1
|
Hong S, Baek SH, Lai MKP, Arumugam TV, Jo DG. Aging-associated sensory decline and Alzheimer's disease. Mol Neurodegener 2024; 19:93. [PMID: 39633396 PMCID: PMC11616278 DOI: 10.1186/s13024-024-00776-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Multisensory decline is common as people age, and aging is the primary risk of Alzheimer's Disease (AD). Recent studies have begun to shed light on the possibility that age-related sensory decline could accelerate AD pathogenesis, or be a prodromal indicator of AD. Sensory impairments, specifically in taste and smell, often emerge before cognitive symptoms in AD, indicating their potential as early biomarkers. Olfactory dysfunction has been frequently associated with AD and may offer valuable insights into early detection. Hearing impairment is significantly associated with AD, but its causal impact on AD progression remains unclear. The review also discusses visual and tactile deficits in AD, including retinal thinning and changes in tactile perception, highlighting their links to disease progression. Focusing on molecular mechanisms, the review explores the roles of amyloid-β (Aβ) accumulation and tau protein pathology in sensory decline and their bidirectional relationship with AD. In summary, the evidence presented conclusively supports advocating for an integrated approach to understanding AD and sensory decline, to enhance early detection, implementing preventive strategies, and developing therapeutic interventions for AD. This approach underscores the significance of sensory health in addressing neurodegenerative diseases, particularly AD.
Collapse
Affiliation(s)
- Suji Hong
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Hyun Baek
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Mitchell K P Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, Singapore, 117600, Singapore
| | - Thiruma V Arumugam
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Centre for Cardiovascular Biology and Disease Research, La Trobe Institute for Molecular Science, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086, Australia.
| | - Dong-Gyu Jo
- The School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
- Biomedical Institute for Convergence at SKKU (BICS), Suwon, 16419, Republic of Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06355, Republic of Korea.
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Xu J, Sun Y, Zhu X, Pan S, Tong Z, Jiang K. Tactile discrimination as a diagnostic indicator of cognitive decline in patients with mild cognitive impairment: A narrative review. Heliyon 2024; 10:e31256. [PMID: 38803967 PMCID: PMC11129005 DOI: 10.1016/j.heliyon.2024.e31256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Background Tactile discrimination, a cognitive task reliant on fingertip touch for stimulus discrimination, encompasses the somatosensory system and working memory, with its acuity diminishing with advancing age. Presently, the evaluation of cognitive capacity to differentiate between individuals with early Alzheimer's disease (AD) and typical older adults predominantly relies on visual or auditory tasks, yet the efficacy of discrimination remains constrained. Aims To review the existing tactile cognitive tasks and explore the interaction between tactile perception and the pathological process of Alzheimer's disease. The tactile discrimination task may be used as a reference index of cognitive decline in patients with mild cognitive impairment and provide a new method for clinical evaluation. Methods We searched four databases (Embase, PubMed, Web of Science and Google scholar). The reference coverage was from 1936 to 2023. The search terms included "Alzheimer disease" "mild cognitive impairment" "tactile" "tactile discrimination" "tactile test" and so on. Reviews and experimental reports in the field were examined and the effectiveness of different types of tactile tasks was compared. Main results Individuals in the initial phases of Alzheimer's spectrum disease, specifically those in the stage of mild cognitive impairment (MCI), exhibit notable impairments in tasks involving tactile discrimination. These tasks possess certain merits, such as their quick and straightforward comparability, independence from educational background, and ability to circumvent the limitations associated with conventional cognitive assessment scales. Furthermore, tactile discrimination tasks offer enhanced accuracy compared to cognitive tasks that employ visual or auditory stimuli. Conclusions Tactile discrimination has the potential to serve as an innovative reference indicator for the swift diagnosis of clinical MCI patients, thereby assisting in the screening process on a clinical scale.
Collapse
Affiliation(s)
- Jinan Xu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuqi Sun
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xianghe Zhu
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Sipei Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhiqian Tong
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ke Jiang
- Center for Applied Psychological Research (Ningbo), School of Mental Health, Wenzhou Medical University, Cixi, 315300, China
- School of Mental Health, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China
- Center for Brain, Mind and Education, Shaoxing University, China
| |
Collapse
|
3
|
Elvira-Hurtado L, López-Cuenca I, de Hoz R, Salas M, Sánchez-Puebla L, Ramírez-Toraño F, Matamoros JA, Fernández-Albarral JA, Rojas P, Alfonsín S, Delgado-Losada ML, Ramírez AI, Salazar JJ, Maestu F, Gil P, Ramírez JM, Salobrar-García E. Alzheimer's disease: a continuum with visual involvements. Front Psychol 2023; 14:1124830. [PMID: 37484098 PMCID: PMC10359162 DOI: 10.3389/fpsyg.2023.1124830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is the most common form of dementia affecting the central nervous system, and alteration of several visual structures has been reported. Structural retinal changes are usually accompanied by changes in visual function in this disease. The aim of this study was to analyse the differences in visual function at different stages of the pathology (family history group (FH+), mild cognitive impairment (MCI), mild AD and moderate AD) in comparison with a control group of subjects with no cognitive decline and no family history of AD. Methods We included 53 controls, 13 subjects with FH+, 23 patients with MCI, 25 patients with mild AD and, 21 patients with moderate AD. All were ophthalmologically healthy. Visual acuity (VA), contrast sensitivity (CS), colour perception, visual integration, and fundus examination were performed. Results The analysis showed a statistically significant decrease in VA, CS and visual integration score between the MCI, mild AD and moderate AD groups compared to the control group. In the CS higher frequencies and in the colour perception test (total errors number), statistically significant differences were also observed in the MCI, mild AD and moderate AD groups with respect to the FH+ group and also between the control and AD groups. The FH+ group showed no statistically significant difference in visual functions compared to the control group. All the test correlated with the Mini Mental State Examination score and showed good predictive value when memory decline was present, with better values when AD was at a more advanced stage. Conclusion Alterations in visual function appear in subjects with MCI and evolve when AD is established, being stable in the initial stages of the disease (mild AD and moderate AD). Therefore, visual psychophysical tests are a useful, simple and complementary tool to neuropsychological tests to facilitate diagnosis in the preclinical and early stages of AD.
Collapse
Affiliation(s)
- Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Mario Salas
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - Federico Ramírez-Toraño
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pilar Rojas
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Madrid Eye Institute, Gregorio Marañón General University Hospital, Madrid, Spain
| | - Soraya Alfonsín
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - María Luisa Delgado-Losada
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Fernando Maestu
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Laboratory of Cognitive and Computational Neuroscience, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Department of Experimental Psychology, Cognitive Psychology and Speech and Language Therapy, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Pedro Gil
- Memory Unit, Geriatrics Service, Hospital Clínico San Carlos, Madrid, Spain
- Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Medicine, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid, Madrid, Spain
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Faculty of Optics and Optometry, Department of Immunology, Ophthalmology and ENT, University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Parka A, Volbracht C, Hall B, Bastlund JF, Nedergaard M, Laursen B, Botta P, Sotty F. Visual Evoked Potentials as an Early-Stage Biomarker in the rTg4510 Tauopathy Mouse Model. J Alzheimers Dis 2023; 93:247-262. [PMID: 37005884 DOI: 10.3233/jad-220964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Background: Tauopathies such as Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. Objective: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. Methods: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. Results: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. Conclusion: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Collapse
Affiliation(s)
- Aleksandra Parka
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Research, Valby, Denmark
| | | | | | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
5
|
Harris G, Rickard JJS, Butt G, Kelleher L, Blanch RJ, Cooper J, Oppenheimer PG. Review: Emerging Eye-Based Diagnostic Technologies for Traumatic Brain Injury. IEEE Rev Biomed Eng 2023; 16:530-559. [PMID: 35320105 PMCID: PMC9888755 DOI: 10.1109/rbme.2022.3161352] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Abstract
The study of ocular manifestations of neurodegenerative disorders, Oculomics, is a growing field of investigation for early diagnostics, enabling structural and chemical biomarkers to be monitored overtime to predict prognosis. Traumatic brain injury (TBI) triggers a cascade of events harmful to the brain, which can lead to neurodegeneration. TBI, termed the "silent epidemic" is becoming a leading cause of death and disability worldwide. There is currently no effective diagnostic tool for TBI, and yet, early-intervention is known to considerably shorten hospital stays, improve outcomes, fasten neurological recovery and lower mortality rates, highlighting the unmet need for techniques capable of rapid and accurate point-of-care diagnostics, implemented in the earliest stages. This review focuses on the latest advances in the main neuropathophysiological responses and the achievements and shortfalls of TBI diagnostic methods. Validated and emerging TBI-indicative biomarkers are outlined and linked to ocular neuro-disorders. Methods detecting structural and chemical ocular responses to TBI are categorised along with prospective chemical and physical sensing techniques. Particular attention is drawn to the potential of Raman spectroscopy as a non-invasive sensing of neurological molecular signatures in the ocular projections of the brain, laying the platform for the first tangible path towards alternative point-of-care diagnostic technologies for TBI.
Collapse
Affiliation(s)
- Georgia Harris
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Jonathan James Stanley Rickard
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Department of Physics, Cavendish LaboratoryUniversity of CambridgeCB3 0HECambridgeU.K.
| | - Gibran Butt
- Ophthalmology DepartmentUniversity Hospitals Birmingham NHS Foundation TrustB15 2THBirminghamU.K.
| | - Liam Kelleher
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
| | - Richard James Blanch
- Department of Military Surgery and TraumaRoyal Centre for Defence MedicineB15 2THBirminghamU.K.
- Neuroscience and Ophthalmology, Department of Ophthalmology, University Hospitals Birmingham NHS Foundation TrustcBirminghamU.K.
| | - Jonathan Cooper
- School of Biomedical EngineeringUniversity of GlasgowG12 8LTGlasgowU.K.
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical SciencesUniversity of BirminghamB15 2TTBirminghamU.K.
- Healthcare Technologies Institute, Institute of Translational MedicineB15 2THBirminghamU.K.
| |
Collapse
|
6
|
Yarns BC, Holiday KA, Carlson DM, Cosgrove CK, Melrose RJ. Pathophysiology of Alzheimer's Disease. Psychiatr Clin North Am 2022; 45:663-676. [PMID: 36396271 DOI: 10.1016/j.psc.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia worldwide. While neuritic plaques consisting of aggregated amyloid-beta proteins and neurofibrillary tangles of accumulated tau proteins represent the pathophysiologic hallmarks of AD, numerous processes likely interact with risk and protective factors and one's culture to produce the cognitive loss, neuropsychiatric symptoms, and functional impairments that characterize AD dementia. Recent biomarker and neuroimaging research has revealed how the pathophysiology of AD may lead to symptoms, and as the pathophysiology of AD gains clarity, more potential treatments are emerging that aim to modify the disease and relieve its burden.
Collapse
Affiliation(s)
- Brandon C Yarns
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA.
| | - Kelsey A Holiday
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA
| | - David M Carlson
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| | - Coleman K Cosgrove
- Department of Psychiatry, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA
| | - Rebecca J Melrose
- Psychiatry/Mental Health Service, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Building 401, Mail Code 116AE, Los Angeles, CA 90073, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, 757 Westwood Plaza #4, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Hokkinen K, Kaarniranta K, Jämsen E, Lampela P, Hartikainen S, Tolppanen A. Incidence of cataract surgeries in people with and without Alzheimer's disease. Acta Ophthalmol 2022; 100:68-73. [PMID: 33988311 DOI: 10.1111/aos.14896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the incidence of cataract surgeries in relation to Alzheimer's disease (AD) diagnosis and to compare it with that in people without AD. METHODS The MEDALZ-study includes community-dwelling Finnish persons who received clinically verified AD diagnoses (n = 70718) during 2005-2011 and a matched comparison cohort without AD (n = 70718). The cataract surgeries were identified from the Care Register for Healthcare (1996-2015) using NOMESCO surgical procedure codes CJE (10,15,20,25,99), CJF (00,10,20,30,40,45,50,55,99) and CJG (00,05,10,15,20,25,99). The incidence rates for surgeries per 100 person-years were calculated from 10 years before to 3 years after the index date (date of AD diagnosis from the Special Reimbursement Register). RESULTS 25 763 cataract procedures were performed on persons with AD and 26 254 on persons without AD during the follow-up. The incidence of surgery increased similarly in both groups before the index date of AD diagnosis, and the rate of surgery was similar in people with and without AD (3.5 and 3.3/100 person-years, respectively). The incidence diminished steeply in the AD group already one year after the index date, whereas the slow increase continued in the non-AD group. After the index date, the rates were 3.7 and 4.7/100 person-years in people with and without AD. CONCLUSION The diminishing surgery rate very soon after AD diagnosis is concerning. The stigma of AD diagnosis may lead to fewer referrals to surgery, although these patients are expected to benefit from surgery.
Collapse
Affiliation(s)
- Kaisa Hokkinen
- Kuopio Research Centre of Geriatric Care School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland and Kuopio University Hospital Kuopio Finland
| | - Esa Jämsen
- Faculty of Medicine and Health Technology and Gerontology Research Centre GEREC Tampere University, and Centre of Geriatrics Tampere University Hospital Tampere Finland
| | - Pasi Lampela
- Kuopio Research Centre of Geriatric Care University of Eastern Finland Kuopio Finland
- School of Pharmacy University of Eastern Finland, and Finnish Student Health Service Kuopio Finland
| | - Sirpa Hartikainen
- Kuopio Research Centre of Geriatric Care School of Pharmacy University of Eastern Finland Kuopio Finland
| | - Anna‐Maija Tolppanen
- Kuopio Research Centre of Geriatric Care School of Pharmacy University of Eastern Finland Kuopio Finland
| |
Collapse
|
8
|
Almario G, Piñero DP. Impact of Alzheimer's Disease in Ocular Motility and Visual Perception: A Narrative Review. Semin Ophthalmol 2021; 37:436-446. [PMID: 34779338 DOI: 10.1080/08820538.2021.2002371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Alzheimer's disease (AD) is a neurodegenerative disease generating a progressive neuronal loss as well as cognitive deficiencies. This disease can be accompanied by ocular manifestations, including alterations in ocular motility and visual perception. The aim of the current review article was to collect all the information about these alterations and to analyze if there is scientific evidence supporting the potential use of these changes as biomarkers of the disease. METHODS A bibliographic search was performed using two different databases, Pubmed and Google Scholar, as well as a search of material in non-peer reviewed journals about Alzheimer's and Neurology. A total of 227 articles were found in the initial search, but only 76 were included considering their relevance according to the purpose of the reviewResults: This narrative review describes the findings obtained in this area to this date, confirming that deficiencies in saccades is the most common condition among AD patients. Furthermore, other visual alterations have also been reported in these patients, including a compromise of visual acuity and contrast sensitivity, fluctuations of colour vision, stereopsis impairment and visual field losses. Likewise, other complex visuo-spatial and visuo-perceptual impairments can be present. More studies are still needed to understand better what type of changes occurs in ocular alignment, binocularity, and fixation pattern in AD patients. CONCLUSIONS AD is associated to visual perception and ocular motility alterations. All the scientific information found in this review should be considered as a guide for designing future studies and to define adequate clinical protocols for the visual evaluation of patients with AD, considering the cognitive limitations that are normally present in this type of patients.
Collapse
Affiliation(s)
- Gemma Almario
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain.,Punto Óptico, Elche, Alicante, Spain
| | - David P Piñero
- Department of Optics, Pharmacology and Anatomy, University of Alicante, Alicante, Spain.,Department of Ophthalmology, Vithas Medimar International Hospital, Alicante, Spain
| |
Collapse
|
9
|
Arrigo A, Aragona E, Saladino A, Arrigo D, Fantaguzzi F, Battaglia Parodi M, Bandello F. Cognitive Dysfunctions in Glaucoma: An Overview of Morpho-Functional Mechanisms and the Impact on Higher-Order Visual Function. Front Aging Neurosci 2021; 13:747050. [PMID: 34690746 PMCID: PMC8526892 DOI: 10.3389/fnagi.2021.747050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Glaucoma is a chronic, vision-threatening disease, and a major cause of legal blindness. The current view is no longer limited to the progressive optic nerve injury, since growing evidence strongly support the interpretation of glaucoma as a complex neurodegenerative disease. However, the precise pathogenic mechanisms leading to the onset and progression of central nervous system (CNS) impairment, and the functional consequences of this damage, are still partially understood. The main aim of this review is to provide a complete and updated overview of the current knowledge regarding the CNS involvement in glaucoma, and the possible therapeutic perspectives. Methods: We made a careful survey of the current literature reporting all the relevant findings related to the cognitive dysfunctions occurring in glaucoma, with specific remarks dedicated on the higher-order visual function impairment and the possible employment of neuroprotective agents. Results: The current literature strongly support the interpretation of glaucoma as a multifaceted chronic neurodegenerative disease, widely affecting the CNS. The cognitive impairment may vary in terms of higher-order functions involvement and in the severity of the degeneration. Although several neuroprotective agents are currently available, the development of new molecules represents a major topic of investigation for future clinical trials. Conclusions: Glaucoma earned the right to be fully considered a neurodegenerative disease. Glaucomatous patients may experience a heterogeneous set of visual and cognitive symptoms, progressively deteriorating the quality of life. Neuroprotection is nowadays a necessary therapeutic goal and a future promising way to preserve visual and cognitive functions, thus improving patients' quality of life.
Collapse
Affiliation(s)
- Alessandro Arrigo
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Emanuela Aragona
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Andrea Saladino
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | - Davide Arrigo
- School of Medicine, University of Messina, Messina, Italy
| | - Federico Fantaguzzi
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| | | | - Francesco Bandello
- Department of Ophthalmology, Scientific Institute San Raffaele Hospital, Milan, Italy
| |
Collapse
|
10
|
Huang J, Beach P, Bozoki A, Zhu DC. Alzheimer's Disease Progressively Reduces Visual Functional Network Connectivity. J Alzheimers Dis Rep 2021; 5:549-562. [PMID: 34514338 PMCID: PMC8385433 DOI: 10.3233/adr-210017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Postmortem studies of brains with Alzheimer’s disease (AD) not only find amyloid-beta (Aβ) and neurofibrillary tangles (NFT) in the visual cortex, but also reveal temporally sequential changes in AD pathology from higher-order association areas to lower-order areas and then primary visual area (V1) with disease progression. Objective: This study investigated the effect of AD severity on visual functional network. Methods: Eight severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a resting-state fMRI (rs-fMRI) and a task fMRI of viewing face photos. A resting-state visual functional connectivity (FC) network and a face-evoked visual-processing network were identified for each group. Results: For the HS, the identified group-mean face-evoked visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, the resting-state visual FC network was mainly confined within the visual cortex. AD disrupted these two functional networks in a similar severity dependent manner: the more severe the cognitive impairment, the greater reduction in network connectivity. For the face-evoked visual-processing network, MAD disrupted and reduced activation mainly in the higher-order visual association areas, with SAD further disrupting and reducing activation in the lower-order areas. Conclusion: These findings provide a functional corollary to the canonical view of the temporally sequential advancement of AD pathology through visual cortical areas. The association of the disruption of functional networks, especially the face-evoked visual-processing network, with AD severity suggests a potential predictor or biomarker of AD progression.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Paul Beach
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Bozoki
- Department of Radiology, Michigan State University, East Lansing, MI, USA.,Department of Neurology, Michigan State University, East Lansing, MI, USA.,Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, MI, USA.,Cognitive Imaging Research Center, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
11
|
Huang J, Beach P, Bozoki A, Zhu DC. Alzheimer's Disease Progressively Alters the Face-Evoked Visual-Processing Network. J Alzheimers Dis 2021; 77:1025-1042. [PMID: 32804125 DOI: 10.3233/jad-200173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Postmortem studies of Alzheimer's disease (AD) brains not only find amyloid-β (Aβ) and neurofibrillary tangles (NFT) in the primary and associative visual cortical areas, but also reveal a temporally successive sequence of AD pathology beginning in higher-order visual association areas, followed by involvement of lower-order visual processing regions with disease progression, and extending to primary visual cortex in late-stage disease. These findings suggest that neuronal loss associated with Aβ and NFT aggregation in these areas may alter not only the local neuronal activation but also visual neural network activity. OBJECTIVE Applying a novel method to identify the visual functional network and investigate the association of the network changes with disease progression. METHODS To investigate the effect of AD on the face-evoked visual-processing network, 8 severe AD (SAD) patients, 11 mild/moderate AD (MAD), and 26 healthy senior (HS) controls undertook a task-fMRI study of viewing face photos. RESULTS For the HS, the identified group-mean visual-processing network in the ventral pathway started from V1 and ended within the fusiform gyrus. In contrast, this network was disrupted and reduced in the AD patients in a disease-severity dependent manner: for the MAD patients, the network was disrupted and reduced mainly in the higher-order visual association areas; for the SAD patients, the network was nearly absent in the higher-order association areas, and disrupted and reduced in the lower-order areas. CONCLUSION This finding is consistent with the current canonical view of the temporally successive sequence of AD pathology through visual cortical areas.
Collapse
Affiliation(s)
- Jie Huang
- Department of Radiology, Michigan State University, East Lansing, MI, USA
| | - Paul Beach
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Bozoki
- Department of Radiology, Michigan State University, East Lansing, MI, USA.,Department of Neurology, Michigan State University, East Lansing, MI, USA
| | - David C Zhu
- Department of Radiology, Michigan State University, East Lansing, MI, USA.,Department of Psychology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Jin Q, Lei Y, Wang R, Wu H, Ji K, Ling L. A Systematic Review and Meta-Analysis of Retinal Microvascular Features in Alzheimer's Disease. Front Aging Neurosci 2021; 13:683824. [PMID: 34267645 PMCID: PMC8275836 DOI: 10.3389/fnagi.2021.683824] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Objective: The aim of this meta-analysis was to investigate retinal microvascular features in patients with Alzheimer's disease (AD) using optical coherence tomography angiography (OCTA). Methods: PubMed, Cochrane Library, Embase, and Web of Science databases were systematically searched for published articles comparing retinal microvascular characteristics in subjects with AD and controls. The mean difference (MD) with a 95% confidence interval (CI) was used to assess continuous variables. Review Manager Version (RevMan) 5.30, was employed to analyze the data. Results: Nine studies were included in the meta-analysis. The analysis revealed that the macular whole enface superficial and deep vessel density (VD) values measured by OCTA were significantly lower in patients with AD than in controls (MD = −1.10, P < 0.0001; MD = −1.61, P = 0.0001, respectively). The value measured by OCTA for parafoveal superficial VD in patients with AD was also remarkably lower than that in the control group (MD = −1.42, P = 0.001), whereas there was no significant difference in the value for parafoveal deep VD (MD = −3.67, P = 0.19), compared to the controls. In addition, the foveal avascular zone (FAZ) was larger in patients with AD than in the control group (MD = 0.08, P = 0.07), although it did not reach statistical significance. Conclusions: The present meta-analysis indicated that the macular whole enface and parafoveal vessel densities were reduced in patients with AD. Moreover, our pooled data revealed that FAZ is larger in patients with AD. Consequently, OCTA may be utilized as a diagnostic tool to identify and monitor patients with AD.
Collapse
Affiliation(s)
- Qifang Jin
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiming Lei
- Department of School of Ophthalmology and Optometry, Nanchang University, Nanchang, China
| | - Ruoxin Wang
- Department of Ophthalmology, The First Hospital of Xi'an, Xi'an, China
| | - Huiying Wu
- Nanchang Bright Eye Hospital, Nanchang, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Ling
- Affiliated Eye Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Multimodal, label-free fluorescence and Raman imaging of amyloid deposits in snap-frozen Alzheimer's disease human brain tissue. Commun Biol 2021; 4:474. [PMID: 33859370 PMCID: PMC8050064 DOI: 10.1038/s42003-021-01981-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease (AD) neuropathology is characterized by hyperphosphorylated tau containing neurofibrillary tangles and amyloid-beta (Aβ) plaques. Normally these hallmarks are studied by (immuno-) histological techniques requiring chemical pretreatment and indirect labelling. Label-free imaging enables one to visualize normal tissue and pathology in its native form. Therefore, these techniques could contribute to a better understanding of the disease. Here, we present a comprehensive study of high-resolution fluorescence imaging (before and after staining) and spectroscopic modalities (Raman mapping under pre-resonance conditions and stimulated Raman scattering (SRS)) of amyloid deposits in snap-frozen AD human brain tissue. We performed fluorescence and spectroscopic imaging and subsequent thioflavin-S staining of the same tissue slices to provide direct confirmation of plaque location and correlation of spectroscopic biomarkers with plaque morphology; differences were observed between cored and fibrillar plaques. The SRS results showed a protein peak shift towards the β-sheet structure in cored amyloid deposits. In the Raman maps recorded with 532 nm excitation we identified the presence of carotenoids as a unique marker to differentiate between a cored amyloid plaque area versus a non-plaque area without prior knowledge of their location. The observed presence of carotenoids suggests a distinct neuroinflammatory response to misfolded protein accumulations.
Collapse
|
14
|
Molecular Factors Mediating Neural Cell Plasticity Changes in Dementia Brain Diseases. Neural Plast 2021; 2021:8834645. [PMID: 33854544 PMCID: PMC8021472 DOI: 10.1155/2021/8834645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 11/18/2022] Open
Abstract
Neural plasticity-the ability to alter a neuronal response to environmental stimuli-is an important factor in learning and memory. Short-term synaptic plasticity and long-term synaptic plasticity, including long-term potentiation and long-term depression, are the most-characterized models of learning and memory at the molecular and cellular level. These processes are often disrupted by neurodegeneration-induced dementias. Alzheimer's disease (AD) accounts for 50% of cases of dementia. Vascular dementia (VaD), Parkinson's disease dementia (PDD), dementia with Lewy bodies (DLB), and frontotemporal dementia (FTD) constitute much of the remaining cases. While vascular lesions are the principal cause of VaD, neurodegenerative processes have been established as etiological agents of many dementia diseases. Chief among such processes is the deposition of pathological protein aggregates in vivo including β-amyloid deposition in AD, the formation of neurofibrillary tangles in AD and FTD, and the accumulation of Lewy bodies composed of α-synuclein aggregates in DLB and PDD. The main symptoms of dementia are cognitive decline and memory and learning impairment. Nonetheless, accurate diagnoses of neurodegenerative diseases can be difficult due to overlapping clinical symptoms and the diverse locations of cortical lesions. Still, new neuroimaging and molecular biomarkers have improved clinicians' diagnostic capabilities in the context of dementia and may lead to the development of more effective treatments. Both genetic and environmental factors may lead to the aggregation of pathological proteins and altered levels of cytokines, such that can trigger the formation of proinflammatory immunological phenotypes. This cascade of pathological changes provides fertile ground for the development of neural plasticity disorders and dementias. Available pharmacotherapy and disease-modifying therapies currently in clinical trials may modulate synaptic plasticity to mitigate the effects neuropathological changes have on cognitive function, memory, and learning. In this article, we review the neural plasticity changes seen in common neurodegenerative diseases from pathophysiological and clinical points of view and highlight potential molecular targets of disease-modifying therapies.
Collapse
|
15
|
Latina V, Giacovazzo G, Cordella F, Balzamino BO, Micera A, Varano M, Marchetti C, Malerba F, Florio R, Ercole BB, La Regina F, Atlante A, Coccurello R, Di Angelantonio S, Calissano P, Amadoro G. Systemic delivery of a specific antibody targeting the pathological N-terminal truncated tau peptide reduces retinal degeneration in a mouse model of Alzheimer's Disease. Acta Neuropathol Commun 2021; 9:38. [PMID: 33750467 PMCID: PMC7942014 DOI: 10.1186/s40478-021-01138-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/26/2021] [Indexed: 12/28/2022] Open
Abstract
Retina and optic nerve are sites of extra-cerebral manifestations of Alzheimer's Disease (AD). Amyloid-β (Aβ) plaques and neurofibrillary tangles of hyperphosphorylated tau protein are detected in eyes from AD patients and transgenic animals in correlation with inflammation, reduction of synapses, visual deficits, loss of retinal cells and nerve fiber. However, neither the pathological relevance of other post-translational tau modifications-such as truncation with generation of toxic fragments-nor the potential neuroprotective action induced by their in vivo clearance have been investigated in the context of AD retinal degeneration. We have recently developed a monoclonal tau antibody (12A12mAb) which selectively targets the neurotoxic 20-22 kDa NH2-derived peptide generated from pathological truncation at the N-terminal domain of tau without cross-reacting with its full-length normal protein. Previous studies have shown that 12A12mAb, when intravenously (i.v.)-injected into 6-month-old Tg2576 animals, markedly improves their AD-like, behavioural and neuropathological syndrome. By taking advantage of this well-established tau-directed immunization regimen, we found that 12A12mAb administration also exerts a beneficial action on biochemical, morphological and metabolic parameters (i.e. APP/Aβ processing, tau hyperphosphorylation, neuroinflammation, synaptic proteins, microtubule stability, mitochondria-based energy production, neuronal death) associated with ocular injury in the AD phenotype. These findings prospect translational implications in the AD field by: (1) showing for the first time that cleavage of tau takes part in several pathological changes occurring in vivo in affected retinas and vitreous bodies and that its deleterious effects are successfully antagonized by administration of the specific 12A12mAb; (2) shedding further insights on the tight connections between neurosensory retina and brain, in particular following tau-based immunotherapy. In our view, the parallel response we detected in this preclinical animal model, both in the eye and in the hippocampus, following i.v. 12A12mAb injection opens novel diagnostic and therapeutic avenues for the clinical management of cerebral and extracerebral AD signs in human beings.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giacomo Giacovazzo
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
| | - Federica Cordella
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Monica Varano
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Rome, Italy
| | - Cristina Marchetti
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Rita Florio
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bruno Bruni Ercole
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via Amendola 122/O, 70126 Bari, Italy
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, Via Fosso del Fiorano 64-65, 00143 Rome, Italy
- Institute for Complex System (ISC)-CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - Silvia Di Angelantonio
- Department of Physiology and Pharmacology, University of Rome La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Center for Life Nanoscience, Istituto Italiano Di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
16
|
Effect of Acupuncture Stimulation of Hegu (LI4) and Taichong (LR3) on the Resting-State Networks in Alzheimer's Disease: Beyond the Default Mode Network. Neural Plast 2021; 2021:8876873. [PMID: 33747074 PMCID: PMC7960059 DOI: 10.1155/2021/8876873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/02/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
It was reported that acupuncture could treat Alzheimer's disease (AD) with the potential mechanisms remaining unclear. The aim of the study is to explore the effect of the combination stimulus of Hegu (LI4) and Taichong (LR3) on the resting-state brain networks in AD, beyond the default network (DMN). Twenty-eight subjects including 14 AD patients and 14 healthy controls (HCs) matched by age, gender, and educational level were recruited in this study. After the baseline resting-state MRI scans, the manual acupuncture stimulation was performed for 3 minutes, and then, another 10 minutes of resting-state fMRI scans was acquired. In addition to the DMN, five other resting-state networks were identified by independent component analysis (ICA), including left frontal parietal network (lFPN), right frontal parietal network (rFPN), visual network (VN), sensorimotor network (SMN), and auditory network (AN). And the impaired connectivity in the lFPN, rFPN, SMN, and VN was found in AD patients compared with those in HCs. After acupuncture, significantly decreased connectivity in the right middle frontal gyrus (MFG) of rFPN (P = 0.007) was identified in AD patients. However, reduced connectivity in the right inferior frontal gyrus (IFG) (P = 0.047) and left superior frontal gyrus (SFG) (P = 0.041) of lFPN and some regions of the SMN (the left inferior parietal lobula (P = 0.004), left postcentral gyrus (PoCG) (P = 0.001), right PoCG (P = 0.032), and right MFG (P = 0.010)) and the right MOG of VN (P = 0.003) was indicated in HCs. In addition, after controlling for the effect of acupuncture on HCs, the functional connectivity of the right cerebellum crus I, left IFG, and left angular gyrus (AG) of lFPN showed to be decreased, while the left MFG of IFPN and the right lingual gyrus of VN increased in AD patients. These findings might have some reference values for the interpretation of the combination stimulus of Hegu (LI4) and Taichong (LR3) in AD patients, which could deepen our understanding of the potential mechanisms of acupuncture on AD.
Collapse
|
17
|
Vit JP, Fuchs DT, Angel A, Levy A, Lamensdorf I, Black KL, Koronyo Y, Koronyo-Hamaoui M. Color and contrast vision in mouse models of aging and Alzheimer's disease using a novel visual-stimuli four-arm maze. Sci Rep 2021; 11:1255. [PMID: 33441984 PMCID: PMC7806734 DOI: 10.1038/s41598-021-80988-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
We introduce a novel visual-stimuli four-arm maze (ViS4M) equipped with spectrally- and intensity-controlled LED emitters and dynamic grayscale objects that relies on innate exploratory behavior to assess color and contrast vision in mice. Its application to detect visual impairments during normal aging and over the course of Alzheimer’s disease (AD) is evaluated in wild-type (WT) and transgenic APPSWE/PS1∆E9 murine models of AD (AD+) across an array of irradiance, chromaticity, and contrast conditions. Substantial color and contrast-mode alternation deficits appear in AD+ mice at an age when hippocampal-based memory and learning is still intact. Profiling of timespan, entries and transition patterns between the different arms uncovers variable AD-associated impairments in contrast sensitivity and color discrimination, reminiscent of tritanomalous defects documented in AD patients. Transition deficits are found in aged WT mice in the absence of alternation decline. Overall, ViS4M is a versatile, controlled device to measure color and contrast-related vision in aged and diseased mice.
Collapse
Affiliation(s)
- Jean-Philippe Vit
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.,Biobehavioral Research Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ariel Angel
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | - Aharon Levy
- Pharmaseed Ltd., 9 Hamazmera St., 74047, Ness Ziona, Israel
| | | | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA. .,Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Micera A, Bruno L, Cacciamani A, Rongioletti M, Squitti R. Alzheimer's Disease and Retinal Degeneration: A Glimpse at Essential Trace Metals in Ocular Fluids and Tissues. Curr Alzheimer Res 2020; 16:1073-1083. [PMID: 31642780 DOI: 10.2174/1567205016666191023114015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/28/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023]
Abstract
BACKGROUND Life expectancy is increasing all over the world, although neurodegenerative disorders might drastically affect the individual activity of aged people. Of those, Alzheimer's Disease (AD) is one of the most social-cost age-linked diseases of industrialized countries. To date, retinal diseases seem to be more common in the developing world and characterize principally aged people. Agerelated Macular Degeneration (AMD) is a late-onset, neurodegenerative retinal disease that shares several clinical and pathological features with AD, including stress stimuli such as oxidative stress, inflammation and amyloid formations. METHODS In both diseases, the detrimental intra/extra-cellular deposits have many similarities. Aging, hypercholesterolemia, hypertension, obesity, arteriosclerosis and smoking are risk factors to develop both diseases. Cellular aging routes have similar organelle and signaling patterns in retina and brain. The possibility to find out new research strategies represent a step forward to disclose potential treatment for both of them. Essential trace metals play critical roles in both physiological and pathological condition of retina, optic nerve and brain, by influencing metabolic processes chiefly upon complex multifactorial pathogenesis. CONCLUSION Hence, this review addresses current knowledge about some up-to-date investigated essential trace metals associated with AD and AMD. Changes in the levels of systemic and ocular fluid essential metals might reflect the early stages of AMD, possibly disclosing neurodegeneration pathways shared with AD, which might open to potential early detection.
Collapse
Affiliation(s)
- Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Luca Bruno
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Andrea Cacciamani
- Research Laboratories in Ophthalmology, IRCCS - Fondazione Bietti, Rome, Italy
| | - Mauro Rongioletti
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita, Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| | - Rosanna Squitti
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, BS, Italy
| |
Collapse
|
19
|
Retinal Degeneration and Alzheimer's Disease: An Evolving Link. Int J Mol Sci 2020; 21:ijms21197290. [PMID: 33023198 PMCID: PMC7582766 DOI: 10.3390/ijms21197290] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022] Open
Abstract
Age-related macular degeneration (AMD) and glaucoma are degenerative conditions of the retina and a significant cause of irreversible blindness in developed countries. Alzheimer’s disease (AD), the most common dementia of the elderly, is often associated with AMD and glaucoma. The cardinal features of AD include extracellular accumulation of amyloid β (Aβ) and intracellular deposits of hyper-phosphorylated tau (p-tau). Neuroinflammation and brain iron dyshomeostasis accompany Aβ and p-tau deposits and, together, lead to progressive neuronal death and dementia. The accumulation of Aβ and iron in drusen, the hallmark of AMD, and Aβ and p-tau in retinal ganglion cells (RGC), the main retinal cell type implicated in glaucoma, and accompanying inflammation suggest overlapping pathology. Visual abnormalities are prominent in AD and are believed to develop before cognitive decline. Some are caused by degeneration of the visual cortex, while others are due to RGC loss or AMD-associated retinal degeneration. Here, we review recent information on Aβ, p-tau, chronic inflammation, and iron dyshomeostasis as common pathogenic mechanisms linking the three degenerative conditions, and iron chelation as a common therapeutic option for these disorders. Additionally discussed is the role of prion protein, infamous for prion disorders, in Aβ-mediated toxicity and, paradoxically, in neuroprotection.
Collapse
|
20
|
Lee CS, Apte RS. Retinal Biomarkers of Alzheimer Disease. Am J Ophthalmol 2020; 218:337-341. [PMID: 32387435 DOI: 10.1016/j.ajo.2020.04.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE To address challenges associated with identifying retinal biomarkers for Alzheimer's disease (AD) and strategies for future investigation of novel ophthalmologic biomarkers. DESIGN Perspective. METHODS Summarization of the current understanding of retinal changes that have been identified using advances in imaging technology, analysis of current research into how these changes reflect neurodegenerative pathology, and recommendations for further research in this area that will allow for the identification of unique biomarkers for early AD. RESULTS Some retinal changes detectable using various imaging modalities may reflect neurodegeneration or other AD-related pathology on a cellular level. Structural changes in both the peripapillary and macular retina and changes in vascular parameters have been identified. Some imaging findings correlate with known histopathologic findings, and some are associated with cognitive decline. However, multiple challenges exist, such as identifying retinal biomarkers that are specific to biomarker-positive AD, clinical syndrome of AD, and/or pathologic AD brain, finding features that are highly sensitive and specific to AD in patients with other eye diseases, and validating potential biomarkers in population-based longitudinal cohorts. CONCLUSIONS Further research is needed to validate retinal biomarkers for AD, with accurate classification of patients according to diagnosis and cognitive symptoms. Advances in imaging technology, big data, and machine learning, as well as carefully designed studies, will help to identify and confirm potential biomarkers and may lead to novel treatment approaches.
Collapse
|
21
|
Mirzaei N, Shi H, Oviatt M, Doustar J, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Koronyo Y, Koronyo-Hamaoui M. Alzheimer's Retinopathy: Seeing Disease in the Eyes. Front Neurosci 2020; 14:921. [PMID: 33041751 PMCID: PMC7523471 DOI: 10.3389/fnins.2020.00921] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/10/2020] [Indexed: 01/18/2023] Open
Abstract
The neurosensory retina emerges as a prominent site of Alzheimer's disease (AD) pathology. As a CNS extension of the brain, the neuro retina is easily accessible for noninvasive, high-resolution imaging. Studies have shown that along with cognitive decline, patients with mild cognitive impairment (MCI) and AD often suffer from visual impairments, abnormal electroretinogram patterns, and circadian rhythm disturbances that can, at least in part, be attributed to retinal damage. Over a decade ago, our group identified the main pathological hallmark of AD, amyloid β-protein (Aβ) plaques, in the retina of patients including early-stage clinical cases. Subsequent histological, biochemical and in vivo retinal imaging studies in animal models and in humans corroborated these findings and further revealed other signs of AD neuropathology in the retina. Among these signs, hyperphosphorylated tau, neuronal degeneration, retinal thinning, vascular abnormalities and gliosis were documented. Further, linear correlations between the severity of retinal and brain Aβ concentrations and plaque pathology were described. More recently, extensive retinal pericyte loss along with vascular platelet-derived growth factor receptor-β deficiency were discovered in postmortem retinas of MCI and AD patients. This progressive loss was closely associated with increased retinal vascular amyloidosis and predicted cerebral amyloid angiopathy scores. These studies brought excitement to the field of retinal exploration in AD. Indeed, many questions still remain open, such as queries related to the temporal progression of AD-related pathology in the retina compared to the brain, the relations between retinal and cerebral changes and whether retinal signs can predict cognitive decline. The extent to which AD affects the retina, including the susceptibility of certain topographical regions and cell types, is currently under intense investigation. Advances in retinal amyloid imaging, hyperspectral imaging, optical coherence tomography, and OCT-angiography encourage the use of such modalities to achieve more accurate, patient- and user-friendly, noninvasive detection and monitoring of AD. In this review, we summarize the current status in the field while addressing the many unknowns regarding Alzheimer's retinopathy.
Collapse
Affiliation(s)
- Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Mia Oviatt
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Jonah Doustar
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
22
|
Wu J, Zhang X, Azhati G, Li T, Xu G, Liu F. Retinal microvascular attenuation in mental cognitive impairment and Alzheimer's disease by optical coherence tomography angiography. Acta Ophthalmol 2020; 98:e781-e787. [PMID: 32153141 DOI: 10.1111/aos.14381] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/25/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To explore regional variation of the macular microvasculature in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD), also to detect the association between retinal macular microvascular parameters and the progress of preclinical AD. METHODS Prospective study of healthy controls, patients with MCI and patients with AD by using Optical coherence tomography angiography (OCT-A). We quantified foveal avascular zone (FAZ) areas, densities of the superficial retinal capillary plexuses (SRCP) and deep retinal capillary plexuses (DRCP). The SRCP and DRCP were divided into inner (3 mm) and external (6 mm) annular rings, each containing four quadrants (SI, II, TI, NI, SE, IE, TE and NE). The data were analysed statistically by using SPSS 22 software. RESULTS Totally, 60 subjects including 21 HC (33 eyes), 21 patients with MCI (32 eyes) and 18 AD patients (28 eyes) were recruited. The microvascular densities of DRCP at all quadrants of the parafovea and perifovea were significantly lower in AD patients compared to HC group (p < 0.05). Compared to the HCs, MCI patients showed significant microvascular loss in most sectors of the parafovea and the SE sector of the DRCP (p < 0.05), but not in the parafovea (p = 0.829) or perifovea (p = 0.824) of the SRCP. No significant difference was found in microvascular density of SRCP among the groups, except at SI between the AD and HC groups (p = 0.048). CONCLUSION Our findings demonstrated the macular microvascular attenuation in MCI and AD patients. Both AD and MCI patients showed retinal microvascular density loss, which is more significant in the deep retinal capillary plexuses. Optical coherence tomography angiography (OCT-A) can be used to identify early microvascular abnormalities in AD and MCI. Quantified microvascular density in the DRCP might serve as potential biomarkers of early sign of AD then contribute to forestall the progression of preclinical AD.
Collapse
Affiliation(s)
- Jing Wu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
- School of Medicine Tongji University Shanghai China
| | - Xiaojun Zhang
- Department of Neurology OSF St. Francis Medical Center University of Illinois College of Medicine Peoria Peoria Illinois USA
| | - Guliqiwaer Azhati
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| | - Tingting Li
- Department of Ophthalmology Clinical Medical College of Shanghai Tenth People's Hospital of Nanjing Medical University Shanghai China
| | - Guoxing Xu
- Department of Ophthalmology The First Affiliated Hospital of Fujian Medical University Fuzhou China
| | - Fang Liu
- Department of Ophthalmology Shanghai Tenth People's Hospital Tongji University Shanghai China
| |
Collapse
|
23
|
Mavilio A, Sisto D, Prete F, Guadalupi V, Dammacco R, Alessio G. RE-PERG in early-onset Alzheimer's disease: A double-blind, electrophysiological pilot study. PLoS One 2020; 15:e0236568. [PMID: 32790788 PMCID: PMC7425894 DOI: 10.1371/journal.pone.0236568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To evaluate the ability of re-test pattern electroretinogram (RE-PERG), a non-invasive and fast steady-state PERG, to detect inner retinal bioelectric function anomalies in patients with early-onset Alzheimer's disease (AD). METHODS The study population consisted of 17 patients with AD-related mild cognitive impairment (MCI), 16 patients with vascular dementia (VD)-related MCI, both assessed using the neuropsychological Mini-Mental State Examination (MMSE) and by structural magnetic resonance imaging, and 19 healthy, age-matched normal controls (NC). All participants were visually asymptomatic, had normal or near-normal general cognitive functioning and no or minimal impairments in daily life activities. Visual field (VF) test, optical coherence tomography (OCT) and RE-PERG, sampled in five consecutive blocks of 130 events, were performed. RESULTS There was no statistically significant difference among the three groups with respect to age, VF parameters (mean and pattern standard deviations) and OCT parameters (ganglion cell complex thickness and retinal nerve fiber layer thickness). The mean amplitude in the RE-PERG was significantly lower, but only weakly in the AD group than in NC (p = 0.1) whereas the intrinsic variability of the 2nd harmonic phase was significantly higher in the AD group than in either the VD or NC group (p<0.001). CONCLUSIONS RE-PERG is altered in early-stage AD, showing a reduced amplitude with high intrinsic phase variability. It also allows the discrimination of AD from VD. A high intrinsic variability in the PERG signal, determined using RE-PERG, may thus be a new promising test for neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Mavilio
- Social Health District, Glaucoma Center, Azienda Sanitaria Locale–Brindisi, Brindisi, Italy
| | - Dario Sisto
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| | - Florenza Prete
- Social Health District, Alzheimer Evaluation Units, Azienda Sanitaria Locale—Brindisi, Brindisi, Italy
| | - Viviana Guadalupi
- Social Health District, Alzheimer Evaluation Units, Azienda Sanitaria Locale—Brindisi, Brindisi, Italy
| | - Rosanna Dammacco
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| | - Giovanni Alessio
- Department of Neurosciences, Institute of Ophthalmology, University of Bari, Bari, Italy
| |
Collapse
|
24
|
Piano M, Nilforooshan R, Evans S. Binocular Vision, Visual Function, and Pupil Dynamics in People Living With Dementia and Their Relation to the Rate of Cognitive Decline and Structural Changes Within the Brain: Protocol for an Observational Study. JMIR Res Protoc 2020; 9:e16089. [PMID: 32773379 PMCID: PMC7445601 DOI: 10.2196/16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Visual impairment is a common comorbidity in people living with dementia. Addressing sources of visual difficulties can have a significant impact on the quality of life for people living with dementia and their caregivers. Depth perception problems are purportedly common in dementia and also contribute to falls, visuomotor task difficulties, and poorer psychosocial well-being. However, depth perception and binocular vision are rarely assessed in dementia research. Sleep fragmentation is also common for people living with dementia, and binocular cooperation for depth perception can be affected by fatigue. Pupillary responses under cognitive load also have the potential to be a risk marker for cognitive decline in people living with dementia and can be combined with the above measures for a comprehensive evaluation of clinical visual changes in people living with dementia and their relation to changes in cognitive status, sleep quality, and cortical structure or function. OBJECTIVE This study aims to characterize the nature of clinical visual changes and altered task-evoked pupillary responses that may occur in people living with dementia and evaluate whether these responses relate to changes in cognitive status (standardized Mini Mental State Examination [MMSE] score), Pittsburgh sleep quality index, and cortical structure or function. METHODS This proposed exploratory observational study will enroll ≤210 people with recently diagnosed dementia (within the last 24 months). The following parameters will be assessed on 3 occasions, 4 months apart (plus or minus 2 weeks): visual function (visual acuity and contrast sensitivity), binocular function (motor fusion and stereopsis), task-evoked pupillary responses (minimum and maximum pupil size, time to maximum dilation, and dilation velocity), cognitive status (MMSE score), and sleep quality (Pittsburgh Sleep Quality Index). A subset of patients (n=30) with Alzheimer disease will undergo structural and functional magnetic resonance imaging at first and third visits, completing a 10-day consensus sleep diary to monitor sleep quality, verified by sleep actimetry. RESULTS This research was funded in February 2018 and received National Health Service Research Ethics Committee approval in September 2018. The data collection period was from October 1, 2018, to November 30, 2019. A total of 24 participants were recruited for the study. The data analysis is complete, with results expected to be published before the end of 2020. CONCLUSIONS Findings will demonstrate how often people with dementia experience binocular vision problems. If frequent, diagnosing and treating them could improve quality of life by reducing the risk of falls and fine visuomotor task impairment and by relieving psychosocial anxiety. This research will also demonstrate whether changes in depth perception, pupillary responses, and quality of vision relate to changes in memory or sleep quality and brain structure or function. If related, these quick and noninvasive eye tests help monitor dementia. This would help justify whether binocular vision and pupillary response testing should be included in dementia-friendly eye-testing guidelines. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR1-10.2196/16089.
Collapse
Affiliation(s)
- Marianne Piano
- School of Health Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Optometry and Vision Sciences, University of Melbourne, Melbourne, Australia
- National Vision Research Institute, Australian College of Optometry, Melbourne, Australia
| | | | - Simon Evans
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
25
|
Monti G, Jensen ML, Mehmedbasic A, Jørgensen MM, Holm IE, Barkholt P, Zole E, Vægter CB, Vorum H, Nyengaard JR, Andersen OM. SORLA Expression in Synaptic Plexiform Layers of Mouse Retina. Mol Neurobiol 2020; 57:3106-3117. [PMID: 32472518 DOI: 10.1007/s12035-020-01946-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/13/2020] [Indexed: 11/25/2022]
Abstract
Sorting protein-related receptor containing LDLR class A repeats (SORLA; also known as LR11) exerts intraneuronal trafficking functions in the central nervous system. Recently, involvement of SORLA in retinogenesis was proposed, but no studies have examined yet in detail the expression pattern of this sorting receptor in the retina. Here, we provide a spatio-temporal characterization of SORL1 mRNA and its translational product SORLA in the postnatal mouse retina. Using stereological analysis, we confirmed previous studies showing that receptor depletion in knockout mice significantly reduces the number of cells in the inner nuclear layer (INL), suggesting that functional SORLA expression is essential for the development of this retinal strata. qPCR and Western blot analyses showed that SORL1/SORLA expression peaks at postnatal day 15, just after eye opening. Interestingly, we found that transcripts are somatically located in several neuronal populations residing in the INL and the ganglion cell layer, whereas SORLA protein is also present in the synaptic plexiform layers. In line with receptor expression in dendritic terminals, we found delayed stratification of the inner plexiform layer in knockout mice, indicating an involvement of SORLA in neuronal connectivity. Altogether, these data suggest a novel role of SORLA in synaptogenesis. Receptor dysfunctions may be implicated in morphological and functional impairments of retinal inner layer formation associated with eye disorders.
Collapse
Affiliation(s)
- Giulia Monti
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Marianne L Jensen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Arnela Mehmedbasic
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Margarita Melnikova Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Ida E Holm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Pernille Barkholt
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Egija Zole
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Christian B Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Hobrovej 18-22, DK-9000, Aalborg, Denmark
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, Aarhus, Denmark
| | - Olav M Andersen
- Danish Research Institute of Translational Neuroscience (DANDRITE) Nordic-EMBL Partnership, Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, DK-8000, Aarhus C, Denmark.
| |
Collapse
|
26
|
Abstract
Sphingolipids are ubiquitous building blocks of eukaryotic cell membranes that function as signaling molecules for regulating a diverse range of cellular processes, including cell proliferation, growth, survival, immune-cell trafficking, vascular and epithelial integrity, and inflammation. Recently, several studies have highlighted the pivotal role of sphingolipids in neuroinflammatory regulation. Sphingolipids have multiple functions, including induction of the expression of various inflammatory mediators and regulation of neuroinflammation by directly effecting the cells of the central nervous system. Accumulating evidence points to sphingolipid engagement in neuroinflammatory disorders, including Alzheimer’s and Parkinson’s diseases. Abnormal sphingolipid alterations, which involves an increase in ceramide and a decrease in sphingosine kinase, are observed during neuroinflammatory disease. These trends are observed early during disease development, and thus highlight the potential of sphingolipids as a new therapeutic and diagnostic target for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Ju Youn Lee
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| | - Hee Kyung Jin
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - Jae-sung Bae
- Alzheimer's Disease Research Institute, Kyungpook National University, Daegu 41566, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Biomedical Science, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
27
|
Abstract
Recent applications of eye tracking for diagnosis, prognosis and follow-up of therapy in age-related neurological or psychological deficits have been reviewed. The review is focused on active aging, neurodegeneration and cognitive impairments. The potential impacts and current limitations of using characterizing features of eye movements and pupillary responses (oculometrics) as objective biomarkers in the context of aging are discussed. A closer look into the findings, especially with respect to cognitive impairments, suggests that eye tracking is an invaluable technique to study hidden aspects of aging that have not been revealed using any other noninvasive tool. Future research should involve a wider variety of oculometrics, in addition to saccadic metrics and pupillary responses, including nonlinear and combinatorial features as well as blink- and fixation-related metrics to develop biomarkers to trace age-related irregularities associated with cognitive and neural deficits.
Collapse
Affiliation(s)
- Ramtin Z Marandi
- Department of Health Science & Technology, Aalborg University, Aalborg E 9220, Denmark
| | - Parisa Gazerani
- Department of Health Science & Technology, Aalborg University, Aalborg E 9220, Denmark
| |
Collapse
|
28
|
Liu Z, Wang W, Huang T, Wang C, Huang Y, Tang Y, Huang J. CH(II), a cerebroprotein hydrolysate, exhibits potential neuro-protective effect on Alzheimer's disease. PLoS One 2019; 14:e0222757. [PMID: 31545823 PMCID: PMC6756745 DOI: 10.1371/journal.pone.0222757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/07/2019] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, and is the most common type of cognitive impairment and dementia. There is a pressing need to improve the clinical efficacy and quality of life for AD patients, as limited treatments options for AD patients have been developed until now. In this study, we aim to investigate the protective effect of CH(II), a cerebroprotein hydrolysate consisted of abundant biological peptides, on preclinical model of AD. We found that CH(II) treatment effectively protects oxygen glucose deprivation (OGD)-induced N2A cell viability impairment and cell apoptosis. In addition, CH(II) significantly reduces H2O2-induced ROS accumulation and exhibits the protective activities against H2O2-induced oxidative injury. Intriguingly, we found that CH(II) treatment can effectively promote neurite outgrowth of N2A cells. Moreover, CH(II) obviously improve the cognitive and memorial function in scopolamine-induced amnesia mice model. Taken together, this study provides evidences of the neuroprotective activities of CH(II) and offers a potential therapeutic strategy for AD patients.
Collapse
Affiliation(s)
- Zehui Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wanyan Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Tingyu Huang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Cunfang Wang
- Guangdong Long Fu Pharmaceutical Co., Ltd, Guangdong, China
| | - Ying Huang
- Guangdong Institute for Drug Control, Guangdong, China
| | - Yong Tang
- Department of Urology, Wuming Hospital of Guangxi Medical University, Guangxi, China
| | - Jin Huang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|