1
|
Li Q, Maierheba K. Identification and role of differentially expressed genes/proteins between pulmonary tuberculosis patients and controls across lung tissues and blood samples. Immun Inflamm Dis 2024; 12:e1350. [PMID: 39023413 PMCID: PMC11256885 DOI: 10.1002/iid3.1350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Differentially expressed genes/proteins (DEGs/DEPs) play critical roles in pulmonary tuberculosis (PTB) diagnosis and treatment. However, there is a scarcity of reports on DEGs/DEPs in lung tissues and blood samples in PTB patients. OBJECTIVE We aim to identify the DEGs/DEPs in lung tissues and blood samples of PTB patients and investigate their roles in PTB. MATERIALS AND METHODS The lung granulomas and normal tissues were collected from PTB patients for proteomic and transcriptomic analyses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses annotated the functions of DEGs/DEPs. The GSE107994 data set was downloaded to identify the DEGs/DEPs in peripheral blood. The common DEGs and DEPs were identified. A nomogram was established. Pearson correlation analysis was conducted. RESULTS Eighty-three DEGs/DEPs were identified. These DEGs/DEPs were mainly enriched in the movement of cell or subcellular components, regulation of cellular component biogenesis, and actin filament-based process as well as in the pathways of inositol phosphate metabolism, adherens junction, phosphatidylinositol signaling system, leukocyte transendothelial migration, regulation of actin cytoskeleton, and tight junction. There were eight common DEGs/DEPs (TYMP, LAP3, ADGRL2, SIL1, LMO7, SULF 1, ANXA3, and PACSIN3) between the lung tissues and blood samples. They were effective in predicting tuberculosis. Moreover, the activated dendritic cells, macrophages, monocytes, neutrophils, and regulatory T cells were significantly positively correlated with TYMP (r > .50), LAP3 (r > .50), SIL1 (r > .50), ANXA3 (r > .5), and PACSIN3 (r < .50), while negatively correlated with LMO7 (r < -0.50) (p < .05). ADGRL2 and SULF1 did not have a significant correlation (p > .05). LIMITATIONS The sample size was small. CONCLUSIONS Eight common DEGs/DEPs of lung tissues and blood samples were identified. They were correlated with immune cells and demonstrated predictive value for PTB. Our data may facilitate the diagnosis and treatment of PTB.
Collapse
Affiliation(s)
- Qifeng Li
- Xinjiang Hospital of Beijing Children's HospitalChildren's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Institute of PediatricsUrumqiChina
| | - Kuerbanjiang Maierheba
- Department of Nutrition and Food Hygiene, College of Public HealthXinjiang Medical UniversityUrumqiChina
| |
Collapse
|
2
|
Lee RJ, Adappa ND, Palmer JN. Effects of Akt Activator SC79 on Human M0 Macrophage Phagocytosis and Cytokine Production. Cells 2024; 13:902. [PMID: 38891035 PMCID: PMC11171788 DOI: 10.3390/cells13110902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Akt is an important kinase in metabolism. Akt also phosphorylates and activates endothelial and neuronal nitric oxide (NO) synthases (eNOS and nNOS, respectively) expressed in M0 (unpolarized) macrophages. We showed that e/nNOS NO production downstream of bitter taste receptors enhances macrophage phagocytosis. In airway epithelial cells, we also showed that the activation of Akt by a small molecule (SC79) enhances NO production and increases levels of nuclear Nrf2, which reduces IL-8 transcription during concomitant stimulation with Toll-like receptor (TLR) 5 agonist flagellin. We hypothesized that SC79's production of NO in macrophages might likewise enhance phagocytosis and reduce the transcription of some pro-inflammatory cytokines. Using live cell imaging of fluorescent biosensors and indicator dyes, we found that SC79 induces Akt activation, NO production, and downstream cGMP production in primary human M0 macrophages. This was accompanied by a reduction in IL-6, IL-8, and IL-12 production during concomitant stimulation with bacterial lipopolysaccharide, an agonist of pattern recognition receptors including TLR4. Pharmacological inhibitors suggested that this effect was dependent on Akt and Nrf2. Together, these data suggest that several macrophage immune pathways are regulated by SC79 via Akt. A small-molecule Akt activator may be useful in some infection settings, warranting future in vivo studies.
Collapse
Affiliation(s)
- Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (N.D.A.); (J.N.P.)
| |
Collapse
|
3
|
Taghiloo S, Ajami A, Alizadeh-Navaei R, Asgarian-Omran H. Combination therapy of acute myeloid leukemia by dual PI3K/mTOR inhibitor BEZ235 and TLR-7/8 agonist R848 in murine model. Int Immunopharmacol 2023; 125:111211. [PMID: 37956488 DOI: 10.1016/j.intimp.2023.111211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Due to the high relapse rate and toxicity of the common therapies in patients with acute myeloid leukemia (AML), modifications in the treatment strategies are required. The present study was conducted to determine the effects of combinational therapy with a dual PI3K/mTOR inhibitor, BEZ235, and TLR7/8 agonist, R848, on murine AML model. METHODS BEZ235 and R848 were administered to AML leukemic mice in either a single or combination treatment. Frequency of T-CD4+, T-CD8+, MDSCs, NK, exhausted T cells and the degranulation levels was measured via flow cytometry. The cytotoxicity and proliferation levels were evaluated by MTT assay. Then, the expression of iNOS, arginase-1, PD-L1, Gal-9, PVR, IFN-γ, TNF-α, IL-4, IL-10, IL-12 and IL-17 was investigated by Real-Time PCR. Organomegaly, body weight and survival rate were also monitored. RESULTS Following combinational therapy with BEZ235 and R848, increasing in the frequency of anti-tumor immune cells including T-CD4+ cells and M1 macroghages, and decreasing in pro-tumor immune cells including MDSCs, exhausted T-CD4+ and T-CD8+ cells and also M2 macrophages were observed. The functional defects of immune cells in term of proliferation, cytotoxicity, degranulation, and cytokines expression were improved in leukemic mice after treatment with BEZ235 and R848. Finally, organomegaly, body weight and survival analysis showed significant improvements after treatment with BEZ235 and R848. CONCLUSION Taken together, we indicated that the combinational therapy with BEZ235 and R848 could be considered as a potential and powerful therapeutic option for AML patients. Further clinical studies are required to expand our current findings.
Collapse
Affiliation(s)
- Saeid Taghiloo
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abolghasem Ajami
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
4
|
Lee J, Baek H, Jang J, Park J, Cha SR, Hong SH, Kim J, Lee JH, Hong IS, Wang SJ, Lee JY, Song MH, Yang SR. Establishment of a human induced pluripotent stem cell derived alveolar organoid for toxicity assessment. Toxicol In Vitro 2023; 89:105585. [PMID: 36931533 DOI: 10.1016/j.tiv.2023.105585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/20/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Alveolar epithelial cells (AECs) are vulnerable to injury, which can result in epithelial hyperplasia, apoptosis, and chronic inflammation. In this study, we developed human induced pluripotent stem cell (hiPS) cell-derived AECs (iAECs) and the iAECs based organoids (AOs) for testing AEC toxicity after chemical exposure. HiPS cells were cultured for 14 days with differentiation medium corresponding to each step, and the iAECs-based AOs were maintained for another 14 days. SFTPC and AQP5 were expressed in the AOs, and mRNA levels of SOX9, NKX2.1, GATA6, HOPX, and ID2 were increased. The AOs were exposed for 24 h to nine chemical substances, and IC50 values of the nine chemicals were determined using MTT assay. When the correlations between iAECs 2D culture and AOs 3D culture were calculated using Pearson's correlation coefficient r value, the nine chemicals that caused a significant decrease of cell viability in 3D culture were found to be highly correlated in 2D culture. The cytotoxicity and nitric oxide release in AO cultured with macrophages were then investigated. When AOs with macrophages were exposed to sodium chromate for 24 h, the IC50 value and nitric oxide production were higher than when the AOs were exposed alone. Taken together, the AO-based 3D culture system provides a useful platform for understanding biological characteristics of AECs and modeling chemical exposures.
Collapse
Affiliation(s)
- Jooyeon Lee
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyosin Baek
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jimin Jang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jaehyun Park
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Sang-Ryul Cha
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Jong-Hee Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - In-Sun Hong
- Environmental Health Research Department, Risk Assessment Division, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Seung-Jun Wang
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Ji Young Lee
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Myung Ha Song
- Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Se-Ran Yang
- Department of Thoracic and Cardiovascular Surgery, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea.
| |
Collapse
|
5
|
Agrawal S, Monteiro C, Baca CF, Mohammadi R, Subramanian V, de Melo Bento CA, Agrawal A. Metabolites and growth factors produced by airway epithelial cells induce tolerance in macrophages. Life Sci 2022; 302:120659. [PMID: 35623392 PMCID: PMC10081865 DOI: 10.1016/j.lfs.2022.120659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/21/2022] [Indexed: 11/27/2022]
Abstract
Macrophages play a role in preventing inflammation in the respiratory tract. To investigate the mechanisms that lead to tolerance in macrophages, we examined the crosstalk between airway epithelial cells (AECs) and macrophages using a 2D coculture model. Culture of macrophages with AECs led to a significant inhibition of LPS induced pro-inflammatory responses. More importantly, AECs induced the secretion of TGF-β and IL-10 from macrophages even in the absence of LPS stimulation. In addition, the expression of inhibitory molecule, CD200R was also upregulated on AEC exposed macrophages. Furthermore, the AECs exposed macrophages induced significantly increased level of T regulatory cells. Investigation into the possible mechanisms indicated that a combination of growth factor, G-CSF, and metabolites, Kynurenine and lactic acid produced by AECs is responsible for inducing tolerance in macrophages. Interestingly, all these molecules had differential effect on macrophages with G-CSF inducing TGF-β, Kynurenine elevating IL-10, and lactic acid upregulating CD200R. Furthermore, a cocktail of these factors/metabolites induced similar changes in macrophages as AEC exposure. Altogether, these data identify factors secreted by AECs that enhance tolerance in the respiratory tract. These mediators thus have the potential to be used for therapeutic purposes to modulate respiratory inflammation following local viral infections and lung diseases.
Collapse
Affiliation(s)
- Sudhanshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617
| | - Clarice Monteiro
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617; Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Rezaa Mohammadi
- Department of Materials Science and Engineering, University of California Irvine, CA 92617, USA; Sue and Bill Stem Cell Center, University of California Irvine, CA 92617, USA
| | - Veedamali Subramanian
- Division of Gastroenterology, Department of Medicine, University of California Irvine, CA 92617, USA
| | - Cleonice Alves de Melo Bento
- Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Microbiology, Immunology and Parasitology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Anshu Agrawal
- Division of Basic and Clinical Immunology, Department of Medicine, University of California Irvine, CA, USA 92617.
| |
Collapse
|
6
|
The Association between Circulating microRNAs and the Risk of Active Disease Development from Latent Tuberculosis Infection: a Nested Case-Control Study. Microbiol Spectr 2022; 10:e0262521. [PMID: 35435753 PMCID: PMC9241859 DOI: 10.1128/spectrum.02625-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis (TB) remains one of the deadliest communicable diseases. Biomarkers predicting the risk of active disease development from latent tuberculosis infection (LTBI) are urgently needed for precise intervention. This study aimed to identify potential circulating microRNAs (miRNAs) playing such a role in Chinese population. Based on a prospective study aiming to track the development of active TB among rural residents with LTBI, the baseline levels of circulating miRNAs were retrospectively compared between those who developed TB (case group) and those age-gender matched controls remain free of TB (contraol group) during the follow-up. Agilent human miRNA microarray were used to select differently expressed circulating miRNAs and verified by subsequent real-time quantitative PCR (RT-qPCR). Six candidate miRNAs were expressed at statistically significant levels between the two groups at the baseline, as determined by microarray. Following verification among 150 study participants by RT-qPCR, the levels of hsa-miR-16-5p (P < 0.001) and hsa-miR-451a (P < 0.001) were found to be significantly lower in case group compared to control group. The combined areas under curves (AUCs) and precision-recall curves (PRCs) were 0.84, 0.86 and 0.85, 0.87 for hsa-miR-16-5p and hsa-miR-451a, respectively. hsa-miR-451a combined with body mass index (BMI) and prior history of TB presented the best performance, with a sensitivity of 80.82% and an acceptable specificity of 79.22%. After adjusting the two co-variables, the AUC of hsa-miR-451a was 0.78. Circulating levels of hsa-miR-451a showed potential to predict development of active TB from LTBI in a Chinese population. Further studies are warranted to verify these findings in varied study settings. IMPORTANCE Approximately a quarter of the world population are infected with M. tuberculosis and about 5% to 10% of these might develop active disease in their lifetime. Preventive treatment could effectively protect individuals at a high risk of developing active disease from LTBI, and is regarded as a critical component of End TB Strategies. Biomarkers which could accurately identify high-risk population and predict the risk of disease development are urgently needed for developing local guidelines of LTBI management and precise intervention. A nested case-control study was designed to explore possible microRNAs related with TB occurrence based on a previous prospective study, which aimed to track the development of active TB among rural residents with LTBI. The baseline circulating levels of hsa-miR-16-5p and hsa-miR-451a were significantly lower in TB cases compared to those in LTBI controls. Further receiver operator characteristic (ROC) curve analysis found that hsa-miR-451a showed considerable potential to predict the development of active TB from LTBI.
Collapse
|
7
|
Identification of Key CircRNAs Related to Pulmonary Tuberculosis Based on Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1717784. [PMID: 35419455 PMCID: PMC9001091 DOI: 10.1155/2022/1717784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 03/01/2022] [Indexed: 12/14/2022]
Abstract
Pulmonary tuberculosis (TB) is a chronic infectious disease that is caused by respiratory infections, principally Mycobacterium tuberculosis. Increasingly, studies have shown that circular (circ)RNAs play regulatory roles in different diseases through different mechanisms. However, their roles and potential regulatory mechanisms in pulmonary TB remain unclear. In this study, we analyzed circRNA sequencing data from adjacent normal and diseased tissues from pulmonary TB patients and analyzed the differentially expressed genes. We then constructed machine learning models and used single-factor analysis to identify hub circRNAs. We downloaded the pulmonary TB micro (mi)RNA (GSE29190) and mRNA (GSE83456) gene expression datasets from the Gene Expression Omnibus database and performed differential expression analysis to determine the differentially expressed miRNAs and mRNAs. We also constructed a circRNA–miRNA–mRNA interaction network using Cytoscape. Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis were used to predict the biological functions of the identified RNAs and determine hub genes. Then, the STRING database and cytoHubba were used to construct protein-protein interaction networks. The results showed 125 differentially expressed circRNAs in the adjacent normal and diseased tissues of pulmonary TB patients. Among them, we identified three hub genes associated with the development of pulmonary TB: hsa_circ_0007919 (upregulated), hsa_circ_0002419 (downregulated), and hsa_circ_0005521 (downregulated). Through further screening, we determined 16 mRNAs of potential downstream genes for hsa-miR-409-5p and hsa_circ_0005521 and established an interaction network. This network may have important roles in the occurrence and development of pulmonary TB. We constructed a model with 100% prediction accuracy by machine learning and single-factor analysis. We constructed a protein-protein interaction network among the top 50 hub mRNAs, with FBXW7 scoring the highest and SOCS3 the second highest. These results may provide a new reference for the identification of candidate markers for the early diagnosis and treatment of pulmonary TB.
Collapse
|
8
|
AKT Isoforms in Macrophage Activation, Polarization, and Survival. Curr Top Microbiol Immunol 2022; 436:165-196. [DOI: 10.1007/978-3-031-06566-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Chen MY, Ye XJ, He XH, Ouyang DY. The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation 2021; 44:1229-1245. [PMID: 34009550 DOI: 10.1007/s10753-021-01439-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/30/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
The NLRP3 inflammasome is a multi-molecular complex that acts as a molecular platform to mediate caspase-1 activation, leading to IL-1β/IL-18 maturation and release in cells stimulated by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This inflammasome plays an important role in the innate immunity as its activation can further promote the occurrence of inflammation, enhance the ability of host to remove pathogens, and thus facilitate the repair of injured tissues. But if the inflammasome activation is dysregulated, it will cause the development of various inflammatory diseases and metabolic disorders. Therefore, under normal conditions, the activation of inflammasome is tightly regulated by various positive and negative signaling pathways to respond to the stimuli without damaging the host itself while maintaining homeostasis. In this review, we summarize recent advances in the major signaling pathways (including TLRs, MAPK, mTOR, autophagy, PKA, AMPK, and IFNR) that regulate NLRP3 inflammasome activation, providing a brief view of the molecular network that regulates this inflammasome as a theoretical basis for therapeutic intervention of NLRP3 dysregulation-related diseases.
Collapse
Affiliation(s)
- Ming-Ye Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xun-Jia Ye
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Hall TJ, Mullen MP, McHugo GP, Killick KE, Ring SC, Berry DP, Correia CN, Browne JA, Gordon SV, MacHugh DE. Integrative genomics of the mammalian alveolar macrophage response to intracellular mycobacteria. BMC Genomics 2021; 22:343. [PMID: 33980141 PMCID: PMC8117616 DOI: 10.1186/s12864-021-07643-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Bovine TB (bTB), caused by infection with Mycobacterium bovis, is a major endemic disease affecting global cattle production. The key innate immune cell that first encounters the pathogen is the alveolar macrophage, previously shown to be substantially reprogrammed during intracellular infection by the pathogen. Here we use differential expression, and correlation- and interaction-based network approaches to analyse the host response to infection with M. bovis at the transcriptome level to identify core infection response pathways and gene modules. These outputs were then integrated with genome-wide association study (GWAS) data sets to enhance detection of genomic variants for susceptibility/resistance to M. bovis infection. Results The host gene expression data consisted of RNA-seq data from bovine alveolar macrophages (bAM) infected with M. bovis at 24 and 48 h post-infection (hpi) compared to non-infected control bAM. These RNA-seq data were analysed using three distinct computational pipelines to produce six separate gene sets: 1) DE genes filtered using stringent fold-change and P-value thresholds (DEG-24: 378 genes, DEG-48: 390 genes); 2) genes obtained from expression correlation networks (CON-24: 460 genes, CON-48: 416 genes); and 3) genes obtained from differential expression networks (DEN-24: 339 genes, DEN-48: 495 genes). These six gene sets were integrated with three bTB breed GWAS data sets by employing a new genomics data integration tool—gwinteR. Using GWAS summary statistics, this methodology enabled detection of 36, 102 and 921 prioritised SNPs for Charolais, Limousin and Holstein-Friesian, respectively. Conclusions The results from the three parallel analyses showed that the three computational approaches could identify genes significantly enriched for SNPs associated with susceptibility/resistance to M. bovis infection. Results indicate distinct and significant overlap in SNP discovery, demonstrating that network-based integration of biologically relevant transcriptomics data can leverage substantial additional information from GWAS data sets. These analyses also demonstrated significant differences among breeds, with the Holstein-Friesian breed GWAS proving most useful for prioritising SNPS through data integration. Because the functional genomics data were generated using bAM from this population, this suggests that the genomic architecture of bTB resilience traits may be more breed-specific than previously assumed. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07643-w.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Westmeath, N37 HD68, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Present address: Genuity Science, Cherrywood Business Park. Loughlinstown, Dublin, D18 K7W4, Ireland
| | - Siobhán C Ring
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Cork, P72 X050, Ireland
| | - Donagh P Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
11
|
Erratum to "Epithelial Cells Attenuate Toll-Like Receptor-Mediated Inflammatory Responses in Monocyte-Derived Macrophage-Like Cells to Mycobacterium tuberculosis by Modulating the PI3K/Akt/mTOR Signaling Pathway". Mediators Inflamm 2021; 2021:3710790. [PMID: 33814978 PMCID: PMC7987449 DOI: 10.1155/2021/3710790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/03/2022] Open
|
12
|
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020; 17:192. [PMID: 33298111 PMCID: PMC7726878 DOI: 10.1186/s12985-020-01463-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Wenjin Zheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Qing Xu
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Yiyuan Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Mogen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Weijie Zhai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | | | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|