1
|
Jiménez-Ortega RF, Ortega-Meléndez AI, Patiño N, Rivera-Paredez B, Hidalgo-Bravo A, Velázquez-Cruz R. The Involvement of microRNAs in Bone Remodeling Signaling Pathways and Their Role in the Development of Osteoporosis. BIOLOGY 2024; 13:505. [PMID: 39056698 PMCID: PMC11273958 DOI: 10.3390/biology13070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
Bone remodeling, crucial for maintaining the balance between bone resorption and formation, relies on the coordinated activity of osteoclasts and osteoblasts. During osteoclastogenesis, hematopoietic stem cells (HSCs) differentiate into the osteoclast lineage through the signaling pathways OPG/RANK/RANKL. On the other hand, during osteoblastogenesis, mesenchymal stem cells (MSCs) differentiate into the osteoblast lineage through activation of the signaling pathways TGF-β/BMP/Wnt. Recent studies have shown that bone remodeling is regulated by post-transcriptional mechanisms including microRNAs (miRNAs). miRNAs are small, single-stranded, noncoding RNAs approximately 22 nucleotides in length. miRNAs can regulate virtually all cellular processes through binding to miRNA-response elements (MRE) at the 3' untranslated region (3'UTR) of the target mRNA. miRNAs are involved in controlling gene expression during osteogenic differentiation through the regulation of key signaling cascades during bone formation and resorption. Alterations of miRNA expression could favor the development of bone disorders, including osteoporosis. This review provides a general description of the miRNAs involved in bone remodeling and their significance in osteoporosis development.
Collapse
Affiliation(s)
- Rogelio F. Jiménez-Ortega
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
- Unidad de Acupuntura Humana Rehabilitatoria, Universidad Estatal del Valle de Ecatepec (UNEVE), Ecatepec de Morelos 55210, Mexico
| | - Alejandra I. Ortega-Meléndez
- Unidad Académica de Ciencias de la Salud, Universidad ETAC Campus Coacalco, Coacalco de Berriozábal 55700, Mexico;
| | - Nelly Patiño
- Unidad de Citometría de Flujo (UCiF), Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Berenice Rivera-Paredez
- Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Alberto Hidalgo-Bravo
- Departamento de Medicina Genómica, Instituto Nacional de Rehabilitación, Mexico City 14389, Mexico;
| | - Rafael Velázquez-Cruz
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| |
Collapse
|
2
|
Kaur J, Saul D, Doolittle ML, Farr JN, Khosla S, Monroe DG. MicroRNA- 19a- 3p Decreases with Age in Mice and Humans and Inhibits Osteoblast Senescence. JBMR Plus 2023; 7:e10745. [PMID: 37283656 PMCID: PMC10241091 DOI: 10.1002/jbm4.10745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023] Open
Abstract
Aging is a major risk factor for most chronic diseases, including osteoporosis, and is characterized by an accumulation of senescent cells in various tissues. MicroRNAs (miRNAs) are critical regulators of bone aging and cellular senescence. Here, we report that miR-19a-3p decreases with age in bone samples from mice as well as in posterior iliac crest bone biopsies of younger versus older healthy women. miR-19a-3p also decreased in mouse bone marrow stromal cells following induction of senescence using etoposide, H2O2, or serial passaging. To explore the transcriptomic effects of miR-19a-3p, we performed RNA sequencing of mouse calvarial osteoblasts transfected with control or miR-19a-3p mimics and found that miR-19a-3p overexpression significantly altered the expression of various senescence, senescence-associated secretory phenotype-related, and proliferation genes. Specifically, miR-19a-3p overexpression in nonsenescent osteoblasts significantly suppressed p16 Ink4a and p21 Cip1 gene expression and increased their proliferative capacity. Finally, we established a novel senotherapeutic role for this miRNA by treating miR-19a-3p expressing cells with H2O2 to induce senescence. Interestingly, these cells exhibited lower p16 Ink4a and p21 Cip1 expression, increased proliferation-related gene expression, and reduced SA-β-Gal+ cells. Our results thus establish that miR-19a-3p is a senescence-associated miRNA that decreases with age in mouse and human bones and is a potential senotherapeutic target for age-related bone loss. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Japneet Kaur
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Dominik Saul
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Madison L. Doolittle
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Joshua N. Farr
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - Sundeep Khosla
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| | - David G. Monroe
- Division of Endocrinology, Department of MedicineMayo Clinic College of MedicineRochesterMNUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMNUSA
| |
Collapse
|
3
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
4
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
5
|
Chin KY, Ng BN, Rostam MKI, Muhammad Fadzil NFD, Raman V, Mohamed Yunus F, Syed Hashim SA, Ekeuku SO. A Mini Review on Osteoporosis: From Biology to Pharmacological Management of Bone Loss. J Clin Med 2022; 11:6434. [PMID: 36362662 PMCID: PMC9657533 DOI: 10.3390/jcm11216434] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/25/2023] Open
Abstract
Osteoporosis refers to excessive bone loss as reflected by the deterioration of bone mass and microarchitecture, which compromises bone strength. It is a complex multifactorial endocrine disease. Its pathogenesis relies on the presence of several endogenous and exogenous risk factors, which skew the physiological bone remodelling to a more catabolic process that results in net bone loss. This review aims to provide an overview of osteoporosis from its biology, epidemiology and clinical aspects (detection and pharmacological management). The review will serve as an updated reference for readers to understand the basics of osteoporosis and take action to prevent and manage this disease.
Collapse
|
6
|
Kaur J, Saul D, Doolittle ML, Rowsey JL, Vos SJ, Farr JN, Khosla S, Monroe DG. Identification of a suitable endogenous control miRNA in bone aging and senescence. Gene X 2022; 835:146642. [PMID: 35700807 PMCID: PMC9533812 DOI: 10.1016/j.gene.2022.146642] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/15/2022] [Accepted: 06/02/2022] [Indexed: 11/04/2022] Open
Abstract
MicroRNAs (miRNAs) are promising tools as biomarkers and therapeutic agents in various chronic diseases such as osteoporosis, cancers, type I and II diabetes, and cardiovascular diseases. Considering the rising interest in the regulatory role of miRNAs in bone metabolism, aging, and cellular senescence, accurate normalization of qPCR-based miRNA expression data using an optimal endogenous control becomes crucial. We used a systematic approach to select candidate endogenous control miRNAs that exhibit high stability with aging from our miRNA sequence data and literature search. Validation of miRNA expression was performed using qPCR and their comprehensive stability was assessed using the RefFinder tool which is based on four statistical algorithms: GeNorm, NormFinder, BestKeeper, and comparative delta CT. The selected endogenous control was then validated for its stability in mice and human bone tissues, and in bone marrow stromal cells (BMSCs) following induction of senescence and senolytic treatment. Finally, the utility of selected endogenous control versus U6 was tested by using each as a normalizer to measure the expression of miR-34a, a miRNA known to increase with age and senescence. Our results show that Let-7f did not change across the groups with aging, senescence or senolytic treatment, and was the most stable miRNA, whereas U6 was the least stable. Moreover, using Let-7f as a normalizer resulted in significantly increased expression of miR-34a with aging and senescence and decreased expression following senolytic treatment. However, the expression pattern for miR-34a reversed for each of these conditions when U6 was used as a normalizer. We show that optimal endogenous control miRNAs, such as Let-7f, are essential for accurate normalization of miRNA expression data to increase the reliability of results and prevent misinterpretation. Moreover, we present a systematic strategy that is transferrable and can easily be used to identify endogenous control miRNAs in other biological systems and conditions.
Collapse
Affiliation(s)
- Japneet Kaur
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Dominik Saul
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Madison L Doolittle
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Stephanie J Vos
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Carro Vázquez D, Emini L, Rauner M, Hofbauer C, Grillari J, Diendorfer AB, Eastell R, Hofbauer LC, Hackl M. Effect of Anti-Osteoporotic Treatments on Circulating and Bone MicroRNA Patterns in Osteopenic ZDF Rats. Int J Mol Sci 2022; 23:6534. [PMID: 35742976 PMCID: PMC9224326 DOI: 10.3390/ijms23126534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Bone fragility is an adverse outcome of type 2 diabetes mellitus (T2DM). The underlying molecular mechanisms have, however, remained largely unknown. MicroRNAs (miRNAs) are short non-coding RNAs that control gene expression in health and disease states. The aim of this study was to investigate the genome-wide regulation of miRNAs in T2DM bone disease by analyzing serum and bone tissue samples from a well-established rat model of T2DM, the Zucker Diabetic Fatty (ZDF) model. We performed small RNA-sequencing analysis to detect dysregulated miRNAs in the serum and ulna bone of the ZDF model under placebo and also under anti-sclerostin, PTH, and insulin treatments. The dysregulated circulating miRNAs were investigated for their cell-type enrichment to identify putative donor cells and were used to construct gene target networks. Our results show that unique sets of miRNAs are dysregulated in the serum (n = 12, FDR < 0.2) and bone tissue (n = 34, FDR < 0.2) of ZDF rats. Insulin treatment was found to induce a strong dysregulation of circulating miRNAs which are mainly involved in metabolism, thereby restoring seven circulating miRNAs in the ZDF model to normal levels. The effects of anti-sclerostin treatment on serum miRNA levels were weaker, but affected miRNAs were shown to be enriched in bone tissue. PTH treatment did not produce any effect on circulating or bone miRNAs in the ZDF rats. Altogether, this study provides the first comprehensive insights into the dysregulation of bone and serum miRNAs in the context of T2DM and the effect of insulin, PTH, and anti-sclerostin treatments on circulating miRNAs.
Collapse
Affiliation(s)
- David Carro Vázquez
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Lejla Emini
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Martina Rauner
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Christine Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology in Cooperation with AUVA, Ludwig Boltzmann Society, 1200 Vienna, Austria;
- Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Andreas B. Diendorfer
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
| | - Richard Eastell
- Academic Unit of Bone Metabolism and Mellanby Centre for Bone Research, University of Sheffield, Sheffield S10 2RX, UK;
| | - Lorenz C. Hofbauer
- Center for Healthy Aging and Department of Medicine III, Technische Universität Dresden, 01069 Dresden, Germany; (L.E.); (M.R.); (C.H.); (L.C.H.)
| | - Matthias Hackl
- TAmiRNA GmbH, Department of Research, Leberstrasse 20, 1110 Vienna, Austria; (D.C.V.); (A.B.D.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
8
|
Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1695. [PMID: 34825502 DOI: 10.1002/wrna.1695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Non-coding RNAs (ncRNAs) work as crucial posttranscriptional modulators of gene expression regulating a wide array of biological processes that impact normal physiology, including reproductive health. The health of women, especially reproductive health, is now a prime focus of society that ensures the females' overall physical, social, and mental well-being. Furthermore, there has been a growing cognizance of ncRNAs' possible applications in diagnostics and therapeutics of dreaded diseases. Hence, understanding the functions and mode of actions of ncRNAs in the context of women's health will allow us to develop effective prognostic and therapeutic strategies that will enhance the quality of life of women. Herein, we summarize recent progress on ncRNAs, such as microRNAs (miRNAs) and long ncRNAs (lncRNAs), and their implications in reproductive health by tying the knot with lifestyle factors that affect fertility complications, pregnancy outcomes, and so forth. We also discourse the interplay among the RNA species, especially miRNAs, lncRNAs, and protein-coding RNAs, through the competing endogenous RNA regulations in diseases of women associated with maternal and fetal health. This review provides new perspectives correlating ncRNAs, lifestyle, and reproductive health of women, which will attract future studies to improve women's lives. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pooja Gupta
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
9
|
Mukherjee S, Shelar B, Krishna S. Versatile role of miR-24/24-1*/24-2* expression in cancer and other human diseases. Am J Transl Res 2022; 14:20-54. [PMID: 35173828 PMCID: PMC8829624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable proteins.
Collapse
Affiliation(s)
| | | | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR)Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
10
|
Lin B, Pan Z. Consensus gene modules related to levels of bone mineral density (BMD) among smokers and nonsmokers. Bioengineered 2021; 12:10134-10146. [PMID: 34743649 PMCID: PMC8810040 DOI: 10.1080/21655979.2021.2000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis, as a common metabolic disorder characterized by the decrease of bone mass, can cause fractures, thereby threatening the life quality of females, especially postmenopausal women. Thus, it is necessary to reveal the genes involved in osteoporosis and explore biomarkers for osteoporosis. In this study, two groups, smokers and nonsmokers with different bone mineral density (BMD) levels, were collected from the Gene Expression Omnibus (GEO) database GSE13850. Consensus modules of the two groups were identified; the variety of gene modules between smokers and nonsmokers with different BMD levels was observed; and a consensus module, including 390 genes significantly correlated with different BMD levels, was identified. Function analysis revealed the significantly enriched osteoporosis-related pathways, such as the PI3K-Akt signaling pathway. Hub genes analysis revealed the critical role of CXCL12 and CHRM2 in modules related to BMD levels. Based on the support vector machine recursive feature elimination (SVM-RFE) analysis, the model containing 10 genes (TNS4, IRF2, BSG, GZMM, ARRB2, COX15, RALY, TP53, RPS6KA3, and SYNPO) with good performance in identifying people with different BMD levels was constructed. Among them, the roles of RALY and SYNPO in the osteogenic differentiation of hBMSCs were verified experimentally. Overall, this study provides a strategy to explore the biomarkers for osteoporosis through analysis of consensus modules.
Collapse
Affiliation(s)
- Bingyuan Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhijun Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Lee KS, Lee J, Kim HK, Yeom SH, Woo CH, Jung YJ, Yun YE, Park SY, Han J, Kim E, Sul JH, Jung JM, Park JH, Choi JS, Cho YW, Jo D. Extracellular vesicles from adipose tissue-derived stem cells alleviate osteoporosis through osteoprotegerin and miR-21-5p. J Extracell Vesicles 2021; 10:e12152. [PMID: 34596354 PMCID: PMC8485335 DOI: 10.1002/jev2.12152] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/27/2022] Open
Abstract
Osteoporosis is one of the most common skeletal disorders caused by the imbalance between bone formation and resorption, resulting in quantitative loss of bone tissue. Since stem cell-derived extracellular vesicles (EVs) are growing attention as novel cell-free therapeutics that have advantages over parental stem cells, the therapeutic effects of EVs from adipose tissue-derived stem cells (ASC-EVs) on osteoporosis pathogenesis were investigated. ASC-EVs were isolated by a multi-filtration system based on the tangential flow filtration (TFF) system and characterized using transmission electron microscopy, dynamic light scattering, zeta potential, flow cytometry, cytokine arrays, and enzyme-linked immunosorbent assay. EVs are rich in growth factors and cytokines related to bone metabolism and mesenchymal stem cell (MSC) migration. In particular, osteoprotegerin (OPG), a natural inhibitor of receptor activator of nuclear factor-κB ligand (RANKL), was highly enriched in ASC-EVs. We found that the intravenous administration of ASC-EVs attenuated bone loss in osteoporosis mice. Also, ASC-EVs significantly inhibited osteoclast differentiation of macrophages and promoted the migration of bone marrow-derived MSCs (BM-MSCs). However, OPG-depleted ASC-EVs did not show anti-osteoclastogenesis effects, demonstrating that OPG is critical for the therapeutic effects of ASC-EVs. Additionally, small RNA sequencing data were analysed to identify miRNA candidates related to anti-osteoporosis effects. miR-21-5p in ASC-EVs inhibited osteoclast differentiation through Acvr2a down-regulation. Also, let-7b-5p in ASC-EVs significantly reduced the expression of genes related to osteoclastogenesis. Finally, ASC-EVs reached the bone tissue after they were injected intravenously, and they remained longer. OPG, miR-21-5p, and let-7b-5p in ASC-EVs inhibit osteoclast differentiation and reduce gene expression related to bone resorption, suggesting that ASC-EVs are highly promising as cell-free therapeutic agents for osteoporosis treatment.
Collapse
Affiliation(s)
- Kyoung Soo Lee
- Department of Materials Science and Chemical EngineeringHanyang University ERICAAnsanKorea
- Exostemtech, Inc.AnsanKorea
| | - Jeongmi Lee
- School of PharmacySungkyunkwan UniversitySuwonKorea
| | | | | | | | | | - Ye Eun Yun
- Department of Materials Science and Chemical EngineeringHanyang University ERICAAnsanKorea
| | | | - Jihoon Han
- School of PharmacySungkyunkwan UniversitySuwonKorea
| | - Eunae Kim
- School of PharmacySungkyunkwan UniversitySuwonKorea
| | - Jae Hoon Sul
- School of PharmacySungkyunkwan UniversitySuwonKorea
| | - Jae Min Jung
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan UniversitySuwonKorea
| | - Jae Hyung Park
- Exostemtech, Inc.AnsanKorea
- School of Chemical EngineeringCollege of EngineeringSungkyunkwan UniversitySuwonKorea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonKorea
- Department of Health Science and TechnologySAIHSTSungkyunkwan UniversitySeoulKorea
| | | | - Yong Woo Cho
- Department of Materials Science and Chemical EngineeringHanyang University ERICAAnsanKorea
- Exostemtech, Inc.AnsanKorea
| | - Dong‐Gyu Jo
- Exostemtech, Inc.AnsanKorea
- School of PharmacySungkyunkwan UniversitySuwonKorea
- Biomedical Institute for ConvergenceSungkyunkwan UniversitySuwonKorea
- Department of Health Science and TechnologySAIHSTSungkyunkwan UniversitySeoulKorea
| |
Collapse
|
12
|
Yu J, Xiao M, Ren G. Long non-coding RNA XIST promotes osteoporosis by inhibiting the differentiation of bone marrow mesenchymal stem cell by sponging miR-29b-3p that suppresses nicotinamide N-methyltransferase. Bioengineered 2021; 12:6057-6069. [PMID: 34486487 PMCID: PMC8806730 DOI: 10.1080/21655979.2021.1967711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Bone formation is important in the development of osteoporosis (OP). X–inactive specific transcript (XIST), a lncRNA, is involved in this process; however, mode of its action is not known. We compared the serum levels of XIST and miR-29b-3p among the patients with and without OP. In rat bone marrow mesenchymal stem cells (BMSCs), during osteogenic differentiation, XIST expression was detected first, followed by overexpression or suppression of miR-29b-3p and NNMT. Expression of osteogenic genes, ALP (electrochemical alkaline phosphatase) and RUNX2 (Runt-related transcription factor 2) were detected by RT-qPCR and western blots, and the calcium nodules in BMSCs were detected by staining. The relationships of XIST, miR-29b-3p, and NNMT were characterized by dual-luciferase reporter assay. Serum XIST was significantly upregulated in patients of OP. XIST downregulated the ALP and Runx2 levels and inhibited calcium nodules, whereas low expression of XIST reversed these events. MiR-29b-3p was inhibited by XIST sponge and lowered the levels of ALP, Runx2, and calcium nodules. NNMT was negatively regulated by miR-29b-3p, promoting the osteogenic differentiation of BMSCs. In conclusion, XIST is highly expressed in OP, and regulates NNMT by sponging miR-29b-3p to suppress the osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Jiang Yu
- Department of Orthopedics Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Min Xiao
- Department of Internal Schistosomiasis Ward, Wuhan Daishan Hospital, Wuhan, China
| | - Guohai Ren
- Department of Orthopedics Surgery, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
13
|
MicroRNAs as Potential Biomarkers in Pituitary Adenomas. Noncoding RNA 2021; 7:ncrna7030055. [PMID: 34564317 PMCID: PMC8482103 DOI: 10.3390/ncrna7030055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Pituitary adenomas (PAs) are one of the most common lesions of intracranial neoplasms, occurring in approximately 15% of the general population. They are typically benign, although some adenomas show aggressive behavior, exhibiting rapid growth, drug resistance, and invasion of surrounding tissues. Despite ongoing improvements in diagnostic and therapeutic strategies, late first diagnosis is common, and patients with PAs are prone to relapse. Therefore, earlier diagnosis and prevention of recurrence are of importance to improve patient care. MicroRNAs (miRNAs) are short non-coding single stranded RNAs that regulate gene expression at the post-transcriptional level. An increasing number of studies indicate that a deregulation of their expression patterns is related with pituitary tumorigenesis, suggesting that these small molecules could play a critical role in contributing to tumorigenesis and the onset of these tumors by acting either as oncosuppressors or as oncogenes, depending on the biological context. This paper provides an overview of miRNAs involved in PA tumorigenesis, which might serve as novel potential diagnostic and prognostic non-invasive biomarkers, and for the future development of miRNA-based therapeutic strategies for PAs.
Collapse
|
14
|
Zhang H, Song X, Teng Z, Cheng S, Yu W, Yao X, Song Z, Zhang Y. Key circular RNAs identified in male osteoporosis patients by whole transcriptome sequencing. PeerJ 2021; 9:e11420. [PMID: 34123587 PMCID: PMC8164409 DOI: 10.7717/peerj.11420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background Osteoporosis (OP) is a systemic disease with bone loss and microstructural deterioration. Numerous noncoding RNAs (ncRNAs) have been proved to participate in various diseases, especially circular RNAs (circRNAs). However, the expression profile and mechanisms underlying circRNAs in male osteoporosis have not yet been explored. Methods The whole transcriptome expression profile and differences in mRNAs, circRNAs, and microRNAs (miRNAs) were investigated in peripheral blood samples of patients with osteoporosis and healthy controls consisting of males ≥ 60-years-old. Results A total of 398 circRNAs, 51 miRNAs, and 642 mRNAs were significantly and differentially expressed in osteoporosis compared to healthy controls. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the host genes of significantly differentially expressed circRNAs were mainly enriched in the regulation of cell cycle process: biological process (BP), organelle part cellular components (CC), protein binding molecular function (MF), Toll-like receptor signaling pathway, tumor necrosis factor (TNF) signaling pathway, and thyroid hormone signaling pathway. circRNA-miRNA-mRNA regulatory network was constructed using the differentially expressed RNAs. Moreover, key circRNAs (hsa_circ_0042409) in osteoporosis were discovered and validated by qPCR. Conclusions The key cicrRNAs plays a major role in the pathogenesis of osteoporosis and could be used as potential biomarkers or targets in the diagnosis and treatment of osteoporosis.
Collapse
Affiliation(s)
- Haijin Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xue Song
- Harbin North people's Hospital, Harbin, China
| | - Zongyan Teng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sujun Cheng
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Weigang Yu
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyi Yao
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiqiang Song
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yina Zhang
- Department of Geriatrics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
15
|
Liu H, Wang YW, Chen WD, Dong HH, Xu YJ. Iron accumulation regulates osteoblast apoptosis through lncRNA XIST/miR-758-3p/caspase 3 axis leading to osteoporosis. IUBMB Life 2021; 73:432-443. [PMID: 33336851 DOI: 10.1002/iub.2440] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022]
Abstract
Postmenopausal osteoporosis (PMOP) is mainly caused by multiple factors. Recent studies have suggested that iron accumulation (IA) was closely related to PMOP. However, the detailed molecular mechanisms have not been well demonstrated. We constructed the IA mouse model by intraperitoneal injections of ferric ammonium citrate (FAC) and cell model by culturing with the medium containing FAC. Osteoporosis was confirmed in mouse bone tissues using H&E staining, and the level of serum ferritin, alkaline phosphatase (ALP), procollagen-1 N-terminal peptide (P1NP), and osteocalcin in mice was examined by ELISA. The expressions of XIST and miR-758-3p were detected by qRT-PCR. Cell proliferation and apoptosis were measured by CCK-8, TUNEL, and flow cytometry. The expression levels of apoptotic-related proteins were evaluated by western blot. Dual luciferase reporter assay was used to examine the molecular interaction. The expressions of ALP, P1NP, and osteocalcin, and the H&E staining of bone tissues in mice were analyzed to confirm the biological function of XIST and miR-758-3p in vivo. XIST was up-regulated while miR-758-3p was down-regulated in IA mouse and cell models. XIST knockdown significantly reduced FAC-induced osteoblast apoptosis, which was mimicked by transfection with miR-758-3p mimics. XIST acted as a sponge of miR-758-3p, which targeted caspase 3. IA led to the high expression of XIST and promoted osteoblast apoptosis through miR-758-3p/caspase 3. Transfection with shXIST or miR-758-3p mimics alleviated IA-induced mouse osteoporosis. IA regulated osteoblast apoptosis through XIST/miR-758-3p/caspase 3 axis, which might provide alternative targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Hu Liu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Yu-Wu Wang
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Wei-Dong Chen
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - Hong-Hua Dong
- Department of Orthopedics, Yancheng Third People's Hospital, Yancheng, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
de Nigris F, Ruosi C, Colella G, Napoli C. Epigenetic therapies of osteoporosis. Bone 2021; 142:115680. [PMID: 33031975 DOI: 10.1016/j.bone.2020.115680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 12/29/2022]
Abstract
The study of epigenetics reaches its 50th anniversary, however, its clinical application is gradually coming into the clinical setting. Osteoporosis is one of the major and widely diffused bone diseases. Pathogenic mechanisms at the epigenetic level may interfere with bone remodeling occurring during osteoporosis. Preclinical models were used to understand whether such events may interfere with the disease. Besides, observational clinical trials investigated epigenetic-related biomarkers. This effort leads to some epigenetic-related therapies in clinical trials for the treatment of osteoporosis. Bisphosphonates (BPs), target therapy blocking RANK/RANKL pathway, and anti-sclerostin antibody (SOST) are the main therapeutic approaches. However, future large trials will reveal whether epigenetic therapies of osteoporosis will remain a work in progress or data will become more robust in the real-world management of these frailty patients.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Carlo Ruosi
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Gianluca Colella
- Department of Public Health, Federico II University, 80132 Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; IRCCS SDN, 80134 Naples, Italy
| |
Collapse
|
17
|
Brzeszczyńska J, Brzeszczyński F, Hamilton DF, McGregor R, Simpson AHRW. Role of microRNA in muscle regeneration and diseases related to muscle dysfunction in atrophy, cachexia, osteoporosis, and osteoarthritis. Bone Joint Res 2020; 9:798-807. [PMID: 33174473 PMCID: PMC7672326 DOI: 10.1302/2046-3758.911.bjr-2020-0178.r1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have emerged as potential predictive, prognostic, and therapeutic biomarkers, relevant to many pathophysiological conditions including limb immobilization, osteoarthritis, sarcopenia, and cachexia. Impaired musculoskeletal homeostasis leads to distinct muscle atrophies. Understanding miRNA involvement in the molecular mechanisms underpinning conditions such as muscle wasting may be critical to developing new strategies to improve patient management. MicroRNAs are powerful post-transcriptional regulators of gene expression in muscle and, importantly, are also detectable in the circulation. MicroRNAs are established modulators of muscle satellite stem cell activation, proliferation, and differentiation, however, there have been limited human studies that investigate miRNAs in muscle wasting. This narrative review summarizes the current knowledge as to the role of miRNAs in the skeletal muscle differentiation and atrophy, synthesizing the findings of published data. Cite this article: Bone Joint Res 2020;9(11):798-807.
Collapse
Affiliation(s)
- Joanna Brzeszczyńska
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biophysics, University of Lodz, Lodz, Poland
| | | | - David F Hamilton
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - Robin McGregor
- Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan, South Korea
| | | |
Collapse
|
18
|
Donati S, Ciuffi S, Marini F, Palmini G, Miglietta F, Aurilia C, Brandi ML. Multiple Endocrine Neoplasia Type 1: The Potential Role of microRNAs in the Management of the Syndrome. Int J Mol Sci 2020; 21:ijms21207592. [PMID: 33066578 PMCID: PMC7589704 DOI: 10.3390/ijms21207592] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a rare inherited tumor syndrome, characterized by the development of multiple neuroendocrine tumors (NETs) in a single patient. Major manifestations include primary hyperparathyroidism, gastro-entero-pancreatic neuroendocrine tumors, and pituitary adenomas. In addition to these main NETs, various combinations of more than 20 endocrine and non-endocrine tumors have been described in MEN1 patients. Despite advances in diagnostic techniques and treatment options, which are generally similar to those of sporadic tumors, patients with MEN1 have a poor life expectancy, and the need for targeted therapies is strongly felt. MEN1 is caused by germline heterozygous inactivating mutations of the MEN1 gene, which encodes menin, a tumor suppressor protein. The lack of a direct genotype–phenotype correlation does not permit the determination of the exact clinical course of the syndrome. One of the possible causes of this lack of association could be ascribed to epigenetic factors, including microRNAs (miRNAs), single-stranded non-coding small RNAs that negatively regulate post-transcriptional gene expression. Some miRNAs, and their deregulation, have been associated with MEN1 tumorigenesis. Recently, an extracellular class of miRNAs has also been identified (c-miRNAs); variations in their levels showed association with various human diseases, including tumors. The aim of this review is to provide a general overview on the involvement of miRNAs in MEN1 tumor development, to be used as possible targets for novel molecular therapies. The potential role of c-miRNAs as future non-invasive diagnostic and prognostic biomarkers of MEN1 will be discussed as well.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Francesca Miglietta
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Cinzia Aurilia
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (F.M.); (G.P.); (F.M.); (C.A.)
- Unit of Bone and Mineral Diseases, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy
- Fondazione Italiana Ricerca Sulle Malattie Dell’Osso (FIRMO Onlus), 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-7946304
| |
Collapse
|
19
|
Comprehensive Analysis of Differentially Expressed Circular RNAs in Patients with Senile Osteoporotic Vertebral Compression Fracture. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4951251. [PMID: 33083467 PMCID: PMC7556071 DOI: 10.1155/2020/4951251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022]
Abstract
Aim Circular RNAs (circRNAs) have been found to contribute to the regulation of many diseases and are abundantly expressed in various organisms. The present study is aimed at systematically characterizing the circRNA expression profiles in patients with senile osteoporotic vertebral compression fracture (OVCF) and predicting the potential functions of the regulatory networks correlated with these differentially expressed circRNAs. Methods The circRNA expression profile in patients with senile OVCF was explored by using RNA sequencing. The prediction of the enriched signaling pathways and circRNA-miRNA networks was conducted by bioinformatics analysis. Real-time quantitative PCR was used to validate the selected differentially expressed circRNAs from 20 patients with senile OVCF relative to 20 matched healthy controls. Results A total of 884 differentially expressed circRNAs were identified, of which 554 were upregulated and 330 were downregulated. The top 15 signaling pathways associated with these differentially expressed circRNAs were predicted. The result of qRT-PCR of the selected circRNAs was consistent with RNA sequencing. Conclusions CircRNAs are differentially expressed in patients with senile OVCF, which might contribute to the pathophysiological mechanism of senile osteoporosis.
Collapse
|
20
|
Xu X, Zhang P, Li X, Liang Y, Ouyang K, Xiong J, Wang D, Duan L. MicroRNA expression profiling in an ovariectomized rat model of postmenopausal osteoporosis before and after estrogen treatment. Am J Transl Res 2020; 12:4251-4263. [PMID: 32913502 PMCID: PMC7476138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Postmenopausal osteoporosis (PMOP) is a common disease that seriously threatens human health. Estrogen deficiency plays an essential role in the pathogenesis of PMOP. MicroRNAs (miRNAs) are involved in the development and progression of PMOP. Therefore, identification of miRNAs in PMOP due to estrogen deficiency may contribute to earlier diagnosis and better treatment of this disease. The rat model of PMOP was established by ovariectomy. After one month of treatment, the knee joints were evaluated by microcomputed tomography and histological analysis. The plasma estrogen levels were quantified by enzyme-linked immunosorbent assays (ELISAs). MiRNA levels were analyzed by high-throughput sequencing and validated using quantitative real-time PCR (qRT-PCR). Two months after ovariectomy, osteoporosis occurred in the subchondral bone of the rats in the PMOP group, while fewer symptoms of osteoporosis occurred in the subchondral bone of the rats with estrogen replacement therapy. Cartilage degeneration was detected in the PMOP group. MiR-29a-3p, miR-93-5p, and miR-486 expression decreased in the PMOP group compared to the control group. After estrogen treatment for one month, the plasma levels of miR-29a-3p, miR-93-5p, and miR-486 recovered to the normal levels. Estrogen eliminated the expression changes in miR-29a-3p, miR-93-5p, and miR-486. The identification of these differentially expressed miRNAs will help elucidate the crucial role of miRNAs in the pathogenesis of PMOP. Our data could lead to the potential utilization of miRNAs in the diagnosis of PMOP and provide a possible therapeutic target for treatment of this disease.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Peng Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhen 518055, Guangdong, China
| | - Xingfu Li
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
- Guangzhou Medical UniversityGuangzhou 511436, Guangdong Province, China
| | - Yujie Liang
- Shenzhen Kangning Hospital, Shenzhen Mental Health CenterShenzhen 518035, Guangdong Province, China
| | - Kan Ouyang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Daping Wang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| | - Li Duan
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Artificial Intelligence Biomedical Innovation Platform, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University Health Science CenterShenzhen 518035, Guangdong, China
| |
Collapse
|
21
|
Donati S, Ciuffi S, Palmini G, Brandi ML. Circulating miRNAs: A New Opportunity in Bone Fragility. Biomolecules 2020; 10:biom10060927. [PMID: 32570976 PMCID: PMC7355961 DOI: 10.3390/biom10060927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis, one of the leading causes of bone fractures, is characterized by low bone mass and structural deterioration of bone tissue, which are associated with a consequent increase in bone fragility and predisposition to fracture. Current screening tools are limited in estimating the proper assessment of fracture risk, highlighting the need to discover novel more suitable biomarkers. Genetic and environmental factors are both implicated in this disease. Increasing evidence suggests that epigenetics and, in particular, miRNAs, may represent a link between these factors and an increase of fracture risk. miRNAs are a class of small noncoding RNAs that negatively regulate gene expression. In the last decade, several miRNAs have been associated with the development of osteoporosis and bone fracture risk, opening up new possibilities in precision medicine. Recently, these molecules have been identified in several biological fluids, and the possible existence of a circulating miRNA (c-miRNA) signature years before the fracture occurrence is suggested. The aim of this review is to provide an overview of the c-miRNAs suggested as promising biomarkers for osteoporosis up until now, which could be helpful for early diagnosis and monitoring of treatment response, as well as fracture risk assessment, in osteoporotic patients.
Collapse
Affiliation(s)
- Simone Donati
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (G.P.)
| | - Simone Ciuffi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (G.P.)
| | - Gaia Palmini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (G.P.)
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Study of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (S.D.); (S.C.); (G.P.)
- Unit of Bone and Mineral Diseases, University Hospital of Florence, Largo Palagi 1, 50139 Florence, Italy
- Correspondence: ; Tel.: +39-055-7946304; Fax: +39-055-7946303
| |
Collapse
|
22
|
Bottani M, Banfi G, Lombardi G. The Clinical Potential of Circulating miRNAs as Biomarkers: Present and Future Applications for Diagnosis and Prognosis of Age-Associated Bone Diseases. Biomolecules 2020; 10:E589. [PMID: 32290369 PMCID: PMC7226497 DOI: 10.3390/biom10040589] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis, related fracture/fragility, and osteoarthritis are age-related pathologies that, over recent years, have seen increasing incidence and prevalence due to population ageing. The diagnostic approaches to these pathologies suffer from limited sensitivity and specificity, also in monitoring the disease progression or treatment. For this reason, new biomarkers are desirable for improving the management of osteoporosis and osteoarthritis patients. The non-coding RNAs, called miRNAs, are key post-transcriptional factors in bone homeostasis, and promising circulating biomarkers for pathological conditions in which to perform a biopsy can be problematic. In fact, miRNAs can easily be detected in biological fluids (i.e., blood, serum, plasma) using methods with elevated sensitivity and specificity (RT-qPCR, microarray, and NGS). However, the analytical phases required for miRNAs' evaluation still present some practical issues that limit their use in clinical practice. This review reveals miRNAs' potential as circulating biomarkers for evaluating predisposition, diagnosis, and prognosis of osteoporosis (postmenopausal or idiopathic), bone fracture/fragility, and osteoarthritis, with a focus on pre-analytical, analytical, and post-analytical protocols used for their validation and thus on their clinical applicability. These evidences may support the definition of early diagnostic tools based on circulating miRNAs for bone diseases and osteoarthritis as well as for monitoring the effects of specific treatments.
Collapse
Affiliation(s)
- Michela Bottani
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
| | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Vita-Salute San Raffaele University, 20132 Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161 Milano, Italy; (M.B.); (G.B.)
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| |
Collapse
|
23
|
Kim JM, Lee WS, Kim J. Therapeutic strategy for atherosclerosis based on bone-vascular axis hypothesis. Pharmacol Ther 2020; 206:107436. [DOI: 10.1016/j.pharmthera.2019.107436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2019] [Indexed: 12/19/2022]
|
24
|
Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as Epigenetic Markers in Osteoporosis and Bone Fracture Risk: A Step Forward in Personalized Diagnosis. Front Genet 2019; 10:1044. [PMID: 31737038 PMCID: PMC6831724 DOI: 10.3389/fgene.2019.01044] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with an increased incidence of age-related bone diseases. Current diagnostics (e.g., conventional radiology, biochemical markers), because limited in specificity and sensitivity, can distinguish between healthy or osteoporotic subjects but they are unable to discriminate among different underlying causes that lead to the same bone pathological condition (e.g., bone fracture risk). Among recent, more sensitive biomarkers, miRNAs — the non-coding RNAs involved in the epigenetic regulation of gene expression, have emerged as fundamental post-transcriptional modulators of bone development and homeostasis. Each identified miRNA carries out a specific role in osteoblast and osteoclast differentiation and functional pathways (osteomiRs). miRNAs bound to proteins or encapsulated in exosomes and/or microvesicles are released into the bloodstream and biological fluids where they can be detected and measured by highly sensitive and specific methods (e.g., quantitative PCR, next-generation sequencing). As such, miRNAs provide a prompt and easily accessible tool to determine the subject-specific epigenetic environment of a specific condition. Their use as biomarkers opens new frontiers in personalized medicine. While miRNAs circulating levels are lower than those found in the tissue/cell source, their quantification in biological fluids may be strategic in the diagnosis of diseases that affect tissues, such as bone, in which biopsy may be especially challenging. For a biomarker to be valuable in clinical practice and support medical decisions, it must be (easily) measurable, validated by independent studies, and strongly and significantly associated with a disease outcome. Currently, miRNAs analysis does not completely satisfy these criteria, however. Starting from in vitro and in vivo observations describing their biological role in bone cell development and metabolism, this review describes the potential use of bone-associated circulating miRNAs as biomarkers for determining predisposition, onset, and development of osteoporosis and bone fracture risk. Moreover, the review focuses on their clinical relevance and discusses the pre-analytical, analytical, and post-analytical issues in their measurement, which still limits their routine application. Taken together, research and clinical findings may be helpful for creating miRNA-based diagnostic tools in the diagnosis and treatment of bone diseases.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Vita-Salute San Raffaele University, Milano, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Moelcular Biology, Milano, Italy.,Department of Physiology & Pharmacology, Gdańsk University of Physical Education & Sport, Gdańsk, Poland
| |
Collapse
|
25
|
Parveen B, Parveen A, Vohora D. Biomarkers of Osteoporosis: An Update. Endocr Metab Immune Disord Drug Targets 2019; 19:895-912. [DOI: 10.2174/1871530319666190204165207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/16/2018] [Accepted: 01/19/2019] [Indexed: 02/06/2023]
Abstract
Background:
Osteoporosis, characterized by compromised bone quality and strength is
associated with bone fragility and fracture risk. Biomarkers are crucial for the diagnosis or prognosis
of a disease as well as elucidating the mechanism of drug action and improve decision making.
Objective:
An exhaustive description of traditional markers including bone mineral density, vitamin D,
alkaline phosphatase, along with potential markers such as microarchitectural determination, trabecular
bone score, osteocalcin, etc. is provided in the current piece of work. This review provides insight into
novel pathways such as the Wnt signaling pathway, neuro-osseous control, adipogenic hormonal imbalance,
gut-bone axis, genetic markers and the role of inflammation that has been recently implicated
in osteoporosis.
Methods:
We extensively reviewed articles from the following databases: PubMed, Medline and Science
direct. The primary search was conducted using a combination of the following keywords: osteoporosis,
bone, biomarkers, bone turnover markers, diagnosis, density, architecture, genetics, inflammation.
Conclusion:
Early diagnosis and intervention delay the development of disease and improve treatment
outcome. Therefore, probing for novel biomarkers that are able to recognize people at high risk for
developing osteoporosis is an effective way to improve the quality of life of patients and to understand
the pathomechanism of the disease in a better way.
Collapse
Affiliation(s)
- Bushra Parveen
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi-10062, India
| | - Abida Parveen
- Department of Clinical Research, School of Interdisciplinary Sciences, Jamia Hamdard, New-Delhi-10062, India
| | - Divya Vohora
- Department of Pharmacology, Pharmaceutical Medicine, School of Pharmaceutical Education and Research, Jamia Hamdard, New-Delhi-10062, India
| |
Collapse
|
26
|
Mohamad N, Nabih ES, Zakaria ZM, Nagaty MM, Metwaly RG. Insight into the possible role of miR-214 in primary osteoporosis via osterix. J Cell Biochem 2019; 120:15518-15526. [PMID: 31056782 DOI: 10.1002/jcb.28818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Osteoporosis is a bone disease characterized by chronic pain and recurrent fractures. Osterix is a transcription factor regulating bone formation. miR-214 was found to have a role in skeletogenesis. Our goal was to investigate the possible role of miR-214 in primary osteoporosis through osterix. Their expression was determined in bone samples obtained from primary osteoporotic patients (n = 26) and age- and sex-matched controls (n = 14). Additionally, their expression was correlated to the laboratory and clinical parameters of the study participants. Differential expression of osterix and miR-214 was detected in the osteoporotic group compared to controls. While miR-214 was significantly higher, osterix was significantly lower. In primary osteoporotic patients, relative quantification value of osterix was positively correlated with sex, body mass index, and ionized calcium and negatively correlated with miR-214 and C-reactive protein. Thus, the role of miR-214 in primary osteoporosis could be through inhibiting osterix expression in bones and therefore both miR-214 and osterix could be targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Nesma Mohamad
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Enas S Nabih
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Zeiad M Zakaria
- Orthopedic Surgery and Traumatology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Magda M Nagaty
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Radwan G Metwaly
- Orthopedic Surgery and Traumatology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
27
|
Karam N, Lavoie JF, St-Jacques B, Bouhanik S, Franco A, Ladoul N, Moreau A. Bone-Specific Overexpression of PITX1 Induces Senile Osteoporosis in Mice Through Deficient Self-Renewal of Mesenchymal Progenitors and Wnt Pathway Inhibition. Sci Rep 2019; 9:3544. [PMID: 30837642 PMCID: PMC6401072 DOI: 10.1038/s41598-019-40274-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
The cellular and molecular mechanisms underlying senile osteoporosis remain poorly understood. In this study, transgenic mCol1α1-Pitx1 mice overexpressing paired-like homeodomain 1 (PITX1), a homeobox transcription factor, rapidly develop a severe type-II osteoporotic phenotype with significant reduction in bone mass and biomechanical strength similar to that seen in humans and reminiscent of the phenotype previously observed in Sca-1 (Ly6a)-null mice. PITX1 plays a critical role in hind limb formation during fetal development, while loss of expression is associated with primary knee/hip osteoarthritis in aging humans. Through in vivo and in vitro analyses, we demonstrate that Pitx1 directly regulates the self-renewal of mesenchymal progenitors and indirectly regulates osteoclast differentiation through the upregulation of Wnt signaling inhibitors DKK1, SOST, and GSK3-β. This is confirmed by elevated levels of plasma DKK1 and the accumulation of phospho-β-catenin in transgenic mice osteoblasts. Furthermore, overexpressed Pitx1 in mice osteoblasts results in severe repression of Sca-1 (Ly6a) that was previously associated with senile osteoporosis. Our study is the first to demonstrate the novel roles of PITX1 in senile osteoporosis where PITX1 regulates the self-renewal of mesenchymal stem cells or progenitor cells through Sca-1 (Ly6a) repression and, in addition, inhibits the Wnt signaling pathway.
Collapse
Affiliation(s)
- Nancy Karam
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Jean-François Lavoie
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Benoit St-Jacques
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Saadallah Bouhanik
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Anita Franco
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada
| | - Nihad Ladoul
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada.,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Alain Moreau
- Viscogliosi Laboratory in Molecular Genetics of Musculoskeletal Diseases, Sainte-Justine University Hospital Research Center, Montréal, Québec, H3T 1C5, Canada. .,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada. .,Department of Stomatology, Faculty of Dentistry, Université de Montréal, Montréal, Québec, H3T 1J4, Canada.
| |
Collapse
|
28
|
van Meurs JB, Boer CG, Lopez-Delgado L, Riancho JA. Role of Epigenomics in Bone and Cartilage Disease. J Bone Miner Res 2019; 34:215-230. [PMID: 30715766 DOI: 10.1002/jbmr.3662] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
Phenotypic variation in skeletal traits and diseases is the product of genetic and environmental factors. Epigenetic mechanisms include information-containing factors, other than DNA sequence, that cause stable changes in gene expression and are maintained during cell divisions. They represent a link between environmental influences, genome features, and the resulting phenotype. The main epigenetic factors are DNA methylation, posttranslational changes of histones, and higher-order chromatin structure. Sometimes non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are also included in the broad term of epigenetic factors. There is rapidly expanding experimental evidence for a role of epigenetic factors in the differentiation of bone cells and the pathogenesis of skeletal disorders, such as osteoporosis and osteoarthritis. However, different from genetic factors, epigenetic signatures are cell- and tissue-specific and can change with time. Thus, elucidating their role has particular difficulties, especially in human studies. Nevertheless, epigenomewide association studies are beginning to disclose some disease-specific patterns that help to understand skeletal cell biology and may lead to development of new epigenetic-based biomarkers, as well as new drug targets useful for treating diffuse and localized disorders. Here we provide an overview and update of recent advances on the role of epigenomics in bone and cartilage diseases. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Lopez-Delgado
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Jose A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| |
Collapse
|
29
|
Liu F, Wang Z, Liu F, Xu J, Liu Q, Yin K, Lan J. MicroRNA-29a-3p enhances dental implant osseointegration of hyperlipidemic rats via suppressing dishevelled 2 and frizzled 4. Cell Biosci 2018; 8:55. [PMID: 30386554 PMCID: PMC6203977 DOI: 10.1186/s13578-018-0254-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Background Fine osseointegration is the basis of long-term survival of implant. In our previous study, we observed a strong correlation between hyperlipidemia and compromised osseointegration. MicroRNA-29a-3p (miR-29a-3p) has been discovered to participate in bone marrow mesenchymal stem cells (BMSCs) differentiation. However, the role and the underlying mechanisms of hyperlipidemia and miR-29a-3p in osseointegration still remain obscure. Results In peri-implant bone tissues of hyperlipidemia rats, bone mass, mineralization and bone trabecula formation were weakened. Alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2), and miR-29a-3p expression were reduced. While in normal rats, implant-bone interfaces were filled with dense new bone and ALP, Runx2 and miR-29a-3p were up-regulated. Overexpressed miR-29a-3p can reverse the adverse effect of hyperlipidemia on osseointegration. Implants were tightly integrated with the surrounding dense new bone tissues, and ALP as well as Runx2 mRNAs were enhanced in miR-29a-3p overexpressed and hyperlipidemia rats, while little peri-implant bone tissue existed, ALP and Runx2 deregulated on miR-29a-3p inhibited rats. Dishevelled 2 (Dvl2) mRNA was declined in peri-implant bone tissue of high-fat (HF) group than normal group, while frizzled 4 (Fzd4) mRNA declined on day 5 and increased from day 10 to day 20 after implantation in hyperlipidemia rats than in normal rats. Next, BMSCs were cultured under HF or normal medium in vitro. In the HF group, ALP activity and mineralization, ALP and Runx2 mRNAs and proteins expression, and miR-29a-3p expression were suppressed, while adipogenesis was increased, as a result, cytoskeletons were sparse and disordered compared to control group. However, when miR-29a-3p was overexpressed in BMSCs, ALP activity, ALP, Runx2, Dvl2 and Fzd4 mRNAs and proteins expressions were up-regulated. As miR-29a-3p was inhibited in BMSCs, the reverse results were obtained. In addition, promoter assay revealed that miR-29a-3p can directly suppress Wnt/β-catenin pathway related Dvl2 and Fzd4 through binding to their 3'-UTR. Conclusions MiR-29a-3p facilitated implant osseointegration via targeting Wnt/β-catenin pathway-related Dvl2 and Fzd4. MiR-29a-3p/Dvl2/Fzd4 may serve as a promising therapeutic target for hyperlipidemia osseointegration.
Collapse
Affiliation(s)
- Fei Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Zhifeng Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Fangfang Liu
- Department of Implantology, Stomatological Hospital of Nanyang, Nanyang, 473000 China
| | - Jinzhao Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,3Department of Pediatric Dentistry, School of Stomatology, Shandong University, Jinan, 250000 China
| | - Qibo Liu
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China
| | - Kaifeng Yin
- 4Department of Orthodontics, Herman Ostrow School of Dentistry, Los Angeles, CA 90089 USA.,5Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, Los Angeles, 90033 USA
| | - Jing Lan
- 1Department of Prosthodontics, School of Stomatology, Shandong University, Jinan, 250000 China.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, 44-1 West Wenhua Street, Jinan, 250012 Shandong China.,7Department of Prosthodontics, School of Dentistry, Shandong University, Jinan, China
| |
Collapse
|