1
|
Lu Y, Shi R, He W, An Q, Zhao J, Gao X, Zhang B, Zhang L, Xu K, Ma D. Cell therapy in Sjögren's syndrome: opportunities and challenges. Expert Rev Mol Med 2024; 26:e28. [PMID: 39438246 PMCID: PMC11505611 DOI: 10.1017/erm.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease caused by immune system disorders. The main clinical manifestations of SS are dry mouth and eyes caused by the destruction of exocrine glands, such as the salivary and lacrimal glands, and systemic manifestations, such as interstitial pneumonia, interstitial nephritis and vasculitis. The pathogenesis of this condition is complex. However, this has not been fully elucidated. Treatment mainly consists of glucocorticoids, disease-modifying antirheumatic drugs and biological agents, which can only control inflammation but not repair the tissue. Therefore, identifying methods to regulate immune disorders and repair damaged tissues is imperative. Cell therapy involves the transplantation of autologous or allogeneic normal or bioengineered cells into the body of a patient to replace damaged cells or achieve a stronger immunomodulatory capacity to cure diseases, mainly including stem cell therapy and immune cell therapy. Cell therapy can reduce inflammation, relieve symptoms and promote tissue repair and regeneration of exocrine glands such as the salivary glands. It has broad application prospects and may become a new treatment strategy for patients with SS. However, there are various challenges in cell preparation, culture, storage and transportation. This article reviews the research status and prospects of cell therapies for SS.
Collapse
Affiliation(s)
- Yangyang Lu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Rongjing Shi
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Wenqin He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Baiyan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Ke Xu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Province Clinical Research Center for Dermatologic and Immunologic Diseases (Rheumatic diseases), Taiyuan, China
- Shanxi Province Clinical Theranostics Technology Innovation Center for Immunologic and Rheumatic Diseases, Taiyuan, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| |
Collapse
|
2
|
Zhao T, Zhang R, Li Z, Qin D, Wang X. Novel and potential future therapeutic options in Sjögren's syndrome. Heliyon 2024; 10:e38803. [PMID: 39430463 PMCID: PMC11490770 DOI: 10.1016/j.heliyon.2024.e38803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Sjögren's syndrome (SS) is a chronic autoimmune disease affecting the exocrine glands and can lead to various systemic symptoms impacting multiple organs. Despite its common occurrence, treatment options for SS have been largely limited, primarily focusing on alleviating symptoms rather than addressing the underlying autoimmune causes. A shift towards personalized medicine leads to the development of new therapeutic strategies aimed at targeting specific molecular pathways implicated in SS. Innovations in biologics are paving the way for inhibiting particular cytokines or cell surface molecules directly involved in the autoimmune mechanism. Furthermore, advancements in regenerative medicine, including the promising field of stem cell therapy, offer the potential for restoring or replacing the impaired salivary and lacrimal glands, providing hope for a more permanent resolution to this condition. This review encompasses cutting-edge treatment strategies for SS, spanning clinical and preclinical drugs to the latest treatment technology. Such advancements promise to drive targeted therapy development and inspire innovative ideas for treatment paradigms in SS.
Collapse
Affiliation(s)
- Ting Zhao
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Zhaofu Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, 650500, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| |
Collapse
|
3
|
Yang M, Wang S, Zhang J, Yan B. Primary Sjogren syndrome - A bibliometric analysis via CiteSpace. Medicine (Baltimore) 2024; 103:e38162. [PMID: 38875384 PMCID: PMC11175928 DOI: 10.1097/md.0000000000038162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/16/2024] Open
Abstract
This study employs CiteSpace software to analyze the research status, hotspots, and trends of primary Sjogren syndrome (pSS). Relevant publications from 1999 to 2023 were searched in the Web of Science Core Collection (WoSCC) set, followed by generating a network map using CiteSpace software to identify top authors, institutions, countries, keywords, journals, references, and research trends. A total of 3564 valid articles were included in this study. The People Republic of China had the highest number of articles (n = 524), while the University of Bergen emerged as the institution with the highest publication count (n = 94). Mariette X was identified as the author with the most publications (n = 67), whereas Vitali C received recognition as the most cited author (n = 1706). Annals of Rheumatic Diseases stood out as the journal with the highest citation count (n = 2530). Notably, an article published in the Annals of Rheumatic Diseases in 2017 garnered significant attention by being cited a remarkable 304 times. The bibliometric analysis reveals that key areas of research in pSS encompass investigating pathogenesis; advancing and applying targeted biological agents; and establishing treatment and diagnostic standards.
Collapse
Affiliation(s)
- Mingrui Yang
- School of pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Shangzhi Wang
- School of pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Jin Zhang
- School of pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| | - Bin Yan
- School of Traditional of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Ji'nan, China
| |
Collapse
|
4
|
Surico PL, Scarabosio A, Miotti G, Grando M, Salati C, Parodi PC, Spadea L, Zeppieri M. Unlocking the versatile potential: Adipose-derived mesenchymal stem cells in ocular surface reconstruction and oculoplastics. World J Stem Cells 2024; 16:89-101. [PMID: 38455097 PMCID: PMC10915950 DOI: 10.4252/wjsc.v16.i2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/06/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024] Open
Abstract
This review comprehensively explores the versatile potential of mesenchymal stem cells (MSCs) with a specific focus on adipose-derived MSCs. Ophthalmic and oculoplastic surgery, encompassing diverse procedures for ocular and periocular enhancement, demands advanced solutions for tissue restoration, functional and aesthetic refinement, and aging. Investigating immunomodulatory, regenerative, and healing capacities of MSCs, this review underscores the potential use of adipose-derived MSCs as a cost-effective alternative from bench to bedside, addressing common unmet needs in the field of reconstructive and regenerative surgery.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA 02114, United States
- Department of Ophthalmology, Campus Bio-Medico University, Rome 00128, Italy
| | - Anna Scarabosio
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Giovanni Miotti
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Martina Grando
- Department of Internal Medicine, Azienda Sanitaria Friuli Occidentale, San Vito al Tagliamento 33078, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Pier Camillo Parodi
- Department of Plastic Surgery, University Hospital of Udine, Udine 33100, Italy
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy.
| |
Collapse
|
5
|
Karimi F, Nejati B, Rahimi F, Alivirdiloo V, Alipourfard I, Aghighi A, Raji-Amirhasani A, Eslami M, Babaeizad A, Ghazi F, Firouzi Amandi A, Dadashpour M. A State-of-the-Art Review on the Recent Advances of Mesenchymal Stem Cell Therapeutic Application in Systematic Lupus Erythematosus. Immunol Invest 2024; 53:160-184. [PMID: 38031988 DOI: 10.1080/08820139.2023.2289066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with an unknown etiology that has widespread clinical and immunological manifestations. Despite the increase in knowledge about the pathogenesis process and the increase in treatment options, however, the treatments fail in half of the cases. Therefore, there is still a need for research on new therapies. Mesenchymal stem cells (MSCs) are powerful regulators of the immune system and can reduce the symptoms of systemic lupus erythematosus. This study aimed to review the mechanisms of immune system modulation by MSCs and the role of these cells in the treatment of SLE. MSCs suppress T lymphocytes through various mechanisms, including the production of transforming growth factor-beta (TGF-B), prostaglandin E2 (PGE2), nitric oxide (NO), and indolamine 2 and 3-oxygenase (IDO). In addition, MSCs inhibit the production of their autoantibodies by inhibiting the differentiation of lymphocytes. The production of autoantibodies against nuclear antigens is an important feature of SLE. On the other hand, MSCs inhibit antigen delivery by antigen-presenting cells (APCs) to T lymphocytes. Studies in animal models have shown the effectiveness of these cells in treating SLE. However, few studies have been performed on the effectiveness of this treatment in humans. It can be expected that new treatment strategies for SLE will be introduced in the future, given the promising results of MSCs application.
Collapse
Affiliation(s)
- Farshid Karimi
- Department of Optometry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Nejati
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Rahimi
- Division of Clinical Laboratory, Zahra Mardani Azar Children Training Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Alivirdiloo
- Medical Doctor Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Iraj Alipourfard
- Institute of Physical Chemistry, Polish Academy of Science, Warsaw, Poland
| | - Ali Aghighi
- Department of Clinical Biochemistry, Zahedan University of Medical Science, Zahedan, Iran
| | - Alireza Raji-Amirhasani
- Department of Physiology and Pharmacology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Endocrinology and Metabolism Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Babaeizad
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Farhood Ghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Dadashpour
- Department of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
6
|
Song W, Wang H, Wang X. Research hotspots and emerging trends in the treatment of Sjogren's syndrome: A bibliometric analysis from 1900 to 2022. Heliyon 2024; 10:e23216. [PMID: 38187243 PMCID: PMC10767134 DOI: 10.1016/j.heliyon.2023.e23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Sjogren's syndrome (SS) is an autoimmune disease that mainly affects the salivary and lacrimal glands and further leads to dry mouth and eyes. In recent years, knowledge about the treatment of SS is developing rapidly. This study aims to assess research progress on SS treatment using a bibliometric approach and to identify research hotspots and emerging trends in this area. Methods The publications related to the treatment of SS were retrieved from the Science Citation Index Expanded (SCI-E) database. The following search terms were used to extract document data: TS=(Sjogren* OR Sicca*) AND TS= (Treat* OR Therap* OR Disease Management). Articles and review articles published in English from 1900 to 2022 were selected. After the manual screening, the publication data were exported to a plain text file and applied for cooperative network analysis, keyword analysis, and reference co-citation analysis by using CiteSpace. Results A total of 2038 publications were included in the analysis from 571 journals by 9063 authors. The annual number of published studies and times cited showed an overall upward trend since 1992. There was a degree of national/regional collaboration in this area, but direct collaboration between institutions and authors was still lacking. The country with the highest number of publications was in the United States, followed by China and Japan. Five SS-related treatments as the research hotspots were summarized by analyzing keywords and references, including immunosuppressive and anti-inflammatory therapy, regenerative therapy, gene therapy, surgical treatment, and symptomatic treatment. Among them, B cells, T cells, mucosal-associated invariant T (MAIT) cells, mesenchymal stem cells (MSCs), rituximab, belimumab, cell-target therapy, and immunosuppressive and anti-inflammatory therapy were emerging trends in this field. Conclusions This study conducted a data-based and objective introduction to the treatment of SS from a fresh perspective. An analysis of the intellectual bases, research hotspots, and emerging trends in the field will contribute to future research and treatment decisions, which will ultimately benefit SS patients.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yura Y, Hamada M. Outline of Salivary Gland Pathogenesis of Sjögren's Syndrome and Current Therapeutic Approaches. Int J Mol Sci 2023; 24:11179. [PMID: 37446355 DOI: 10.3390/ijms241311179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Sjögren's syndrome (SS) is an autoimmune disease characterized by the involvement of exocrine glands such as the salivary and lacrimal glands. The minor salivary glands, from which tissue samples may be obtained, are important for the diagnosis, evaluation of therapeutic efficacy, and genetic analyses of SS. In the onset of SS, autoantigens derived from the salivary glands are recognized by antigen-presenting dendritic cells, leading to the activation of T and B cells, cytokine production, autoantibody production by plasma cells, the formation of ectopic germinal centers, and the destruction of salivary gland epithelial cells. A recent therapeutic approach with immune checkpoint inhibitors for malignant tumors enhances the anti-tumor activity of cytotoxic effector T cells, but also induces SS-like autoimmune disease as an adverse event. In the treatment of xerostomia, muscarinic agonists and salivary gland duct cleansing procedure, as well as sialendoscopy, are expected to ameliorate symptoms. Clinical trials on biological therapy to attenuate the hyperresponsiveness of B cells in SS patients with systemic organ involvement have progressed. The efficacy of treatment with mesenchymal stem cells and chimeric antigen receptor T cells for SS has also been investigated. In this review, we will provide an overview of the pathogenesis of salivary gland lesions and recent trends in therapeutic approaches for SS.
Collapse
Affiliation(s)
- Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and Surgery, Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Zhan Q, Zhang J, Lin Y, Chen W, Fan X, Zhang D. Pathogenesis and treatment of Sjogren's syndrome: Review and update. Front Immunol 2023; 14:1127417. [PMID: 36817420 PMCID: PMC9932901 DOI: 10.3389/fimmu.2023.1127417] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Sjogren's syndrome (SS) is a chronic autoimmune disease accompanied by multiple lesions. The main manifestations include dryness of the mouth and eyes, along with systemic complications (e.g., pulmonary disease, kidney injury, and lymphoma). In this review, we highlight that IFNs, Th17 cell-related cytokines (IL-17 and IL-23), and B cell-related cytokines (TNF and BAFF) are crucial for the pathogenesis of SS. We also summarize the advances in experimental treatment strategies, including targeting Treg/Th17, mesenchymal stem cell treatment, targeting BAFF, inhibiting JAK pathway, et al. Similar to that of SLE, RA, and MS, biotherapeutic strategies of SS consist of neutralizing antibodies and inflammation-related receptor blockers targeting proinflammatory signaling pathways. However, clinical research on SS therapy is comparatively rare. Moreover, the differences in the curative effects of immunotherapies among SS and other autoimmune diseases are not fully understood. We emphasize that targeted drugs, low-side-effect drugs, and combination therapies should be the focus of future research.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Biotherapy, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Hayashi Y, Kimura S, Yano E, Yoshimoto S, Saeki A, Yasukochi A, Hatakeyama Y, Moriyama M, Nakamura S, Jimi E, Kawakubo-Yasukochi T. Id4 modulates salivary gland homeostasis and its expression is downregulated in IgG4-related disease via miR-486-5p. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119404. [PMID: 36535369 DOI: 10.1016/j.bbamcr.2022.119404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022]
Abstract
Salivary glands are physiologically orchestrated by the coordinated balance between cell differentiation, proliferation, apoptosis, and interactions between epithelial, mesenchymal endothelial, and neuronal cells, and they are frequent sites of manifestations of Sjögren's syndrome (SS) or IgG4-related disease (IgG4-RD). However, little is known about salivary gland homeostasis and its involvement in those diseases. Inhibitor of DNA binding/differentiation 4 (Id4) is an Id protein involved in the transcriptional control of many biological events, including differentiation. Studies of Id4-deficient mice revealed that Id4-deficient submandibular glands were smaller and exhibited accelerated differentiation, compared with those from wild-type littermates. In addition, dry mouth symptoms and Th17 expansion in splenocytes were also observed in the absence of Id4. Furthermore, Id4 levels in the salivary glands of patients with IgG4-RD, but not SS, were significantly decreased compared with those of healthy controls. miRNA-mRNA integrated analysis demonstrated that miR-486-5p was upregulated in IgG4-RD patients and that it might regulate Id4 in the lesion sites. Together, these results provide evidence for the inhibitory role of Id4 in salivary differentiation, and a critical association between Id4 downregulation and IgG4-RD.
Collapse
Affiliation(s)
- Yoshikazu Hayashi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Soi Kimura
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ena Yano
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan; Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Ayaka Saeki
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Atsushi Yasukochi
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yuji Hatakeyama
- Division of Functional Structure, Department of Morphological Biology, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka 814-0193, Japan
| | - Masafumi Moriyama
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiji Nakamura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eijiro Jimi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tomoyo Kawakubo-Yasukochi
- OBT Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
10
|
PI3K/AKT/mTOR Signaling Pathway Is Downregulated by Runzaoling (RZL) in Sjögren’s Syndrome. Mediators Inflamm 2022; 2022:7236118. [PMID: 36133744 PMCID: PMC9484952 DOI: 10.1155/2022/7236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022] Open
Abstract
Infiltration and aggregation of lymphocytes in exocrine glands are the basic pathological manifestations of Sjögren’s syndrome (SS), and the incidence of SS has been increasing year by year in recent years. To explore the potential signaling pathway of Runzaoling (RZL) in alleviating SS, the possible targets of RZL in SS were firstly explored through network pharmacology, and then, the regulation of PI3K/AKT/mTOR signaling in NOD mice and Th17 cells was verified. 75 8-week-old NOD mice were casually classified into 5 groups: model; hydroxychloroquine; high, medium, and low dose RZL groups, with 15 in each; and 15 BALB/c mice were employed as control group. After 10 weeks of continuous intragastric administration in mice and 24 hours of drugs intervention in Th17 cells, histopathology was observed by HE staining, and the gene transcription levels were identified by real-time quantitative PCR (RT-qPCR). The protein expressions were detected by western blotting (WB). The findings showed that high and medium dose RZL group could attenuate the submandibular gland tissue damage. The results indicated that the mRNA expressions of PI3K, AKT, mTOR, STAT3, and IL-17 in SS mice and in IL-17 stimulation of Th17 cells were dramatically increased compared with control group and decreased to varying degrees after RZL intervention. The trend of phosphorylated PI3K/AKT/mTOR and STAT3 and IL-17 protein expression in NOD mice and Th17 cells were consistent with mRNA. RZL can downregulate STAT3 and IL-17 expressions in the submandibular gland of NOD mice and in Th17 cells via regulating the PI3K/AKT/mTOR signaling pathway. Moreover, RZL could reduce the activation of CD4+ T lymphocyte differentiation to Th17 cells.
Collapse
|
11
|
Chibly AM, Aure MH, Patel VN, Hoffman MP. Salivary gland function, development, and regeneration. Physiol Rev 2022; 102:1495-1552. [PMID: 35343828 PMCID: PMC9126227 DOI: 10.1152/physrev.00015.2021] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 11/27/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Salivary glands produce and secrete saliva, which is essential for maintaining oral health and overall health. Understanding both the unique structure and physiological function of salivary glands, as well as how they are affected by disease and injury, will direct the development of therapy to repair and regenerate them. Significant recent advances, particularly in the OMICS field, increase our understanding of how salivary glands develop at the cellular, molecular, and genetic levels: the signaling pathways involved, the dynamics of progenitor cell lineages in development, homeostasis, and regeneration, and the role of the extracellular matrix microenvironment. These provide a template for cell and gene therapies as well as bioengineering approaches to repair or regenerate salivary function.
Collapse
Affiliation(s)
- Alejandro M Chibly
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Marit H Aure
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
12
|
Xing Y, Li B, He J, Hua H. Labial Gland Mesenchymal Stem Cell Derived Exosomes-Mediated miRNA-125b Attenuates Experimental Sjogren's Syndrome by Targeting PRDM1 and Suppressing Plasma Cells. Front Immunol 2022; 13:871096. [PMID: 35444638 PMCID: PMC9014006 DOI: 10.3389/fimmu.2022.871096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 01/20/2023] Open
Abstract
The pathogenesis of the prototypical chronic autoimmune disorder primary Sjögren syndrome (pSS) has been thought to be B-cell-centric, based on serum autoantibodies, the increased risk of B cell lymphoma, and altered B cell subsets in patients with pSS. Over the last 10 years, therapies targeting B cells have been investigated for pSS; however, current evidence for the efficacy of B cell targeted therapies in pSS is still sparse. Mesenchymal stem cells (MSCs) might represent a promising strategy for cell therapy of autoimmune diseases via regulation of immune cells. MSC-released exosomes carry various bioactive molecules and thus have been studied in MSC-based therapy. The newly discovered labial gland MSCs (LGMSCs) have exhibited enhanced performance. Herein, we aimed to determine the effects of LGMSC-derived exosomes (LGMSC-Exos) on the symptoms of a mouse model of pSS and their regulatory effect and mechanism on B cell subsets. In vivo, treatment of the spontaneous mouse model of pSS with LGMSC-Exos resulted in reduced inflammatory infiltration and restored saliva secretion in salivary glands. In vitro, coculture of LGMSC-Exos with peripheral blood mononuclear cells of patients with pSS markedly reduced the proportions of CD19+CD20-CD27+CD38+ plasma cells among peripheral blood mononuclear cells. Further investigations provided evidence that LGMSC-Exo-derived microRNA-125b affected plasma cells of pSS by directly binding to its target gene, PRDM1 (PR domain zinc finger protein 1, also known as BLIMP1), which might be developed as a target to treat pSS. Overall, these findings provided a possible exploitable therapeutic target in pSS and provide new insights into the potential therapeutic application of exosomes in pSS and other disease mediated by B-cells.
Collapse
Affiliation(s)
- Yixiao Xing
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boya Li
- Department of Oral Medicine, First Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing, China.,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
13
|
Mesenchymal Stem Cell-Based Therapy as a New Approach for the Treatment of Systemic Sclerosis. Clin Rev Allergy Immunol 2022; 64:284-320. [PMID: 35031958 DOI: 10.1007/s12016-021-08892-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Systemic sclerosis (SSc) is an intractable autoimmune disease with unmet medical needs. Conventional immunosuppressive therapies have modest efficacy and obvious side effects. Targeted therapies with small molecules and antibodies remain under investigation in small pilot studies. The major breakthrough was the development of autologous haematopoietic stem cell transplantation (AHSCT) to treat refractory SSc with rapidly progressive internal organ involvement. However, AHSCT is contraindicated in patients with advanced visceral involvement. Mesenchymal stem cells (MSCs) which are characterized by immunosuppressive, antifibrotic and proangiogenic capabilities may be a promising alternative option for the treatment of SSc. Multiple preclinical and clinical studies on the use of MSCs to treat SSc are underway. However, there are several unresolved limitations and safety concerns of MSC transplantation, such as immune rejections and risks of tumour formation, respectively. Since the major therapeutic potential of MSCs has been ascribed to their paracrine signalling, the use of MSC-derived extracellular vesicles (EVs)/secretomes/exosomes as a "cell-free" therapy might be an alternative option to circumvent the limitations of MSC-based therapies. In the present review, we overview the current knowledge regarding the therapeutic efficacy of MSCs in SSc, focusing on progresses reported in preclinical and clinical studies using MSCs, as well as challenges and future directions of MSC transplantation as a treatment option for patients with SSc.
Collapse
|
14
|
Genç D, Günaydın B, Sezgin S, Aladağ A, Tarhan EF. Immunoregulatory effects of dental mesenchymal stem cells on T and B lymphocyte responses in primary Sjögren's syndrome. Immunotherapy 2022; 14:225-247. [PMID: 35012368 DOI: 10.2217/imt-2021-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: In this article, the authors investigate the modulatory effects of dental mesenchymal stem cells (MSCs) on lymphocyte responses in primary Sjögren's syndrome (pSS), which is an autoimmune disease resulting from keratoconjunctivitis sicca and xerostomia. Methods: Mononuclear cells isolated from pSS patients cultured with or without dental MSCs and analyzed for lymphocyte responses via flow cytometry. Results: Dental-follicle (DF)- and dental-pulp (DP)-MSCs downregulated CD4+ T lymphocyte proliferation by increasing Fas-ligand expression on T lymphocytes and FoxP3 expressing Tregs, and decreasing intracellular IFN-γ and IL-17 secretion in pSS patients. DF-MSCs decreased the plasma B cell ratio in the favor of naive B cell population in pSS patients' mononuclear cells. Conclusion: DF- and DP-MSCs can be the new cellular therapeutic candidates for the regulation of immune responses in pSS.
Collapse
Affiliation(s)
- Deniz Genç
- Muğla Sıtkı Koçman University, Faculty of Health Sciences, Muğla, 48000, Turkey.,Muğla Sıtkı Koçman University, Research Laboratories Center, Muğla, 48000, Turkey
| | - Burcu Günaydın
- Department of Histology & Embryology, Muğla Sıtkı Koçman University, Institute of Health Sciences, Muğla, 48000, Turkey
| | - Serhat Sezgin
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Akın Aladağ
- Muğla Sıtkı Koçman University, Faculty of Dentistry, Muğla, 48000, Turkey
| | - Emine Figen Tarhan
- Department of Rheumatology, Muğla Sıtkı Koçman University, Faculty of Medicine, Muğla, 48000, Turkey
| |
Collapse
|
15
|
Yang J, Ren XJ, Chen XT, Jiang YF, Han ZB, Han ZC, Li XR, Zhang XM. Human umbilical cord-derived mesenchymal stem cells treatment for refractory uveitis: a case series. Int J Ophthalmol 2021; 14:1784-1790. [PMID: 34804871 DOI: 10.18240/ijo.2021.11.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 04/14/2021] [Indexed: 01/22/2023] Open
Abstract
AIM To evaluate therapeutic outcomes of human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) treatment in patients with refractory uveitis. METHODS A retrospective and noncomparative review was performed on four patients with refractory uveitis from December 2013 to December 2017. HUC-MSCs were administered intravenously at a dose of 1×106 cells/kg. Clinical response, relapse rate, change of visual acuity, and other metrics were evaluated. RESULTS All four patients presented with responses to HUC-MSCs treatment, with three males and one female. The numbers of uveitis attacks per year after the HUC-MSCs treatment (0, 2, 0, 0 respectively) all decreased compared with the numbers before the treatment (3, 6, 4, 4 respectively). The oral steroid and immunosuppressive agents were tapered in all patients without recrudescence of ocular inflammation, and three patients discontinued their oral medicine at the last visit. The best corrected visual acuity (BCVA) of 3 patients was improved to varying degrees, and the BCVA of 1 patient remained at 20/20 (Snellen chart) from the first to the last consultation. CONCLUSION The study provides an effective therapy of HUC-MSCs in maintaining remission in patients affected by uveitis refractory to previous immunosuppressant treatments.
Collapse
Affiliation(s)
- Jing Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xin-Jun Ren
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xi-Teng Chen
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Yuan-Feng Jiang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Zhi-Bo Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China
| | - Zhong-Chao Han
- National Engineering Research Center of Cell Products, Tianjin 300457, China.,Beijing Engineering Laboratory of Perinatal Stem Cells, Beijing Institute of Health and Stem Cells, Beijing 300457, China
| | - Xiao-Rong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiao-Min Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
16
|
Yang N, Liu X, Chen X, Yu S, Yang W, Liu Y. Stem cells from exfoliated deciduous teeth transplantation ameliorates Sjögren's syndrome by secreting soluble PD-L1. J Leukoc Biol 2021; 111:1043-1055. [PMID: 34622984 DOI: 10.1002/jlb.6ma0921-752rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cell transplantation (MSCT) regulates immune cells, and is a promising therapeutic approach for treating autoimmune diseases. Stem cells from human exfoliated deciduous teeth (SHED) are a unique postnatal stem cell population from the cranial neural crest with high self-renewal, multipotent differentiation, and superior immunomodulatory properties. However, the mechanisms by which SHED can treat autoimmune diseases remain unclear. Sjögren's syndrome (SS) is an autoimmune disease histologically characterized by high lymphocytic infiltration in the salivary and lacrimal glands that results in dryness symptoms. This study explores the potential of systemic transplantation of SHED to ameliorate SS-induced dryness symptoms in mice. Overall, SHED could rescue the balance of regulatory T cell (Treg)/T helper cell 17 (Th17) in the recipient SS mice. Mechanistically, SHED promoted Treg conversion and inhibited Th17 function via paracrine effects, which were related to the secretion of soluble programmed cell death ligand 1 (sPD-L1). Moreover, it directly induced Th17 apoptosis via cell-cell contact, leading to the up-regulation of Treg and down-regulation of Th17 cells. In summary, SHED-mediated rescue of Treg/Th17 balance via the sPD-L1/PD-1 pathway ameliorates the gland inflammation and dryness symptoms in SS mice. These findings suggest that SHED are a promising stem cell source for the treatment of autoimmune diseases in the clinical setting.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xuemei Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xu Chen
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Si Yu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Wenxiao Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
17
|
Chihaby N, Orliaguet M, Le Pottier L, Pers JO, Boisramé S. Treatment of Sjögren's Syndrome with Mesenchymal Stem Cells: A Systematic Review. Int J Mol Sci 2021; 22:10474. [PMID: 34638813 PMCID: PMC8508641 DOI: 10.3390/ijms221910474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are ubiquitous in the human body. Mesenchymal stem cells were initially isolated from bone marrow and later from other organs such as fatty tissues, umbilical cords, and gingiva. Their secretory capacities give them interesting immunomodulatory properties in cell therapy. Some studies have explored the use of MSCs to treat Sjögren's syndrome (SS), a chronic inflammatory autoimmune disease that mainly affects exocrine glands, including salivary and lacrimal glands, although current treatments are only palliative. This systematic review summarizes the current data about the application of MSCs in SS. Reports show improvements in salivary secretions and a decrease in lymphocytic infiltration in salivary glands in patients and mice with SS after intravenous or infra-peritoneal injections of MSCs. MSC injections led to a decrease in inflammatory cytokines and an increase in anti-inflammatory cytokines. However, the intrinsic mechanism of action of these MSCs currently remains unknown.
Collapse
Affiliation(s)
- Najwa Chihaby
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
| | - Marie Orliaguet
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| | - Laëtitia Le Pottier
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Jacques-Olivier Pers
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
- Inserm, LBAI, University of Western Brittany, UMR1227, 29609 Brest, France
| | - Sylvie Boisramé
- UFR d’Odontologie, University of Western Brittany, 29200 Brest, France; (N.C.); (M.O.); (L.L.P.); (S.B.)
- CHU de Brest, 29609 Brest, France
| |
Collapse
|
18
|
Li B, Xing Y, Gan Y, He J, Hua H. Labial gland-derived mesenchymal stem cells and their exosomes ameliorate murine Sjögren's syndrome by modulating the balance of Treg and Th17 cells. Stem Cell Res Ther 2021; 12:478. [PMID: 34446113 PMCID: PMC8390194 DOI: 10.1186/s13287-021-02541-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022] Open
Abstract
Background Sjögren's syndrome (SS) is a chronic, systemic autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The disease severely affects the health and life of patients, and the treatment of SS has always been a clinical challenge and essentially palliative. Mesenchymal stem cells (MSCs) have been reported to exert immunomodulatory effects and as a potential novel therapeutic strategy for SS. Labial gland-derived MSCs (LGMSCs) are a population of resident stem cells in the labial gland, first isolated by our group. Exosomes released by MSCs contain a large variety of bioactive molecules and considered to function as an extension of MSCs. Methods LGMSCs were isolated from patients who were needed surgery to remove the lip mucocele and LGMSCs derived exosomes (LGMSC-Exos) were isolated by ultracentrifugation. The non-obese diabetic (NOD) mice were treated with LGMSCs or LGMSC-Exos by tail vein injection. The saliva flow rate of mice was determined and salivary glands were dissected and stained with hematoxylin and eosin. In vitro, peripheral blood mononuclear cells (PBMCs) from SS patients were cocultured with LGMSCs or LGMSC-Exos. Percentage of T helper 17 (Th17) cells and regulatory T (Treg) cells were determined by flow cytometry. The serum levels of cytokines in NOD mice and in the supernatant of the co-culture system by ELISA. Results Treatment with LGMSCs or LGMSC-Exos reduced inflammatory infiltration in the salivary glands, and restored salivary gland secretory function in NOD mice. Importantly, LGMSCs or LGMSC-Exos were demonstrated to inhibit the differentiation of Th17 cells but promote the induction of Treg cells in NOD mice and PBMCs from SS patients in vitro, accompanied by reduced interleukin 17 (IL-17), interferon gamma, and IL-6 levels and enhanced transforming growth factor beta and IL-10 secretion by T cells. Conclusions LGMSCs are potential candidates for MSCs-based therapy and LGMSC-Exos might be utilized for establishing a new cell-free therapy against SS. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02541-0.
Collapse
Affiliation(s)
- Boya Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yixiao Xing
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Yehua Gan
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.,Central Laboratory, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Jing He
- Department of Rheumatology and Immunology, Peking University People's Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, People's Republic of China.
| | - Hong Hua
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China. .,Central Laboratory, Peking University School and Hospital of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
19
|
Altered Proteomic Profile of Adipose Tissue-Derived Mesenchymal Stem Cell Exosomes from Cats with Severe Chronic Gingivostomatitis. Animals (Basel) 2021; 11:ani11082466. [PMID: 34438923 PMCID: PMC8388770 DOI: 10.3390/ani11082466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Feline chronic gingivostomatitis (FCGS) is a common pathology in cats, related to an aberrant immune response. The cause of FCGS remains elusive, despite extensive investigations. A multitude of conditions and infectious agents have been related, without proof of causation, as follows: virus, bacteria, environmental stress, hypersensitivity, etc. In recent years, therapies based on feline adipose-derived mesenchymal stem cells (fAd-MSC) have become an interesting alternative for the treatment of different complex pathologies in cats. Mesenchymal stem cells secrete a wide variety of therapeutic elements, such as bioactive molecules and extracellular vesicles, such as exosomes. It is essential to characterize these elements, to better understand their mechanisms of action. In this study, we show, for the first time, that the proteomic profile of fAd-MSC-derived exosomes, from calicivirus-positive patients with severe FCGS, is altered. Using bioinformatic tools, we have demonstrated the existence of different proteins in the exosomes from diseased patients, responsible for an altered biological effect. In addition, the exosomes do not only experience changes in their cargo, but are also produced in larger quantities. This study might contribute to the better prediction of the clinical outcomes of mesenchymal stem cell treatments in veterinary patients with immune-mediated diseases, such as FCGS. Abstract Feline chronic gingivostomatitis (FCGS) is a pathology with a complicated therapeutic approach and with a prevalence between 0.7 and 12%. Although the etiology of the disease is diverse, feline calicivirus infection is known to be a predisposing factor. To date, the available treatment helps in controlling the disease, but cannot always provide a cure, which leads to a high percentage of refractory animals. Mesenchymal stem cells (MSCs) play a pivotal role in the homeostasis and reparation of different tissues and have the ability to modulate the immune system responses. This ability is, in part, due to the capacity of exosomes to play a part in intercellular cell communication. However, the precise role of MSC-derived exosomes and their alterations in immunocompromised pathologies remains unknown, especially in veterinary patients. The goal of this work was to analyze the proteomic profile of feline adipose tissue-derived MSCs (fAd-MSCs) from calicivirus-positive FCGS patients, and to detect possible modifications of the exosomal cargo, to gain better knowledge of the disease’s etiopathogenesis. Using high-resolution mass spectrometry and functional enrichment analysis with Gene Ontology, exosomes isolated from the fAd-MSCs of five healthy cats and five calicivirus-positive FCGS patients, were pooled and compared. The results showed that the fAd-MSCs from cats suffering from FCGS not only had a higher exosome production, but also their exosomes showed significant alterations in their proteomic profile. Eight proteins were exclusively found in the exosomes from the FCGS group, and five proteins could only be found in the exosomes from the healthy cats. When comparing the exosomal cargo between the two groups, significant upregulation of 17 and downregulation of 13 proteins were detected in the FCGS group compared to the control group. These findings shed light on new perspectives on the roles of MSCs and their relation to this disease, which may help in identifying new therapeutic targets and selecting specific biomarkers.
Collapse
|
20
|
Radmanesh F, Mahmoudi M, Yazdanpanah E, Keyvani V, Kia N, Nikpoor AR, Zafari P, Esmaeili SA. The immunomodulatory effects of mesenchymal stromal cell-based therapy in human and animal models of systemic lupus erythematosus. IUBMB Life 2020; 72:2366-2381. [PMID: 33006813 DOI: 10.1002/iub.2387] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic systemic autoimmune inflammatory disease with no absolute cure. Although the exact etiopathogenesis of SLE is still enigmatic, it has been well demonstrated that a combination of genetic predisposition and environmental factors trigger a disturbance in immune responses and thereby participate in the development of this condition. Almost all available therapeutic strategies in SLE are primarily based on the administration of immunosuppressive drugs and are not curative. Mesenchymal stromal cells (MSCs) are a subset of non-hematopoietic adult stem cells that can be isolated from many adult tissues and are increasingly recognized as immune response modulating agents. MSC-mediated inhibition of immune responses is a complex mechanism that involves almost every aspect of the immune response. MSCs suppress the maturation of antigen-presenting cells (DC and MQ), proliferation of T cells (Th1, T17, and Th2), proliferation and immunoglobulin production of B cells, the cytotoxic activity of CTL and NK cells in addition to increasing regulatory cytokines (TGF-β and IL10), and decreasing inflammatory cytokines (IL17, INF-ϒ, TNF-α, and IL12) levels. MSCs have shown encouraging results in the treatment of several autoimmune diseases, in particular SLE. This report aims to review the beneficial and therapeutic properties of MSCs; it also focuses on the results of animal model studies, preclinical studies, and clinical trials of MSC therapy in SLE from the immunoregulatory aspect.
Collapse
Affiliation(s)
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Esmaeil Yazdanpanah
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahideh Keyvani
- Molecular Genetics, Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Nadia Kia
- Skin Cancer Prevention Research Center, Torvergata University of Medical Sciences, Rome, Italy
| | - Amin Reza Nikpoor
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Zafari
- Department of Immunology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran.,Student Research Committee, Mazandaran University of Medical Science, Sari, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Abstract
Introduction: Primary Sjögren's syndrome (pSS) is an autoimmune systemic disease characterized by a complex and not yet completely elucidated etiopathogenesis, where autoimmune manifestations coexist with different degree of lymphoproliferation, resulting in multiple possible scenarios extremely heterogeneous from patient to patient. Although considerable progress has been made in the identifications of potential novel therapeutic targets in recent years, the biological complexity of pSS, combined to such heterogeneous clinical manifestations, makes the treatment of pSS, even today, a great challenge. Areas covered: A therapy specifically approved for pSS is still lacking. In recent years, several novel promising agents are being tested in pSS. Based on a deep revision of drugs evaluated for pSS therapy, it is striking that several clinical trials, some of them testing very promising agents, failed. Expert opinion: a renewal of clinical trial design, including the definition of novel inclusion criteria and outcome measures, together with the development of a stratification model of pSS patients and the advance in the definition of pathogenetic mechanisms underlying peculiar pSS subsets, represent preliminary and crucial steps to overcome the current therapeutic impasse in pSS.
Collapse
Affiliation(s)
- Saviana Gandolfo
- a Rheumatology Clinic, Udine University Hospital, Department of Medical Area , University of Udine , Udine , Italy
| | - Salvatore De Vita
- a Rheumatology Clinic, Udine University Hospital, Department of Medical Area , University of Udine , Udine , Italy
| |
Collapse
|
22
|
Gong B, Zheng L, Huang W, Pu J, Pan S, Liang Y, Wu Z, Tang J. Murine embryonic mesenchymal stem cells attenuated xerostomia in Sjögren-like mice via improving salivary gland epithelial cell structure and secretory function. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:954-963. [PMID: 32509066 PMCID: PMC7270676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Xerostomia is the main manifestation from patients with Sjögren syndrome (SS). However, traditional immunosuppressive agents are nearly invalid due to complicated etiopathogenesis in salivary glands, including aberrant immune dysregulation, epithelial structure destruction, and diminished secretory function. OBJECTIVE To investigate the therapeutic effect of murine embryonic mesenchymal stem cells (ME-MSCs) on salivary glandular epithelium structure and secretory function in Sjögren-like mice. METHODS Salivary flow rate (SFR), blood glucose, and body weight was weekly monitored among treatment group, disease group, and health control group. ME-MSCs were used to treat NOD mice via tail vein injection. HE staining and transmission electron microscope was used to evaluate the structure of salivary gland epithelial cells (SGEC). TUNEL fluorescence staining and PCNA immumohistochemical staining was used to evaluate the SGEC apoptosis and proliferation. The SGEC secretory function was tested by PAS staining and amylase immumohistochemical staining. RESULTS ME-MSC treatment could elevate SFR, restore the acini and micromorphologies, promote the SGEC proliferation, and suppress the SGEC apoptosis in NOD mice, but not restore to that in health control group. The SGEC structure was more intact in treatment group. Mucopolysaccharide and amylase of salivary acinar cells in treatment group was better than that in disease group, although transmission electron microscopy showed secretory granules were lower than those in healthy control. CONCLUSION ME-MSCs demonstrated its potential as a candidate treatment for xerostomia due to some effects on salivary flow rate in NOD mice by restoring the SGEC impairment and secretory function.
Collapse
Affiliation(s)
- Bangdong Gong
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Ling Zheng
- Division of Respiratory Medicine, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Wanxue Huang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Jincheng Pu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Shengnan Pan
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Yuanyuan Liang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Zhenzhen Wu
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| | - Jianping Tang
- Division of Rheumatology, Tongji Hospital of Tongji University School of Medicine389 Xincun Road, Putuo District, Shanghai 200065, China
| |
Collapse
|