1
|
Wang Y, Qin Y, Wu C, Chen J, Zhang Y, Chen Y, Xie X, Gao X, Sun C, Liu S. OSU-T315 overcomes immunosuppression in triple-negative breast cancer by targeting the ILK/NF-κB signaling pathway to enhance immunotherapeutic efficacy. Int Immunopharmacol 2024; 143:113530. [PMID: 39515039 DOI: 10.1016/j.intimp.2024.113530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Triple negative breast cancer (TNBC) is an aggressive and immunogenic subtype of breast cancer. The absence of biomarker has given immune checkpoint inhibitors (ICIs) a broad prospect in this type of breast cancer. The infiltration of regulatory T cells (Tregs) expressing transcription factor forkhead box P3 (Foxp3) in the tumor microenvironment (TME) is the key factor leading to ICIs resistance. Therefore, elimination of tumor antigen-specific Tregs may be an important aspect of improving ICIs efficacy. In this study, it based on the Gene Expression Omnibus and The Cancer Genome Atlas database, along with in vivo and in vitro experimental models, to verified that the high expression of integrin-linked kinase (ILK) in TNBC is the key differential factor leading to the high infiltration of Foxp3+-Tregs in the TME. Then, we selected ILK-specific inhibitor, OSU-T315, to intervene in vitro and vivo. Importantly, we found that OSU-T315 blocked the secretion of CCL17/CCL22 in tumor cells by inhibiting the ILK/NF-κB pathway, resulting in the apoptosis of Foxp3+-Tregs and decreased programmed cell death-1 (PD-1) expression. Therefore, our findings indicate a novel mechanism of OSU-T315 with potential therapeutic application in TNBC.
Collapse
Affiliation(s)
- Yi Wang
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China; Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuenong Qin
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Chunyu Wu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Jiajing Chen
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Yang Zhang
- Thyroid and Breast Surgery Department, Affiliated Hospital to Shandong University of Traditional Chinese Medicine, Shandong 250000, China
| | - Yueqiang Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaohong Xie
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Xiufei Gao
- Breast Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Zhejiang 310000, China
| | - Chenping Sun
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China.
| | - Sheng Liu
- Integrated Traditional Chinese and Western Medicine Breast Department, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Postgraduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Huang Z, Huang L, Ding J, Huang Y, Huang X, Li T. ILK inhibition reduces osteophyte formation through suppression of osteogenesis in BMSCs via Akt/GSK-3β/β-catenin pathway. Mol Biol Rep 2024; 51:421. [PMID: 38483756 DOI: 10.1007/s11033-024-09336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Osteophyte development is a common characteristic of inflammatory skeletal diseases. Elevated osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) participates in pathological osteogenesis. Integrin-linked kinase (ILK) positively regulates the osteoblastic differentiation of osteoprogenitors, but whether the ILK blockage prevents osteophytes and its potential mechanism is still unknown. Furthermore, the low-dose tumor necrosis factor-α (TNF-α) promotes osteogenic differentiation, but a lack of study reports on the relationship between this cytokine and ILK. OSU-T315 is a small ILK inhibitor, which was used to determine the effect of ILK inhibition on osteogenesis and osteophyte formation. METHODS AND RESULTS The osteogenesis of BMSCs was evaluated using Alizarin red S staining, alkaline phosphatase, collagen type I alpha 2 chain, and bone gamma-carboxyglutamate protein. The expression and phosphorylation of protein were assessed through western blot. Immunofluorescence was employed to display the distribution of β-catenin. microCT, hematoxylin-eosin, and safranin O/fast green staining were utilized to observe the osteophyte formation in collagen antibody-induced arthritis mice. We found that ILK blockage significantly declined calcium deposition and osteoblastic markers in a dose- and time-dependent manner. Furthermore, it lowered osteogenesis in the TNF-α-induced inflammatory microenvironment by diminishing the effect of ILK and inactivating the Akt/ GSK-3β/ β-catenin pathway. Nuclear β-catenin was descended by OSU-T315 as well. Finally, the ILK suppression restrained osteophyte formation but not inflammation in vivo. CONCLUSIONS ILK inhibition lowered osteogenesis in TNF-α-related inflammatory conditions by deactivating the Akt/ GSK-3β/ β-catenin pathway. This may be a potential strategy to alleviate osteophyte development in addition to anti-inflammatory treatment.
Collapse
Affiliation(s)
- Zhixiang Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Lixin Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
- Department of Rheumatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jiali Ding
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
- Guangdong Medical University, Zhanjiang, China
| | - Yukai Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Xuechan Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China
| | - Tianwang Li
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China.
- Department of Rheumatology and Immunology, Guangdong Second Provincial General Hospital, No. 466, Xingangzhong Road, Guangzhou, 510317, China.
- Guangdong Medical University, Zhanjiang, China.
- Department of Rheumatology and Immunology, Zhaoqing Central People's Hospital, Zhaoqing, China.
| |
Collapse
|
3
|
Hunt DWC, Ivanova IA, Dagnino L. DRM02, a novel phosphodiesterase-4 inhibitor with cutaneous anti-inflammatory activity. Tissue Barriers 2020; 8:1765633. [PMID: 32479135 DOI: 10.1080/21688370.2020.1765633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammatory skin disorders are frequently associated with impaired skin barrier function. Selective phosphodiesterase-4 (PDE4) inhibition constitutes an effective therapeutic strategy for the treatment of inflammatory skin diseases. We now report the pharmacological anti-inflammatory profile of DRM02, a novel pyrazolylbenzothiazole derivative with selective in vitro inhibitory activity toward PDE4 isoforms A, B and D. DRM02 treatment of cultured primary human and mouse epidermal keratinocytes interfered with pro-inflammatory cytokine production elicited by interleukin-1α and tumor necrosis factor-α. Similarly, DRM02 inhibited the production of pro-inflammatory cytokines by human peripheral blood mononuclear cells ex vivo and cultured THP-1 monocyte-like cells, with IC50 values of 0.6-14 µM. These anti-inflammatory properties of DRM02 were associated with dose-dependent repression of nuclear factor-κB (NF-κB) transcriptional activity. In skin inflammation in vivo mouse models, topically applied DRM02 inhibited the acute response to phorbol ester and induced Th2-type contact hypersensitivity reactivity. Further, DRM02 also decreased cutaneous clinical changes and expression of Th17 immune pathway cytokines in a mouse model of psoriasis evoked by repeated topical imiquimod application. Thus, the overall pharmacological profiling of the PDE4 inhibitor DRM02 has revealed its potential as a topical therapy for inflammatory skin disorders and restoration of skin homeostasis.
Collapse
Affiliation(s)
| | - Iordanka A Ivanova
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada.,Department of Oncology, University of Western Ontario , London, Canada
| |
Collapse
|