardiovascular Diseases. Front Physiol 2019; 10:821. [PMID: 31312143 PMCID: PMC6614340 DOI: 10.3389/fphys.2019.00821] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/11/2019] [Indexed: 01/09/2023] Open
Abstract
α-Calcitonin gene-related peptide (α-CGRP) is a regulatory neuropeptide of 37 amino acids. It is widely distributed in the central and peripheral nervous system, predominantly in cell bodies of the dorsal root ganglion (DRG). It is the most potent vasodilator known to date and has inotropic and chronotropic effects. Using pharmacological and genetic approaches, our laboratory and other research groups established the protective role of α-CGRP in various cardiovascular diseases such as heart failure, experimental hypertension, myocardial infarction, and myocardial ischemia/reperfusion injury (I/R injury). α-CGRP acts as a depressor to attenuate the rise in blood pressure in three different models of experimental hypertension: (1) DOC-salt, (2) subtotal nephrectomy-salt, and (3) L-NAME-induced hypertension during pregnancy. Subcutaneous administration of α-CGRP lowers the blood pressure in hypertensive and normotensive humans and rodents. Recent studies also demonstrated that an α-CGRP analog, acylated α-CGRP, with extended half-life (~7 h) reduces blood pressure in Ang-II-induced hypertensive mouse, and protects against abdominal aortic constriction (AAC)-induced heart failure. Together, these studies suggest that α-CGRP, native or a modified form, may be a potential therapeutic agent to treat patients suffering from cardiac diseases.
Collapse
Affiliation(s)
- Ambrish Kumar
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Jay D Potts
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, United States
| | - Donald J DiPette
- Department of Internal Medicine, School of Medicine, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
10
|
Gao ZX, Liu LL, Lin LR, Tong ML, Liu F, Yang TC. Treponema pallidum Induces the Secretion of HDVSMC Inflammatory Cytokines to Promote the Migration and Adhesion of THP-1 Cells. Front Cell Infect Microbiol 2019; 9:220. [PMID: 31293985 PMCID: PMC6598120 DOI: 10.3389/fcimb.2019.00220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
The pathological features of syphilis, a disease caused by Treponema pallidum (T. pallidum), are characterized by vascular involvement with endarteritis and periarteritis. Little is known about the interactions of infiltrating immunocytes with human dermal vascular smooth muscle cells (HDVSMCs) in arterioles during the immunopathogenesis of syphilis. In the present study, we demonstrated that stimulation of HDVSMCs with T. pallidum resulted in the upregulated gene transcription and protein expression of interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in a dose- and time-dependent manner. Moreover, the migration and adhesion of THP-1 cells to HDVSMCs were significantly suppressed by anti-MCP-1 and anti-ICAM-1 neutralizing antibodies, respectively. Further studies revealed that T. pallidum activated the NF-κB signaling pathway in HDVSMCs. Inhibition of NF-κB suppressed T. pallidum-induced IL-6, MCP-1, and ICAM-1 expression. In addition, the migration and adhesion of THP-1 cells to T. pallidum-treated HDVSMCs were significantly decreased by pretreatment with an NF-κB inhibitor. These findings demonstrate that T. pallidum induces the production of IL-6, MCP-1, and ICAM-1 in HDVSMCs and promotes the adherence and migration of THP-1 cells to HDVSMCs through the NF-κB signaling pathway, which may provide new insight into the pathogenesis of T. pallidum infection.
Collapse
Affiliation(s)
- Zheng-Xiang Gao
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Rong Lin
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Liu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| | - Tian-Ci Yang
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China.,Institute of Infectious Disease, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|