1
|
Gaamouri N, Zouhal H, Suzuki K, Hammami M, Ghaith A, El Mouhab EH, Hackney AC, Laher I, Ounis OB. Effects of carob rich-polyphenols on oxidative stress markers and physical performance in taekwondo athletes. Biol Sport 2024; 41:277-284. [PMID: 39416491 PMCID: PMC11475014 DOI: 10.5114/biolsport.2022.106154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2011] [Accepted: 03/31/2021] [Indexed: 10/19/2024] Open
Abstract
Excessive exercise can induce cell damage and impair muscle function by generating oxidative stress. Carob rich phenolic components have attracted the attention of many researchers because of their antioxidant actions. We utilized a double-blind randomized placebo-controlled design to study the putative antioxidant role of six weeks of daily polyphenol supplementation on selected blood markers of oxidative stress and performance in taekwondo athletes. We studied the effects of daily supplementation with carob (40 g/d, for six-weeks) on performance levels and antioxidant capacity in 22 taekwondo athletes (age 21.9 ± 1.2 years; height 1.66 ± 0.34 m; weight 68.3 ± 16.9 kg; women = 10, men = 12) using a randomized, double-blinded study. Participants were divided into an experimental group (EG) or placebo group (PG). All athletes performed a frequency speed of kick test mult (FSKTmult) before and after a six-week training period. Superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were measured 5 min after a FSKTmult. Physical performances improved significantly after six weeks in EG compared to PG for kicks number per set (from set 1 to set 5: p = 0.032, d = 0.70; p = 0.020, d = 0.77; p = 0.001, d = 1.12; p = 0.001, d = 1.25; p = 0.003, d = 1.01), total kicks number (p = 0,002, d = 1.04), and kick decrement index (%) (p = 0.017, d = 0.13). There were significant increases in CAT (p = 0.001, d = 1.85) and SOD (p = 0.001, d = 1.98) activities and significant decreases in MDA levels (p = 0.002, d = 0.81) in the EG. Carob supplementation during a six-week training program reduced oxidative stress and improved physical performance levels in taekwondo athletes.
Collapse
Affiliation(s)
- Nawel Gaamouri
- Research Unit «Sport Performance, Health & Society», Higher Institute of Sport and Physical Education of Ksar Saîd, University of “La Manouba”, Tunis, Tunisia
- Higher Institute of Sport and Physical Education of Ksar Said, University of “La Manouba”, Tunis, Tunisia
| | - Hassane Zouhal
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) – EA 1274, F-35000 Rennes, France
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359–1192, Japan
| | - Mehrez Hammami
- Research Unit «Sport Performance, Health & Society», Higher Institute of Sport and Physical Education of Ksar Saîd, University of “La Manouba”, Tunis, Tunisia
- Higher Institute of Sport and Physical Education of Ksar Said, University of “La Manouba”, Tunis, Tunisia
| | - Aloui Ghaith
- Research Unit «Sport Performance, Health & Society», Higher Institute of Sport and Physical Education of Ksar Saîd, University of “La Manouba”, Tunis, Tunisia
| | - El Hafedh El Mouhab
- Univ Rennes, M2S (Laboratoire Mouvement, Sport, Santé) – EA 1274, F-35000 Rennes, France
| | - Anthony C. Hackney
- Department of Exercise & Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Omar Ben Ounis
- Higher Institute of Sport and Physical Education of Ksar Said, University of “La Manouba”, Tunis, Tunisia
- Tunisian Research Laboratory ‘‘Sport Performance Optimization’’, National Center of Medicine and Science in Sports, Tunis, Tunisia
| |
Collapse
|
2
|
Lee JW, Song S, Kim Y, Park SB, Han DH. Soccer's AI transformation: deep learning's analysis of soccer's pandemic research evolution. Front Psychol 2023; 14:1244404. [PMID: 37908810 PMCID: PMC10613686 DOI: 10.3389/fpsyg.2023.1244404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/13/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction This paper aims to identify and compare changes in trends and research interests in soccer articles from before and during the COVID-19 pandemic. Methods We compared research interests and trends in soccer-related journal articles published before COVID-19 (2018-2020) and during the COVID-19 pandemic (2021-2022) using Bidirectional Encoder Representations from Transformers (BERT) topic modeling. Results In both periods, we categorized the social sciences into psychology, sociology, business, and technology, with some interdisciplinary research topics identified, and we identified changes during the COVID-19 pandemic period, including a new approach to home advantage. Furthermore, Sports science and sports medicine had a vast array of subject areas and topics, but some similar themes emerged in both periods and found changes before and during COVID-19. These changes can be broadly categorized into (a) Social Sciences and Technology; (b) Performance training approaches; (c) injury part of body. With training topics being more prominent than match performance during the pandemic; and changes within injuries, with the lower limbs becoming more prominent than the head during the pandemic. Conclusion Now that the pandemic has ended, soccer environments and routines have returned to pre-pandemic levels, but the environment that have changed during the pandemic provide an opportunity for researchers and practitioners in the field of soccer to detect post-pandemic changes and identify trends and future directions for research.
Collapse
Affiliation(s)
- Jea Woog Lee
- Intelligent Information Processing Lab, Chung-Ang University, Seoul, Republic of Korea
| | - Sangmin Song
- Department of Artificial Intelligence, Chung-Ang University, Seoul, Republic of Korea
| | - YoungBin Kim
- Graduate School of Advanced Imaging Science, Multimedia and Film, Chung-Ang University, Seoul, Republic of Korea
| | - Seung-Bo Park
- Graduate School of Sports Medicine, CHA University, Seongnam-si, Republic of Korea
| | - Doug Hyun Han
- Department of Psychiatry, Chung Ang University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Nocella C, Cavarretta E, Fossati C, Pigozzi F, Quaranta F, Peruzzi M, De Grandis F, Costa V, Sharp C, Manara M, Nigro A, Cammisotto V, Castellani V, Picchio V, Sciarretta S, Frati G, Bartimoccia S, D’Amico A, Carnevale R. Dark Chocolate Intake Positively Modulates Gut Permeability in Elite Football Athletes: A Randomized Controlled Study. Nutrients 2023; 15:4203. [PMID: 37836487 PMCID: PMC10574486 DOI: 10.3390/nu15194203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Gut barrier disruption can lead to enhanced intestinal permeability, which allows endotoxins, pathogens, and other proinflammatory substances to move through the intestinal barrier into circulation. Intense exercise over a prolonged period increases intestinal permeability, which can be further worsened by the increased production of reactive oxygen species (ROS) and pro-inflammatory cytokines. The aim of this study was to assess the degree of intestinal permeability in elite football players and to exploit the effect of cocoa polyphenols on intestinal permeability induced by intensive physical exercise. Biomarkers of intestinal permeability, such as circulating levels of zonulin, a modulator of tight junctions, occludin, a tight junction protein, and LPS translocation, were evaluated in 24 elite football players and 23 amateur athletes. Moreover, 24 elite football players were randomly assigned to either a dark chocolate (>85% cocoa) intake (n = 12) or a control group (n = 12) for 30 days in a randomized controlled trial. Biochemical analyses were performed at baseline and after 30 days of chocolate intake. Compared to amateur athletes, elite football players showed increased intestinal permeability as indicated by higher levels of zonulin, occludin, and LPS. After 30 days of dark chocolate intake, decreased intestinal permeability was found in elite athletes consuming dark chocolate. In the control group, no changes were observed. In vitro, polyphenol extracts significantly improved intestinal damage in the human intestinal mucosa cell line Caco-2. These results indicate that chronic supplementation with dark chocolate as a rich source of polyphenols positively modulates exercise-induced intestinal damage in elite football athletes.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Federico Quaranta
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (C.F.); (F.P.); (F.Q.)
| | - Mariangela Peruzzi
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vincenzo Costa
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Carwyn Sharp
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Massimo Manara
- Associazione Sportiva (A.S.) Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy; (V.C.); (C.S.); (M.M.)
| | - Antonia Nigro
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, Via Trionfale 5952, 00136 Rome, Italy; (F.D.G.); (A.N.)
| | - Vittoria Cammisotto
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Valentina Castellani
- Department of General Surgery and Surgical Specialty, Sapienza University of Rome, 00161 Rome, Italy;
| | - Vittorio Picchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Simona Bartimoccia
- Department of Clinical, Internal Medicine, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (M.P.); (V.C.); (S.B.)
| | - Alessandra D’Amico
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 40100 Latina, Italy; (E.C.); (V.P.); (S.S.); (G.F.); (A.D.); (R.C.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
4
|
Effectiveness of supplementation with date seed (Phoenix dactylifera) as a functional food on inflammatory markers, muscle damage, and BDNF following high-intensity interval training: a randomized, double-blind, placebo-controlled trial. Eur J Nutr 2023:10.1007/s00394-023-03125-9. [PMID: 36881179 DOI: 10.1007/s00394-023-03125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE High-intensity interval training (HIIT) is one of the most effective protocols, even though acute HIIT causes inflammatory and oxidative damage. The aim of this study was to examine the effect of date seeds powder (DSP) during HIIT sessions on inflammation markers, oxidants and antioxidants, brain-derived neurotrophic factor (BDNF), exercise-induced muscle damage, and body composition. MATERIAL AND METHODS Thirty-six recreational runners (men and women), aged 18-35 years, were randomly assigned to consume 26 g/day of DSP or wheat bran powder during HIIT workouts for a period of 14 days. At baseline, at the end of the intervention, and 24 h after the intervention, blood samples were obtained to determine inflammatory, oxidant/antioxidant, and muscle damage markers, as well as BDNF. RESULTS DSP supplementation resulted in a significant downward trend in high-sensitivity C-reactive protein (Psupplement × time = 0.036), tumor necrosis factor alpha (Psupplement × time = 0.010), interleukin-6 (Psupplement × time = 0.047), malondialdehyde (Psupplement × time = 0.046), creatine kinase (Psupplement × time = 0.045), and lactate dehydrogenase (Psupplement × time = 0.040) after the intervention, as well as a significant increase in total antioxidant capacity (Psupplement × time ≤ 0.001). However, interleukin-10 (Psupplement × time = 0.523), interleukin-6/interleukin-10 (Psupplement × time = 0.061), BDNF (Psupplement × time = 0.160), and myoglobin (Psupplement × time = 0.095) levels did not change significantly in comparison to the placebo group. Moreover, analysis demonstrated that DSP supplementation over 2 weeks had no significant effect on body composition. CONCLUSION During the 2 weeks of the HIIT protocol, the consumption of date seed powder by participants who had engaged in moderate or high physical activity alleviated inflammation and muscle damage. ETHICS AND DISSEMINATION This study was approved by the Medical Ethics Committee of TBZMED (No.IR.TBZMED.REC.1399.1011). TRIAL REGISTRATION Iranian Registry of Clinical Trials website ( www.IRCt.ir/ , IRCT20150205020965N9).
Collapse
|
5
|
Volpe-Fix AR, de França E, Silvestre JC, Thomatieli-Santos RV. The Use of Some Polyphenols in the Modulation of Muscle Damage and Inflammation Induced by Physical Exercise: A Review. Foods 2023; 12:foods12050916. [PMID: 36900433 PMCID: PMC10001084 DOI: 10.3390/foods12050916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Food bioactive compounds (FBC) comprise a vast class of substances, including polyphenols, with different chemical structures, and they exert physiological effects on individuals who consume them, such as antioxidant and anti-inflammatory action. The primary food sources of the compounds are fruits, vegetables, wines, teas, seasonings, and spices, and there are still no daily recommendations for their intake. Depending on the intensity and volume, physical exercise can stimulate oxidative stress and muscle inflammation to generate muscle recovery. However, little is known about the role that polyphenols may have in the process of injury, inflammation, and muscle regeneration. This review aimed to relate the effects of supplementation with mentation with some polyphenols in oxidative stress and post-exercise inflammatory markers. The consulted papers suggest that supplementation with 74 to 900 mg of cocoa, 250 to 1000 mg of green tea extract for around 4 weeks, and 90 mg for up to 5 days of curcumin can attenuate cell damage and inflammation of stress markers of oxidative stress during and after exercise. However, regarding anthocyanins, quercetins, and resveratrol, the results are conflicting. Based on these findings, the new reflection that was made is the possible impact of supplementation associating several FBCs simultaneously. Finally, the benefits discussed here do not consider the existing divergences in the literature. Some contradictions are inherent in the few studies carried out so far. Methodological limitations, such as supplementation time, doses used, forms of supplementation, different exercise protocols, and collection times, create barriers to knowledge consolidation and must be overcome.
Collapse
Affiliation(s)
| | - Elias de França
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
| | - Jean Carlos Silvestre
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Campus Rosinha Viegas, Universidade Metropolitana de Santos, Santos 11045-002, Brazil
- Center for Applied Social Sciences, Universidade Católica de Santos, Santos 11015-002, Brazil
| | - Ronaldo Vagner Thomatieli-Santos
- Postgraduate Program in Psychobiology, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Interdisciplinary Postgraduate Program in Health Sciences, Universidade Federal de São Paulo, Sao Paulo 05508-070, Brazil
- Correspondence:
| |
Collapse
|
6
|
Kolonas A, Vareltzis P, Kiroglou S, Goutzourelas N, Stagos D, Trachana V, Tsadila C, Mossialos D, Mourtakos S, Gortzi O. Antioxidant and Antibacterial Properties of a Functional Sports Beverage Formulation. Int J Mol Sci 2023; 24:ijms24043558. [PMID: 36834967 PMCID: PMC9959907 DOI: 10.3390/ijms24043558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Athletes often consume functional beverages in order to improve performance and reduce oxidative stress caused by high-intensity exercise. The present study aimed to evaluate the antioxidant and antibacterial properties of a functional sports beverage formulation. The beverage's antioxidant effects were assessed on human mesenchymal stem cells (MSCs) by determining thiobarbituric acid reactive substances (TBARS; TBARS levels decreased significantly by 52.67% at 2.0 mg/mL), total antioxidant capacity (TAC; TAC levels increased significantly by 80.82% at 2.0 mg/mL) and reduced glutathione (GSH; GSH levels increased significantly by 24.13% at 2.0 mg/mL) levels. Furthermore, the beverage underwent simulated digestion following the INFOGEST protocol to assess its oxidative stability. The analysis of the total phenolic content (TPC) using the Folin-Ciocalteu assay revealed that the beverage contained a TPC of 7.58 ± 0.066 mg GAE/mL, while the phenolics identified by HPLC were catechin (2.149 mg/mL), epicatechin (0.024 mg/mL), protocatechuic acid (0.012 mg/mL), luteolin 7-glucoside (0.001 mg/mL), and kaempferol-3-O-β-rutinoside (0.001 mg/mL). The beverage's TPC was strongly correlated with TAC (R2 = 896). Moreover, the beverage showcased inhibitory and bacteriostatic effects against Staphylococcus aureus and Pseudomonas aeruginosa. Lastly, the sensory acceptance test demonstrated that the functional sports beverage was well accepted by the assessors.
Collapse
Affiliation(s)
- Alexandros Kolonas
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
| | - Patroklos Vareltzis
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Smaro Kiroglou
- Laboratory of Food and Agricultural Industries Technologies, Chemical Engineering Department, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Nikolaos Goutzourelas
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Biopolis, 415 00 Larissa, Greece
| | - Christina Tsadila
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Dimitris Mossialos
- Microbial Biotechnology-Molecular Bacteriology-Virology Laboratory, Department of Biochemistry & Biotechnology, University of Thessaly, 415 00 Larissa, Greece
| | - Stamatis Mourtakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University of Athens, 176 71 Athens, Greece
| | - Olga Gortzi
- Department of Agriculture Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece
- Correspondence:
| |
Collapse
|
7
|
D’Amico A, Fossati C, Pigozzi F, Borrione P, Peruzzi M, Bartimoccia S, Saba F, Pingitore A, Biondi-Zoccai G, Petramala L, De Grandis F, Vecchio D, D’Ambrosio L, Schiavon S, Sciarra L, Nocella C, Cavarretta E. Natural Activators of Autophagy Reduce Oxidative Stress and Muscle Injury Biomarkers in Endurance Athletes: A Pilot Study. Nutrients 2023; 15:nu15020459. [PMID: 36678330 PMCID: PMC9862446 DOI: 10.3390/nu15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Oxidative stress and impaired autophagy are directly and indirectly implicated in exercise-mediated muscle injury. Trehalose, spermidine, nicotinamide, and polyphenols possess pro-autophagic and antioxidant properties, and could therefore reduce exercise-induced damage to skeletal muscle. The aim of this study was to investigate whether a mixture of these compounds was able to improve muscle injury biomarkers in endurance athletes through the modulation of oxidative stress and autophagic machinery. METHODS AND RESULTS sNOX2-dp; H2O2 production; H2O2 breakdown activity (HBA); ATG5 and p62 levels, both markers of autophagic process; and muscle injury biomarkers were evaluated in five endurance athletes who were allocated in a crossover design study to daily administration of 10.5 g of an experimental mixture or no treatment, with evaluations conducted at baseline and after 30 days of mixture consumption. Compared to baseline, the mixture intake led to a remarkable reduction of oxidative stress and positively modulated autophagy. Finally, after the 30-day supplementation period, a significant decrease in muscle injury biomarkers was found. CONCLUSION Supplementation with this mixture positively affected redox state and autophagy and improved muscle injury biomarkers in athletes, allowing for better muscle recovery. Moreover, it is speculated that this mixture could also benefit patients suffering from muscle injuries, such as cancer or cardiovascular patients, or elderly subjects.
Collapse
Affiliation(s)
- Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Simona Bartimoccia
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | | | - Annachiara Pingitore
- Department of General and Specialistic Surgery “Paride Stefanini”, Sapienza University of Rome, 00161 Rome, Italy
| | - Giuseppe Biondi-Zoccai
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Petramala
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Centre of Excellence, 00135 Rome, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luca D’Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Sonia Schiavon
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Luigi Sciarra
- Department of Clinical Medicine, Public Health, Life and Environmental Sciences, University of L’Aquila, 67100 Coppito, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel./Fax: +39-064-9970-102
| | - Elena Cavarretta
- Mediterranea Cardiocentro, 80122 Naples, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| |
Collapse
|
8
|
Bojarczuk A, Dzitkowska-Zabielska M. Polyphenol Supplementation and Antioxidant Status in Athletes: A Narrative Review. Nutrients 2022; 15:nu15010158. [PMID: 36615815 PMCID: PMC9823453 DOI: 10.3390/nu15010158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Antioxidants in sports exercise training remain a debated research topic. Plant-derived polyphenol supplements are frequently used by athletes to reduce the negative effects of exercise-induced oxidative stress, accelerate the recovery of muscular function, and enhance performance. These processes can be efficiently modulated by antioxidant supplementation. The existing literature has failed to provide unequivocal evidence that dietary polyphenols should be promoted specifically among athletes. This narrative review summarizes the current knowledge regarding polyphenols' bioavailability, their role in exercise-induced oxidative stress, antioxidant status, and supplementation strategies in athletes. Overall, we draw attention to the paucity of available evidence suggesting that most antioxidant substances are beneficial to athletes. Additional research is necessary to reveal more fully their impact on exercise-induced oxidative stress and athletes' antioxidant status, as well as optimal dosing methods.
Collapse
|
9
|
Silva TDP, Silva AA, Toffolo MCF, de Aguiar AS. The action of phytochemicals present in cocoa in the prevention of vascular dysfunction and atherosclerosis. J Clin Transl Res 2022; 8:509-551. [PMID: 36452001 PMCID: PMC9706317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/09/2022] [Accepted: 07/27/2022] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Chronic non-communicable diseases, including cardiovascular diseases (CVDs), have caused many deaths worldwide. Atherosclerotic plaque formation is common in individuals with CVDs. Thus, antioxidant and anti-inflammatory nutritional strategies can be used to prevent or inhibit this process. Due to its higher concentrations of cocoa, dark chocolate is considered a functional food due to the presence and action of phytochemical compounds, with anti-inflammatory and antioxidant actions. However, the recommended amounts of these compounds to prevent atherosclerosis have not yet been fully elucidated. AIM The aim of the studywas to review the effects of cocoa and dark chocolate intake on the prevention of cardiovascular dysfunction and atherosclerosis. METHODS This narrative review was based on a search of PubMed and Lilacs. The search was conducted from September 2021 to February 2022 using the following keywords: flavonoids, cocoa, atherosclerosis, oxidative stress, and inflammation. The inclusion criteria were original articles, meta-analyses, and experimental and clinical studies published between 2002 and 2022 in English, focusing on the subject addressed. The exclusion criteria were the title and abstract reading and duplication of articles in the databases. RESULTS The antioxidant and anti-inflammatory functions of phytochemicals in cocoa and dark chocolate are related to the modulation of nitric oxide through activation/phosphorylation and acting as a vasodilator. Furthermore, these phytochemicals reduce the formation of reactive oxygen species and activate antioxidant enzymes. The anti-inflammatory activities are related to the modulation of nuclear factor kappa B in the reduction of inflammatory markers, such as tumor necrosis factor-alpha, C-reactive protein, and pro-inflammatory cytokines, as well as in the reduction of adhesion molecules in the wall of the vases. CONCLUSION The main phytochemicals present in cocoa and dark chocolates are catechins and their epicatechin isomers, which are responsible for improving inflammatory, metabolic, and antioxidant profiles. Its consumption can be encouraged, but with caution, owing to the caloric supply and forms of chocolate production, as these factors can reduce the presence of flavonoids in its composition. RELEVANCE FOR PATIENTS The antioxidant and anti-inflammatory functions of the phytochemicals in cocoa and dark chocolate are responsible for modulating nitric oxide via activation/phosphorylation and acting as a vasodilator. Reducing the formation of reactive oxygen species, as well as activating antioxidant enzymes. As for the anti-inflammatory activities, they modulate the nuclear factor kappa B, reducing inflammatory markers, thus improving the antioxidant and inflammatory profile of these patients.
Collapse
Affiliation(s)
- Thayzis de Paula Silva
- School of Nutrition, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Aline Andressa Silva
- Department of Nutrition, Institute of Biological Sciences, Federal University of Juiz de Fora, University City, São Pedro, Juiz de Fora, Minas Gerais, Brazil
| | - Mayla Cardoso Fernandes Toffolo
- School of Nutrition, Department of Clinical and Social Nutrition, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Aline Silva de Aguiar
- Department of Nutrition and Dietetics, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Flavanol-Rich Cocoa Supplementation Inhibits Mitochondrial Biogenesis Triggered by Exercise. Antioxidants (Basel) 2022; 11:antiox11081522. [PMID: 36009241 PMCID: PMC9405215 DOI: 10.3390/antiox11081522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
The potential role of cocoa supplementation in an exercise context remains unclear. We describe the effects of flavanol-rich cocoa supplementation during training on exercise performance and mitochondrial biogenesis. Forty-two male endurance athletes at the beginning of the training season received either 5 g of cocoa (425 mg of flavanols) or maltodextrin (control) daily for 10 weeks. Two different doses of cocoa (equivalent to 5 g and 15 g per day of cocoa for a 70 kg person) were tested in a mouse exercise training study. In the athletes, while both groups had improved exercise performance, the maximal aerobic speed increased only in the control group. A mitochondrial DNA analysis revealed that the control group responded to training by increasing the mitochondrial load whereas the cocoa group showed no increase. Oxidative stress was lower in the cocoa group than in the control group, together with lower interleukin-6 levels. In the muscle of mice receiving cocoa, we corroborated an inhibition of mitochondrial biogenesis, which might be mediated by the decrease in the expression of nuclear factor erythroid-2-related factor 2. Our study shows that supplementation with flavanol-rich cocoa during the training period inhibits mitochondrial biogenesis adaptation through the inhibition of reactive oxygen species generation without impacting exercise performance.
Collapse
|
11
|
Morawska-Tota M, Tota Ł, Tkaczewska J. Influence of 5-Week Snack Supplementation with the Addition of Gelatin Hydrolysates from Carp Skins on Pro-Oxidative and Antioxidant Balance Disturbances (TOS, TAS) in a Group of Athletes. Antioxidants (Basel) 2022; 11:antiox11071314. [PMID: 35883805 PMCID: PMC9311642 DOI: 10.3390/antiox11071314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The research objective was to assess the effects of 5-week snack supplementation with added enzymatic hydrolysates from carp skins on shifts in pro-oxidative and antioxidant balance among athletes. The study comprised 49 adults (experimental group (E)—17, placebo (P)—16, control (C)—16) practicing endurance disciplines. Selected somatic indices and maximal oxygen uptake/m (VO2max) were measured. Based on VO2max, an individual exercise intensity was selected with predominating eccentric contractions (60% VO2max). The conducted tests consisted of 2 series (1st—graded and eccentric, 2nd—eccentric). The experimental group consumed a snack with added gelatin hydrolysates from carp skins for 5 weeks in between the series, the placebo—a snack without added hydrolysates, and in the control—no supplementation was implemented. Blood samples were taken before, and 1, 24 and 48 h after completion of the eccentric test. TAS and TOC concentrations in the blood plasma were assessed. No significant changes in TOS/TOC and TAS/TAC concentrations were noted between the 1st and the 2nd test series, before or following the eccentric test in the control and placebo groups. In the measurements performed 1, 24 and 48 h after completion, the observed differences were highly significant (p < 0.001). After 5 weeks of snack consumption, an increase from medium to high antioxidant potential was observed for E. Differences between the 1st and the 2nd test series were of high statistical significance (p < 0.001). The demonstrated differences in pro-oxidative-antioxidant balance indices between successive series allow to confirm antioxidant effects and indicate possibilities for its implementation, not only in sports.
Collapse
Affiliation(s)
- Małgorzata Morawska-Tota
- Department of Sports Medicine & Human Nutrition, Faculty of Physical Education and Sport, University of Physical Education, al. Jana Pawła II 78, 31-537 Kraków, Poland
- Correspondence: ; Tel.: +48-12-683-11-45
| | - Łukasz Tota
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education, al. Jana Pawła II 78, 31-537 Kraków, Poland;
| | - Joanna Tkaczewska
- Department of Animal Product Technology, Faculty of Food Technology, University of Agriculture, al. Balicka 122, 30-149 Kraków, Poland;
| |
Collapse
|
12
|
Munguía L, Ortiz M, González C, Portilla A, Meaney E, Villarreal F, Nájera N, Ceballos G. Beneficial Effects of Flavonoids on Skeletal Muscle Health: A Systematic Review and Meta-Analysis. J Med Food 2022; 25:465-486. [PMID: 35394826 DOI: 10.1089/jmf.2021.0054] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle (SkM) is a highly dynamic tissue that responds to physiological adaptations or pathological conditions, and SkM mitochondria play a major role in bioenergetics, regulation of intracellular calcium homeostasis, pro-oxidant/antioxidant balance, and apoptosis. Flavonoids are polyphenolic compounds with the ability to modulate molecular pathways implicated in the development of mitochondrial myopathy. Therefore, it is pertinent to explore its potential application in conditions such as aging, disuse, denervation, diabetes, obesity, and cancer. To evaluate preclinical and clinical effects of flavonoids on SkM structure and function. We performed a systematic review of published studies, with no date restrictions applied, using PubMed and Scopus. The following search terms were used: "flavonoids" OR "flavanols" OR "flavones" OR "anthocyanidins" OR "flavanones" OR "flavan-3-ols" OR "catechins" OR "epicatechin" OR "(-)-epicatechin" AND "skeletal muscle." The studies included in this review were preclinical studies, clinical trials, controlled clinical trials, and randomized-controlled trials that investigated the influence of flavonoids on SkM health. Three authors, independently, assessed trials for the review. Any disagreement was resolved by consensus. The use of flavonoids could be a potential tool for the prevention of muscle loss. Their effects on metabolism and on mitochondria function suggest their use as muscle regulators.
Collapse
Affiliation(s)
- Levy Munguía
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Miguel Ortiz
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Cristian González
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Andrés Portilla
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Eduardo Meaney
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Nayelli Nájera
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| | - Guillermo Ceballos
- Higher School of Medicine, Instituto Politécnico Nacional, Mexico City, México
| |
Collapse
|
13
|
Gonçalves AC, Gaspar D, Flores-Félix JD, Falcão A, Alves G, Silva LR. Effects of Functional Phenolics Dietary Supplementation on Athletes' Performance and Recovery: A Review. Int J Mol Sci 2022; 23:4652. [PMID: 35563043 PMCID: PMC9102074 DOI: 10.3390/ijms23094652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, many efforts have been made to identify micronutrients or nutritional strategies capable of preventing, or at least, attenuating, exercise-induced muscle damage and oxidative stress, and improving athlete performance. The reason is that most exercises induce various changes in mitochondria and cellular cytosol that lead to the generation of reactive species and free radicals whose accumulation can be harmful to human health. Among them, supplementation with phenolic compounds seems to be a promising approach since their chemical structure, composed of catechol, pyrogallol, and methoxy groups, gives them remarkable health-promoting properties, such as the ability to suppress inflammatory processes, counteract oxidative damage, boost the immune system, and thus, reduce muscle soreness and accelerate recovery. Phenolic compounds have also already been shown to be effective in improving temporal performance and reducing psychological stress and fatigue. Therefore, the aim of this review is to summarize and discuss the current knowledge on the effects of dietary phenolics on physical performance and recovery in athletes and sports practitioners. Overall, the reports show that phenolics exert important benefits on exercise-induced muscle damage as well as play a biological/physiological role in improving physical performance.
Collapse
Affiliation(s)
- Ana C. Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Dário Gaspar
- Department of Sport Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - José David Flores-Félix
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Amílcar Falcão
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal;
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; (A.C.G.); (J.D.F.-F.); (G.A.)
- CPIRN-UDI/IPG—Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| |
Collapse
|
14
|
Ruiz-Iglesias P, Massot-Cladera M, Rodríguez-Lagunas MJ, Franch À, Camps-Bossacoma M, Pérez-Cano FJ, Castell M. Protective Effect of a Cocoa-Enriched Diet on Oxidative Stress Induced by Intensive Acute Exercise in Rats. Antioxidants (Basel) 2022; 11:antiox11040753. [PMID: 35453438 PMCID: PMC9028332 DOI: 10.3390/antiox11040753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/06/2023] Open
Abstract
Intensive acute exercise can induce oxidative stress, leading to muscle damage and immune function impairment. Cocoa diet could prevent this oxidative stress and its consequences on immunity. Our aim was to assess the effect of a cocoa-enriched diet on the reactive oxygen species (ROS) production by peritoneal macrophages, blood immunoglobulin (Ig) levels, leukocyte counts, and the physical performance of rats submitted to an intensive acute exercise, as well as to elucidate the involvement of cocoa fiber in such effects. For this purpose, Wistar rats were fed either a standard diet, i.e., a diet containing 10% cocoa (C10), or a diet containing 5% cocoa fiber (CF) for 25 days. Then, half of the rats of each diet ran on a treadmill until exhaustion, and 16 h later, the samples were obtained. Both C10 and CF diets significantly prevented the increase in ROS production. However, neither the cocoa diet or the cocoa fiber-enriched diet prevented the decrease in serum IgG induced by acute exercise. Therefore, although the cocoa-enriched diet was able to prevent the excessive oxidative stress induced by intensive exercise, this was not enough to avoid the immune function impairment due to exercise.
Collapse
Affiliation(s)
- Patricia Ruiz-Iglesias
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Malén Massot-Cladera
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Mariona Camps-Bossacoma
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| | - Margarida Castell
- Secció de Fisiologia, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain; (P.R.-I.); (M.M.-C.); (M.J.R.-L.); (À.F.); (M.C.-B.)
- Institut de Recerca en Nutrició i Seguretat Alimentària (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.P.-C.); (M.C.); Tel.: +34-93-402-45-05 (F.J.P.-C. & M.C.)
| |
Collapse
|
15
|
D’Amico A, Cavarretta E, Fossati C, Borrione P, Pigozzi F, Frati G, Sciarretta S, Costa V, De Grandis F, Nigro A, Peruzzi M, Miraldi F, Saade W, Calogero A, Rosa P, Galardo G, Loffredo L, Pignatelli P, Nocella C, Carnevale R. Platelet Activation Favours NOX2-Mediated Muscle Damage in Elite Athletes: The Role of Cocoa-Derived Polyphenols. Nutrients 2022; 14:nu14081558. [PMID: 35458119 PMCID: PMC9030438 DOI: 10.3390/nu14081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Mechanisms of exercise-induced muscle injury with etiopathogenesis and its consequences have been described; however, the impact of different intensities of exercise on the mechanisms of muscular injury development is not well understood. The aim of this study was to exploit the relationship between platelet activation, oxidative stress and muscular injuries induced by physical exercise in elite football players compared to amateur athletes. Oxidant/antioxidant status, platelet activation and markers of muscle damage were evaluated in 23 elite football players and 23 amateur athletes. Compared to amateurs, elite football players showed lower antioxidant capacity and higher oxidative stress paralleled by increased platelet activation and muscle damage markers. Simple linear regression analysis showed that sNOX2-dp and H2O2, sCD40L and PDGF-bb were associated with a significant increase in muscle damage biomarkers. In vitro studies also showed that plasma obtained from elite athletes increased oxidative stress and muscle damage in human skeletal muscle myoblasts cell line compared to amateurs’ plasma, an effect blunted by the NOX2 inhibitor or by the cell treatment with cocoa-derived polyphenols. These results indicate that platelet activation increased muscular injuries induced by oxidative stress. Moreover, NOX2 inhibition and polyphenol extracts treatment positively modulates redox status and reduce exercise-induced muscular injury.
Collapse
Affiliation(s)
- Alessandra D’Amico
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy; (A.D.); (C.F.); (P.B.); (F.P.)
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Sebastiano Sciarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- IRCCS Neuromed, Località Camerelle, 86077 Pozzilli, Italy
| | - Vincenzo Costa
- AS Roma Football Club, Piazzale Dino Viola 1, 00128 Rome, Italy;
| | - Fabrizio De Grandis
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, 00135 Rome, Italy; (F.D.G.); (A.N.)
| | - Antonia Nigro
- Villa Stuart Sport Clinic, FIFA Medical Center of Excellence, 00135 Rome, Italy; (F.D.G.); (A.N.)
| | - Mariangela Peruzzi
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Wael Saade
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
| | | | - Lorenzo Loffredo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Pasquale Pignatelli
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
| | - Cristina Nocella
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, 00161 Rome, Italy; (F.M.); (W.S.); (L.L.)
- Correspondence: (C.N.); (R.C.)
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.C.); (G.F.); (S.S.); (A.C.); (P.R.)
- Mediterranea, Cardiocentro, 80122 Napoli, Italy; (M.P.); (P.P.)
- Correspondence: (C.N.); (R.C.)
| |
Collapse
|
16
|
Cardiovascular Effects of Chocolate and Wine-Narrative Review. Nutrients 2021; 13:nu13124269. [PMID: 34959821 PMCID: PMC8704773 DOI: 10.3390/nu13124269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023] Open
Abstract
The consumption of food for pleasure is mainly associated with adverse health effects. This review was carried out to verify recent reports on the impact of chocolate and wine consumption on cardiovascular health, with a particular focus on atherosclerosis. On one side, these products have proven adverse effects on the cardiovascular system, but on the other hand, if consumed in optimal amounts, they have cardiovascular benefits. The submitted data suggest that the beneficial doses are 30–50 g and 130/250 mL for chocolate and wine, respectively, for women and men. The accumulated evidence indicates that the active ingredients in the products under consideration in this review are phenolic compounds, characterized by anti-inflammatory, antioxidant, and antiplatelet properties. However, there are also some reports of cardioprotective properties of other compounds such as esters, amines, biogenic amines, amino acids, fatty acids, mineral ingredients, and vitamins. Our narrative review has shown that in meta-analyses of intervention studies, consumption of chocolate and wine was positively associated with the beneficial outcomes associated with the cardiovascular system. In contrast, the assessment with the GRADE (Grading of Recommendations Assessment, Development and Evaluation) scale did not confirm this phenomenon. In addition, mechanisms of action of bioactive compounds present in chocolate and wine depend on some factors, such as age, sex, body weight, and the presence of additional medical conditions. Patients using cardiovascular drugs simultaneously with both products should be alert to the risk of pharmacologically relevant interactions during their use. Our narrative review leads to the conclusion that there is abundant evidence to prove the beneficial impact of consuming both products on cardiovascular health, however some evidence still remains controversial. Many authors of studies included in this review postulated that well-designed, longitudinal studies should be performed to determine the effects of these products and their components on atherosclerosis and other CVD (Cardiovascular Disease) disease.
Collapse
|
17
|
Hooshmand Moghadam B, Bagheri R, Ghanavati M, Khodadadi F, Cheraghloo N, Wong A, Nordvall M, Suzuki K, Shabkhiz F. The Combined Effects of 6 Weeks of Jump Rope Interval Exercise and Dark Chocolate Consumption on Antioxidant Markers in Obese Adolescent Boys. Antioxidants (Basel) 2021; 10:1675. [PMID: 34829546 PMCID: PMC8614646 DOI: 10.3390/antiox10111675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Research has shown that both dark chocolate and exercise training may have favorable effects on antioxidant function in obese cohorts. However, their combined effect has not been established. We assessed the influences of six weeks of dark chocolate consumption combined with jump rope exercise on antioxidant markers in adolescent boys with obesity. Fifty adolescent boys with obesity (age = 15 ± 1 years) were randomly assigned into one of four groups; jump rope exercise + white chocolate consumption (JW; n = 13), jump rope exercise + dark chocolate consumption (JD; n = 13), dark chocolate consumption (DC; n = 12), or control (C; n = 12). Two participants dropped out of the study. Participants in JW and JD groups performed jump rope exercise three times per week for six weeks. Participants in the DC and JD groups consumed 30 g of dark chocolate containing 83% of cocoa during the same period. Serum concentrations of superoxide dismutase (SOD), total antioxidant capacity (TAC), glutathione peroxidase (GPx), and thiobarbituric acid reactive substances (TBARS) were evaluated prior to and after the interventions. All 3 intervention groups noted significant (p < 0.01) increases in serum concentrations of TAC, SOD, and GPx from baseline to post-test. In contrast, all intervention groups showed significantly reduced serum concentrations of TBARS from pre- to post-test (p ≤ 0.01). Bonferroni post hoc analysis revealed that post-test serum concentrations of TAC in the JD group were significantly greater than C (p < 0.001), DC (p = 0.010), and JW (p < 0.001) groups. In addition, post-test serum concentrations of SOD in the JD group were significantly greater than C group (p = 0.001). Post-test serum concentrations of GPx in the JD group were significantly greater than C (p < 0.001), DC (p = 0.021), and JW (p = 0.032) groups. The post-test serum concentrations of TBARS in the JD group was significantly lower than C (p < 0.001). No other significant between-group differences were observed. The current study provides evidence that dark chocolate consumption in combination with jump rope exercise is more efficient in improving antioxidant capacity than dark chocolate consumption or jump rope exercise alone among obese adolescent boys.
Collapse
Affiliation(s)
- Babak Hooshmand Moghadam
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
- Department of Exercise Physiology, University of Tehran, Tehran 1961733114, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan 8174673441, Iran;
| | - Matin Ghanavati
- National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran 1416753955, Iran;
| | - Fatemeh Khodadadi
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| | - Neda Cheraghloo
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Alexei Wong
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Michael Nordvall
- Department of Health and Human Performance, Marymount University, Arlington, VA 22207, USA; (A.W.); (M.N.)
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Fatemeh Shabkhiz
- Department of Exercise Physiology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; (B.H.M.); (F.K.)
| |
Collapse
|
18
|
Das G, Heredia JB, de Lourdes Pereira M, Coy-Barrera E, Rodrigues Oliveira SM, Gutiérrez-Grijalva EP, Cabanillas-Bojórquez LA, Shin HS, Patra JK. Korean traditional foods as antiviral and respiratory disease prevention and treatments: A detailed review. Trends Food Sci Technol 2021; 116:415-433. [PMID: 34345117 PMCID: PMC8321624 DOI: 10.1016/j.tifs.2021.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Korean traditional food (KTF), originated from ancestral agriculture and the nomadic traditions of the Korean peninsula and southern Manchuria, is based on healthy food that balances disease prevention and treatment. Fermented foods that include grains, herbs, fruits, and mushrooms are also an important practice in KTF, providing high levels of Lactobacilli, which confer relevant health benefits, including antiviral properties. Some of these probiotics may also protect against the Influenza virus through the modulation of innate immunity. SCOPE AND APPROACH The emerging of the COVID-19 pandemic, in addition to other diseases of viral origin, and the problems associated with other respiratory disorders, highlight how essential is a healthy eating pattern to strengthen our immune system.Key Findings and Conclusions: The present review covers the information available on edible plants, herbs, mushrooms, and preparations used in KTF to outline their multiple medicinal effects (e.g., antidiabetic, chemopreventive, antioxidative, anti-inflammatory, antibacterial), emphasizing their role and effects on the immune system with an emphasis on modulating properties of the gut microbiota that further support strong respiratory immunity. Potential functional foods commonly used in Korean cuisine such as Kimchi (a mixture of fermented vegetables), Meju, Doenjang, Jeotgal, and Mekgeolli and fermented sauces, among others, are highlighted for their great potential to improve gut-lung immunity. The traditional Korean diet and dietary mechanisms that may target viruses ACE-2 receptors or affect any step of a virus infection pathway that can determine a patient's prognosis are also highlighted. The regular oral intake of bioactive ingredients used in Korean foods can offer protection for some viral diseases, through protective and immunomodulatory effects, as evidenced in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| | - J Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Campus Nueva Granada, 250247, Cajicá, Colombia
| | - Sonia Marlene Rodrigues Oliveira
- CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
- HMRI and Hunter Cancer Research Alliance Centres, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erick Paul Gutiérrez-Grijalva
- Catedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110 Culiacán, Sinaloa, Mexico
| | - Luis Angel Cabanillas-Bojórquez
- Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km. 5.5, Col. Campo El Diez, CP. 80110, Culiacán, Sinaloa, Mexico
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, South Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, South Korea
| |
Collapse
|
19
|
Presler KM, Webster MJ. Dark Chocolate Supplementation Elevates Resting Energy Expenditure in Exercise Trained Females. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2021; 14:250-259. [PMID: 34055151 PMCID: PMC8136603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Several recent reports have indicated positive health and exercise benefits of (-)-epicatechin-rich cocoa products. This study investigated the influence of dark chocolate (DC) supplementation on resting and steady state exercise metabolism in a group of athletically fit females. Using a randomized, single-blind design, 18 exercise trained female subjects were assigned to a 30-d supplementation with either 20g · d-1 of 70% DC (n = 9) or a calorically matched white chocolate (WC) (n = 9). Pre-supplementation (PRE), subjects underwent indirect calorimetry assessment for resting energy expenditure (REE) and exercise energy expenditure (EEE) consisting of steady state cycling for 20 min, 10 min each at 50 W (EEE-50) and 100 W (EEE-100). Upon completion of the 30-d supplementation (POST), subjects repeated the assessment for REE, EEE-50, and EEE-100. Post supplementation REE was significantly increased by ~9.6% in the DC group (Δ REE: DC 140 ± 132, WC -3 ± 92 kcal · d-1, p = .017). Post supplementation, neither EEE-50 (DC 4.51 ± 0.59, WC 4.51 ± 0.32 kcal · min-1) nor EEE-100 (DC 6.56 ± 0.60, WC 6.69 ± 0.42 kcal · min-1) were significantly different between groups (p ≥ .05). There were no significant within or between group time effects for substrate utilization at rest or during EEE-50 or EEE-100 (p ≥ .05). To our knowledge this is the first study to demonstrate that a relatively small daily dosage of DC can significantly elevate REE. However, it does not impact steady state EEE or substrate utilization in a group of athletically fit females.
Collapse
Affiliation(s)
- Katie M Presler
- School of Health Sciences, Valdosta State University, Valdosta, GA, USA
| | - Michael J Webster
- School of Health Sciences, Valdosta State University, Valdosta, GA, USA
| |
Collapse
|
20
|
Physical Activity and Redox Balance in the Elderly: Signal Transduction Mechanisms. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reactive Oxygen Species (ROS) are molecules naturally produced by cells. If their levels are too high, the cellular antioxidant machinery intervenes to bring back their quantity to physiological conditions. Since aging often induces malfunctioning in this machinery, ROS are considered an effective cause of age-associated diseases. Exercise stimulates ROS production on one side, and the antioxidant systems on the other side. The effects of exercise on oxidative stress markers have been shown in blood, vascular tissue, brain, cardiac and skeletal muscle, both in young and aged people. However, the intensity and volume of exercise and the individual subject characteristics are important to envisage future strategies to adequately personalize the balance of the oxidant/antioxidant environment. Here, we reviewed the literature that deals with the effects of physical activity on redox balance in young and aged people, with insights into the molecular mechanisms involved. Although many molecular pathways are involved, we are still far from a comprehensive view of the mechanisms that stand behind the effects of physical activity during aging. Although we believe that future precision medicine will be able to transform exercise administration from wellness to targeted prevention, as yet we admit that the topic is still in its infancy.
Collapse
|
21
|
Neuregulin-1 β Protects the Rat Diaphragm during Sepsis against Oxidative Stress and Inflammation by Activating the PI3K/Akt Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1720961. [PMID: 32765805 PMCID: PMC7387979 DOI: 10.1155/2020/1720961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
Sepsis-induced diaphragm dysfunction (SIDD) which is mainly characterized by decrease in diaphragmatic contractility has been identified to cause great harms to patients. Therefore, there is an important and pressing need to find effective treatments for improving SIDD. In addition, acetylcholinesterase (AChE) activity is a vital property of the diaphragm, so we evaluated both diaphragmatic contractility and AChE activity. Though neuregulin-1β (NRG-1β) is known to exert organ-protective effects in some inflammatory diseases, little is known about the potential of NRG-1β therapy in the diaphragm during sepsis. Our study was aimed at exploring the effects of NRG-1β application on diaphragmatic contractility and AChE activity during sepsis. Proinflammatory cytokines, muscle injury biomarkers in serum, contractile force, AChE activity, proinflammatory cytokines, oxidative parameters, histological condition, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and expression of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt) signaling proteins in the diaphragm were measured and compared between nonseptic and septic groups with or without NRG-1β treatment. In vitro, the effects of NRG-1β on reactive oxygen species (ROS) production in the lipopolysaccharide- (LPS-) stimulated L6 rat muscle skeletal cells with or without the Akt inhibitor MK-2206 were detected. NRG-1β inhibited proinflammatory cytokine release and muscle injury biomarkers soaring in serum and improved the sepsis-induced diaphragm dysfunction and AChE activity decrease significantly during sepsis. Meanwhile, the inflammatory response, oxidative stress, pathological impairment, and cell apoptosis in the diaphragm were mitigated by NRG-1β. And NRG-1β activated the PI3K/Akt signaling in the diaphragm of septic rats. Elevated ROS production in the LPS-stimulated L6 rat skeletal muscle cells was reduced after treatment with NRG-1β, while MK-2206 blocked these effects of NRG-1β. In conclusion, our findings underlined that NRG-1β could reduce circulating levels of proinflammatory cytokines in rats with sepsis, adjust diaphragmatic proinflammatory cytokine level, mitigate diaphragmatic oxidative injury, and lessen diaphragm cell apoptosis, thereby improving diaphragmatic function, and play a role in diaphragmatic protection by activating PI3K/Akt signaling.
Collapse
|
22
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
23
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
24
|
Martínez-Noguera FJ, Marín-Pagán C, Carlos-Vivas J, Rubio-Arias JA, Alcaraz PE. Acute Effects of Hesperidin in Oxidant/Antioxidant State Markers and Performance in Amateur Cyclists. Nutrients 2019; 11:nu11081898. [PMID: 31416212 PMCID: PMC6723516 DOI: 10.3390/nu11081898] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022] Open
Abstract
Human and animal studies have shown that Hesperidin has the ability to modulate antioxidant and inflammatory state and to improve aerobic performance. The main objective of this study was to assess whether the acute intake of 500 mg of 2S-Hesperidin (Cardiose®) improves antioxidant status, metabolism, and athletic performance, during and after a rectangular test (aerobic and anaerobic effort). For this, a crossover design was used in 15 cyclists (>1 year of training), with one week of washout between placebo and Cardiose® supplementation. After the intervention, significant differences in average power (+2.27%, p = 0.023), maximum speed (+3.23%, p = 0.043) and total energy (∑ 4 sprint test) (+2.64%, p = 0.028) between Cardiose® and placebo were found in the best data of the repeated sprint test. Small changes were also observed in the activity of catalase, superoxide dismutase, reduced glutathione concentration and oxidized/reduced glutathione (GSSG/GSH) ratio, as well as the lipoperoxidation products (thiobarbituric acid reactive substances; TBARS), at different points of the rectangular test, although not significant. Our findings showed improvements in anaerobic performance after Cardiose® intake, but not in placebo, suggesting the potential benefits of using Cardiose® in sports with a high anaerobic component.
Collapse
Affiliation(s)
| | - Cristian Marín-Pagán
- Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain.
| | - Jorge Carlos-Vivas
- Research Center for High Performance Sport, Catholic University of Murcia, 30107 Murcia, Spain
| | | | - Pedro E Alcaraz
- Faculty of Sport, Research Center for High Performance Sport, Catholic University of Murcia Catholic University of Murcia, 30107 Murcia, Spain
| |
Collapse
|
25
|
Massaro M, Scoditti E, Carluccio MA, Kaltsatou A, Cicchella A. Effect of Cocoa Products and Its Polyphenolic Constituents on Exercise Performance and Exercise-Induced Muscle Damage and Inflammation: A Review of Clinical Trials. Nutrients 2019; 11:E1471. [PMID: 31261645 PMCID: PMC6683266 DOI: 10.3390/nu11071471] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/19/2019] [Accepted: 06/25/2019] [Indexed: 12/18/2022] Open
Abstract
In recent years, the consumption of chocolate and, in particular, dark chocolate has been "rehabilitated" due to its high content of cocoa antioxidant polyphenols. Although it is recognized that regular exercise improves energy metabolism and muscle performance, excessive or unaccustomed exercise may induce cell damage and impair muscle function by triggering oxidative stress and tissue inflammation. The aim of this review was to revise the available data from literature on the effects of cocoa polyphenols on exercise-associated tissue damage and impairment of exercise performance. To this aim, PubMed and Web of Science databases were searched with the following keywords: "intervention studies", "cocoa polyphenols", "exercise training", "inflammation", "oxidative stress", and "exercise performance". We selected thirteen randomized clinical trials on cocoa ingestion that involved a total of 200 well-trained athletes. The retrieved data indicate that acute, sub-chronic, and chronic cocoa polyphenol intake may reduce exercise-induced oxidative stress but not inflammation, while mixed results are observed in terms of exercise performance and recovery. The interpretation of available results on the anti-oxidative and anti-inflammatory activities of cocoa polyphenols remains questionable, likely due to the variety of physiological networks involved. Further experimental studies are mandatory to clarify the role of cocoa polyphenol supplementation in exercise-mediated inflammation.
Collapse
Affiliation(s)
- Marika Massaro
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy.
| | - Egeria Scoditti
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Maria Annunziata Carluccio
- National Research Council-Institute of Clinical Physiology, Laboratory of Nutrigenomic and Vascular Biology, Lecce 73100, Italy
| | - Antonia Kaltsatou
- FAME Laboratory, Department of Physical Education and Sport Science, University of Thessaly, Trikala 42100, Greece
| | - Antonio Cicchella
- Department for Quality of Life Studies, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
26
|
Nocella C, Cammisotto V, Pigozzi F, Borrione P, Fossati C, D'Amico A, Cangemi R, Peruzzi M, Gobbi G, Ettorre E, Frati G, Cavarretta E, Carnevale R. Impairment between Oxidant and Antioxidant Systems: Short- and Long-term Implications for Athletes' Health. Nutrients 2019; 11:E1353. [PMID: 31208096 PMCID: PMC6627820 DOI: 10.3390/nu11061353] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023] Open
Abstract
The role of oxidative stress, an imbalance between reactive oxygen species production (ROS) and antioxidants, has been described in several patho-physiological conditions, including cardiovascular, neurological diseases and cancer, thus impacting on individuals' lifelong health. Diet, environmental pollution, and physical activity can play a significant role in the oxidative balance of an organism. Even if physical training has proved to be able to counteract the negative effects caused by free radicals and to provide many health benefits, it is also known that intensive physical activity induces oxidative stress, inflammation, and free radical-mediated muscle damage. Indeed, variations in type, intensity, and duration of exercise training can activate different patterns of oxidant-antioxidant balance leading to different responses in terms of molecular and cellular damage. The aim of the present review is to discuss (1) the role of oxidative status in athletes in relation to exercise training practice, (2) the implications for muscle damage, (3) the long-term effect for neurodegenerative disease manifestations, (4) the role of antioxidant supplementations in preventing oxidative damages.
Collapse
Affiliation(s)
- Cristina Nocella
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Vittoria Cammisotto
- Department of General Surgery and Surgical Speciality Paride Stefanini, Sapienza University of Rome, 00161 Rome, Italy.
| | - Fabio Pigozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Paolo Borrione
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Chiara Fossati
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Alessandra D'Amico
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Roberto Cangemi
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Giuliana Gobbi
- Department of Biomedical, Biotechnological and Translational Sciences (S.Bi.Bi.T.), Anatomy and Histology Unit, University of Parma, Ospedale Maggiore, 43126 Parma, Italy.
| | - Evaristo Ettorre
- Department of Internal Medicine and Medical Specialities, Sapienza University of Rome, 00161 Rome, Italy.
| | - Giacomo Frati
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- IRCCS Neuromed, 86077 Pozzilli IS, Italy.
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Roberto Carnevale
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| |
Collapse
|