1
|
Sardoiwala MN, Biswal L, Choudhury SR. Immunomodulator-Derived Nanoparticles Induce Neuroprotection and Regulatory T Cell Action to Alleviate Parkinsonism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:38880-38892. [PMID: 39016239 DOI: 10.1021/acsami.3c18226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Post-translational modification, mitochondrial abruptions, neuroinflammation, and α-synuclein (α-Syn) aggregation are considered as major causes of Parkinson's disease (PD) pathogenesis. The recent literature highlights neuroimmune cross talk and the negative role of immune effector T (Teff) and positive regulation by regulatory T (Treg) cells in PD treatment. Herein, a strategy to endow Treg action paves the path for development of PD treatment. Thus, we explored the neuroprotective efficiency of the immunomodulator and PP2A (protein phosphatase 2) activator, FTY720 nanoparticles in in vivo experimental PD models. Repurposing of FTY720 for PD is known due to its protective effect by reducing PD and its camouflaged role in endowing EZH2-mediated epigenetic regulation of PD. EZH2-FOXP3 interaction is necessary for the neuroprotective Treg cell activity. Therefore, we synthesized FTY720 nanoparticles to improve FTY720 protective efficacy in an in vivo PD model to explore the PP2A mediated signaling. We confirmed the formation of FTY720NPs, and the results of the behavioral and protein expression study showed the significant neuroprotective efficiency of our nanoformulations. In the exploration of neuroprotective mechanism, several lines of evidence confirmed FTY720NPs mediated induction of PP2A/EZH2/FOXP3 signaling in the induction of Treg cells effect in in vivo PD treatment. In summary, our nanoformulations have novel potential to alleviate PD by inducing PP2A-induced epigenetic regulation-mediated neuroimmunomodulation at the clinical setup.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Mahmudi H, Shahpouri M, Adili-Aghdam MA, Akbari M, Salemi A, Alimohammadvand S, Barzegari A, Mazloomi M, Jaymand M, Jahanban-Esfahlan R. Self-activating chitosan-based nanoparticles for sphingosin-1 phosphate modulator delivery and selective tumor therapy. Int J Biol Macromol 2024; 272:132940. [PMID: 38848845 DOI: 10.1016/j.ijbiomac.2024.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.
Collapse
Affiliation(s)
- Hossein Mahmudi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Shahpouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Morteza Akbari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Salemi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Barzegari
- Innovation Center for Stem Cell Research and Regenerative Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MirAhmad Mazloomi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Rana Jahanban-Esfahlan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Magalhães DM, Stewart NA, Mampay M, Rolle SO, Hall CM, Moeendarbary E, Flint MS, Sebastião AM, Valente CA, Dymond MK, Sheridan GK. The sphingosine 1-phosphate analogue, FTY720, modulates the lipidomic signature of the mouse hippocampus. J Neurochem 2024; 168:1113-1142. [PMID: 38339785 DOI: 10.1111/jnc.16073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
The small-molecule drug, FTY720 (fingolimod), is a synthetic sphingosine 1-phosphate (S1P) analogue currently used to treat relapsing-remitting multiple sclerosis in both adults and children. FTY720 can cross the blood-brain barrier (BBB) and, over time, accumulate in lipid-rich areas of the central nervous system (CNS) by incorporating into phospholipid membranes. FTY720 has been shown to enhance cell membrane fluidity, which can modulate the functions of glial cells and neuronal populations involved in regulating behaviour. Moreover, direct modulation of S1P receptor-mediated lipid signalling by FTY720 can impact homeostatic CNS physiology, including neurotransmitter release probability, the biophysical properties of synaptic membranes, ion channel and transmembrane receptor kinetics, and synaptic plasticity mechanisms. The aim of this study was to investigate how chronic FTY720 treatment alters the lipid composition of CNS tissue in adolescent mice at a key stage of brain maturation. We focused on the hippocampus, a brain region known to be important for learning, memory, and the processing of sensory and emotional stimuli. Using mass spectrometry-based lipidomics, we discovered that FTY720 increases the fatty acid chain length of hydroxy-phosphatidylcholine (PCOH) lipids in the mouse hippocampus. It also decreases PCOH monounsaturated fatty acids (MUFAs) and increases PCOH polyunsaturated fatty acids (PUFAs). A total of 99 lipid species were up-regulated in the mouse hippocampus following 3 weeks of oral FTY720 exposure, whereas only 3 lipid species were down-regulated. FTY720 also modulated anxiety-like behaviours in young mice but did not affect spatial learning or memory formation. Our study presents a comprehensive overview of the lipid classes and lipid species that are altered in the hippocampus following chronic FTY720 exposure and provides novel insight into cellular and molecular mechanisms that may underlie the therapeutic or adverse effects of FTY720 in the central nervous system.
Collapse
Affiliation(s)
- Daniela M Magalhães
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | | - Myrthe Mampay
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Sara O Rolle
- Green Templeton College, University of Oxford, Oxford, UK
| | - Chloe M Hall
- School of Applied Sciences, University of Brighton, Brighton, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, UK
- 199 Biotechnologies Ltd, London, UK
| | - Melanie S Flint
- School of Applied Sciences, University of Brighton, Brighton, UK
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Cláudia A Valente
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Lisboa, Portugal
| | - Marcus K Dymond
- School of Applied Sciences, University of Brighton, Brighton, UK
| | | |
Collapse
|
4
|
Alkafaas SS, Elsalahaty MI, Ismail DF, Radwan MA, Elkafas SS, Loutfy SA, Elshazli RM, Baazaoui N, Ahmed AE, Hafez W, Diab M, Sakran M, El-Saadony MT, El-Tarabily KA, Kamal HK, Hessien M. The emerging roles of sphingosine 1-phosphate and SphK1 in cancer resistance: a promising therapeutic target. Cancer Cell Int 2024; 24:89. [PMID: 38419070 PMCID: PMC10903003 DOI: 10.1186/s12935-024-03221-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/09/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer chemoresistance is a problematic dilemma that significantly restrains numerous cancer management protocols. It can promote cancer recurrence, spreading of cancer, and finally, mortality. Accordingly, enhancing the responsiveness of cancer cells towards chemotherapies could be a vital approach to overcoming cancer chemoresistance. Tumour cells express a high level of sphingosine kinase-1 (SphK1), which acts as a protooncogenic factor and is responsible for the synthesis of sphingosine-1 phosphate (S1P). S1P is released through a Human ATP-binding cassette (ABC) transporter to interact with other phosphosphingolipids components in the interstitial fluid in the tumor microenvironment (TME), provoking communication, progression, invasion, and tumor metastasis. Also, S1P is associated with several impacts, including anti-apoptotic behavior, metastasis, mesenchymal transition (EMT), angiogenesis, and chemotherapy resistance. Recent reports addressed high levels of S1P in several carcinomas, including ovarian, prostate, colorectal, breast, and HCC. Therefore, targeting the S1P/SphK signaling pathway is an emerging therapeutic approach to efficiently attenuate chemoresistance. In this review, we comprehensively discussed S1P functions, metabolism, transport, and signaling. Also, through a bioinformatic framework, we pointed out the alterations of SphK1 gene expression within different cancers with their impact on patient survival, and we demonstrated the protein-protein network of SphK1, elaborating its sparse roles. Furthermore, we made emphasis on different machineries of cancer resistance and the tight link with S1P. We evaluated all publicly available SphK1 inhibitors and their inhibition activity using molecular docking and how SphK1 inhibitors reduce the production of S1P and might reduce chemoresistance, an approach that might be vital in the course of cancer treatment and prognosis.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Mohamed I Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Doha F Ismail
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mustafa Ali Radwan
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Samah A Loutfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Nanotechnology Research Center, British University, Cairo, Egypt
| | - Rami M Elshazli
- Biochemistry and Molecular Genetics Unit, Department of Basic Sciences, Faculty of Physical Therapy, Horus University-Egypt, New Damietta, 34517, Egypt
| | - Narjes Baazaoui
- Biology Department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha 61421, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Wael Hafez
- NMC Royal Hospital, 16th Street, 35233, Khalifa, Abu Dhabi, United Arab Emirates
- Medical Research Division, Department of Internal Medicine, The National Research Centre, Cairo 11511, Egypt
| | - Mohanad Diab
- Burjeel Hospital Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohamed Sakran
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Hani K Kamal
- Anatomy and Histology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed Hessien
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
5
|
Sardoiwala MN, Boddu M, Biswal L, Karmakar S, Choudhury SR. FTY720 Nanoformulation Induces O-GlcNacylation of Synuclein to Alleviate Synucleinopathy. ACS Chem Neurosci 2024; 15:71-77. [PMID: 38109795 DOI: 10.1021/acschemneuro.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The post-translational modification and aggregation of alpha-synuclein are one of the major causes of Parkinson's disease (PD) regulation. In that, the phosphorylation and nitration of synuclein elevate the aggregation, while O-GlcNacylation prevents the aggregation of synuclein. The inhibition of synuclein aggregation directs the development of PD therapy. The endowed O-GlcNacylation of synuclein could be a promising strategy to inhibit synucleinopathy. Therefore, the neuroprotective chitosan-based FTY720 nanoformulation, PP2A (Protein phosphatase 2) activator has been employed to evaluate the PP2A role in the O-GlcNacylation of synuclein in an in vivo PD model. The neuroprotective effect of our nanoformulation is attributed to the upregulation of tyrosine hydroxylase (TH), the PD therapeutic target, with behavioral improvement in animals against rotenone-induced PD deficits. The neuroprotective molecular insights revealed the camouflaged role of PP2A by endowing the OGT activity that induces O-GlcNacylation of synuclein in the reduction of synucleinopathy.
Collapse
Affiliation(s)
- Mohammed Nadim Sardoiwala
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Mrunalini Boddu
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Liku Biswal
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Surajit Karmakar
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Subhasree Roy Choudhury
- Epigenetics Research Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| |
Collapse
|
6
|
Chao-shun W, Xiao-Li W. The impacts of SphK1 on inflammatory response and oxidative stress in LPS-induced ALI/ARDS. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
As severe conditions, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) threaten human health. Inflammation and oxidative stress play a vital role in the pathogenesis of ALI/ARDS. Sphingosine kinase 1 (SphK1) significantly contributes to mediating inflammatory responses. Nevertheless, the impact of SphK1 on lipopolysaccharide (LPS)-triggered ALI/ARDS remains largely undetermined. In our current work, we explored the impact of SphK1 on ALI/ARDS using a mouse model. We studied whether it could reduce LPS-triggered inflammatory response and oxidative stress by suppressing SphK1 in ALI/ARDS. The mice were treated with the inhibitor of SphK1 (N,N-dimethylsphingosine, DMS) before intraperitoneal injection of LPS. Moreover, we assessed the survival rate, and several parameters, such as the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and the release of inflammatory cytokines. Western blotting analysis was adopted to evaluate the levels of phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT) pathways. We showed that the inhibitor of SphK1 not only ameliorated LPS-stimulated lung histopathological changes and W/D ratio of lung tissue but also elevated the survival rate, the SOD activity and decreased the MDA content, MPO activity, interleukin-6 (IL-6) and tumor necrosis factor-ɑ (TNF-ɑ) production by regulating the PI3K/AKT signaling pathway in lung tissue. Taken together, SphK1 played an essential role in inflammatory responses and oxidative stress. The underlying mechanism might be linked to the activation and up-regulation of the PI3K/AKT signaling pathway in LPS-triggered ALI/ARDS.
Collapse
Affiliation(s)
- Wei Chao-shun
- Medical College of Jishou University, Jishou, P. R. China
| | - Wang Xiao-Li
- Medical College of Jishou University, Jishou, P. R. China
| |
Collapse
|
7
|
Immunomodulatory drug fingolimod (FTY720) restricts the growth of opportunistic yeast Candida albicans in vitro and in a mouse candidiasis model. PLoS One 2022; 17:e0278488. [PMID: 36477491 PMCID: PMC9728862 DOI: 10.1371/journal.pone.0278488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Fingolimod (FTY720) is a drug derived from the fungicidal compound myriocin. As it was unclear whether FTY720 has antifungal effects as well, we aimed to characterize its effect on Candida albicans in vitro and in a mouse candidiasis model. First, antifungal susceptibility testing was performed in vitro. Then, a randomized, six-arm, parallel, open-label trial was conducted on 48 mice receiving oral FTY720 (0.3 mg/kg/day), intraperitoneal C. albicans inoculation, or placebo with different combinations and chorological patterns. The outcome measures of the trial included serum concentrations of interleukin-10 and interferon-gamma, absolute lymphocyte counts, and fungal burden values in the mice's livers, kidneys, and vaginas. Broth microdilution assay revealed FTY720's minimum inhibitory concentration (MIC99) to be 0.25 mg/mL for C. albicans. The infected mice treated with FTY720 showed lower fungal burden values than the ones not treated with FTY720 (p<0.05). As expected, the mice treated with FTY720 showed a less-inflammatory immune profile compared to the ones not treated with FTY720. We hypothesize that FTY720 synergizes the host's innate immune functions by inducing the production of reactive oxygen species. Further studies are warranted to unveil the mechanistic explanations of our observations and clarify further aspects of repurposing FTY720 for clinical antifungal usage.
Collapse
|
8
|
How CW, Ong YS, Low SS, Pandey A, Show PL, Foo JB. How far have we explored fungi to fight cancer? Semin Cancer Biol 2022; 86:976-989. [PMID: 33737109 DOI: 10.1016/j.semcancer.2021.03.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/21/2021] [Accepted: 03/13/2021] [Indexed: 01/01/2023]
Abstract
The use of fungal cultures have been well documented in human history. Although its used in healthcare, like penicillin and statins, have saved countless of lives, but there is still no fungal products that are specifically indicated for cancers. Research into fungal-derived materials to curb cancers in the recent decades have made a considerable progress in terms of drug delivery vehicles, anticancer active ingredients and cancer immunotherapy. Various parts of the organisms have successfully been exploited to achieve specific tasks. Apart from the identification of novel anticancer compound from fungi, its native capsular structure can also be used as drug cargo to achieve higher oral bioavailability. This review summarises the anticancer potential of fungal-derived materials, highlighting the role of capsular polysaccharides, proteins, and other structures in variety of innovative utilities to fit the current pharmaceutical technology. Many bioactive compounds isolated from fungi have also been formulated into nanoparticles to achieve greater anticancer activity. The progress of fungal compounds and their analogues in clinical trials is also highlighted. In addition, the potential of various fungal species to be developed for anticancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Sze Shin Low
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia; Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
9
|
Petrusca DN, Lee KP, Galson DL. Role of Sphingolipids in Multiple Myeloma Progression, Drug Resistance, and Their Potential as Therapeutic Targets. Front Oncol 2022; 12:925807. [PMID: 35756630 PMCID: PMC9213658 DOI: 10.3389/fonc.2022.925807] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma (MM) is an incapacitating hematological malignancy characterized by accumulation of cancerous plasma cells in the bone marrow (BM) and production of an abnormal monoclonal protein (M-protein). The BM microenvironment has a key role in myeloma development by facilitating the growth of the aberrant plasma cells, which eventually interfere with the homeostasis of the bone cells, exacerbating osteolysis and inhibiting osteoblast differentiation. Recent recognition that metabolic reprograming has a major role in tumor growth and adaptation to specific changes in the microenvironmental niche have led to consideration of the role of sphingolipids and the enzymes that control their biosynthesis and degradation as critical mediators of cancer since these bioactive lipids have been directly linked to the control of cell growth, proliferation, and apoptosis, among other cellular functions. In this review, we present the recent progress of the research investigating the biological implications of sphingolipid metabolism alterations in the regulation of myeloma development and its progression from the pre-malignant stage and discuss the roles of sphingolipids in in MM migration and adhesion, survival and proliferation, as well as angiogenesis and invasion. We introduce the current knowledge regarding the role of sphingolipids as mediators of the immune response and drug-resistance in MM and tackle the new developments suggesting the manipulation of the sphingolipid network as a novel therapeutic direction for MM.
Collapse
Affiliation(s)
- Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kelvin P Lee
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN, United States.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, United States
| | - Deborah L Galson
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, McGowan Institute for Regenerative Medicine, HCC Research Pavilion, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Duan M, Gao P, Chen SX, Novák P, Yin K, Zhu X. Sphingosine-1-phosphate in mitochondrial function and metabolic diseases. Obes Rev 2022; 23:e13426. [PMID: 35122459 DOI: 10.1111/obr.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/02/2022] [Accepted: 01/02/2022] [Indexed: 01/23/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid metabolite. The past decade has witnessed exponential growth in the field of S1P research, partly attributed to drugs targeting its receptors or kinases. Accumulating evidence indicates that changes in the S1P axis (i.e., S1P production, transport, and receptors) may modify metabolism and eventually mediate metabolic diseases. Dysfunction of the mitochondria on a master monitor of cellular metabolism is considered the leading cause of metabolic diseases, with aberrations typically induced by abnormal biogenesis, respiratory chain complex disorders, reactive oxygen species overproduction, calcium deposition, and mitophagy impairment. Accordingly, we discuss decades of investigation into changes in the S1P axis and how it controls mitochondrial function. Furthermore, we summarize recent scientific advances in disorders associated with the S1P axis and their involvement in the pathogenesis of metabolic diseases in humans, including type 2 diabetes mellitus and cardiovascular disease, from the perspective of mitochondrial function. Finally, we review potential challenges and prospects for S1P axis application to the regulation of mitochondrial function and metabolic diseases; these data may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Meng Duan
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Pan Gao
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Sheng-Xi Chen
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Petr Novák
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| | - Kai Yin
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China.,Department of Cardiology, The Second Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Xiao Zhu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, Guangxi, China
| |
Collapse
|
11
|
Campa-Carranza JN, Paez-Mayorga J, Chua CYX, Nichols JE, Grattoni A. Emerging local immunomodulatory strategies to circumvent systemic immunosuppression in cell transplantation. Expert Opin Drug Deliv 2022; 19:595-610. [PMID: 35588058 DOI: 10.1080/17425247.2022.2076834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Cell transplantation is a promising curative therapeutic strategy whereby impaired organ functions can be restored without the need for whole organ transplantation. A key challenge in allotransplantation is the requirement for life-long systemic immunosuppression to prevent rejection, which is associated with serious adverse effects such as increased risk of opportunistic infections and the development of neoplasms. This challenge underscores the urgent need for novel strategies to prevent graft rejection while abrogating toxicity-associated adverse events. AREAS COVERED We review recent advances in immunoengineering strategies for localized immunomodulation that aim to support allograft function and provide immune tolerance in a safe and effective manner. EXPERT OPINION Immunoengineering strategies are tailored approaches for achieving immunomodulation of the transplant microenvironment. Biomaterials can be adapted for localized and controlled release of immunomodulatory agents, decreasing the effective dose threshold and frequency of administration. The future of transplant rejection management lies in the shift from systemic to local immunomodulation with suppression of effector and activation of regulatory T cells, to promote immune tolerance.
Collapse
Affiliation(s)
- Jocelyn Nikita Campa-Carranza
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Jesus Paez-Mayorga
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, NL, Mexico
| | - Corrine Ying Xuan Chua
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Joan E Nichols
- Center for Tissue Engineering, Houston Methodist Research Institute, Houston, TX, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA.,Department of Surgery, Houston Methodist Hospital, Houston, TX, USA.,Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
12
|
Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 2022; 39:91. [PMID: 35568790 DOI: 10.1007/s12032-022-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap 'n' collar family of keypart-leucine zipper transcription agents-the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
13
|
Abstract
INTRODUCTION Acute kidney injury (AKI) is a clinically critical disease exhibiting an acute decline in renal function. The lack of an effective prevention and treatment method equates to a high morbidity and mortality rate. Consequently, over the past few decades, many therapeutic drugs with different mechanisms of action have been proposed and gradually applied to the clinic. The involved drug mechanisms evaluated have included hemodynamic modulation, anti-inflammatory, antioxidant, repair agents, metabolic derangement and mitochondrial function. AREAS COVERED The authors of this review provide the reader with a reference point for the latest advances in pharmacotherapy in acute kidney injury. This is achieved by the evaluation of the latest data collected on potential therapeutic drugs with different mechanisms of action, as well as their preclinical and clinical impact on AKI. EXPERT OPINION Presently, the vast majority of drugs are still in clinical development, which is a huge challenge. Nevertheless, in addition to current chemical drugs and gene therapy strategies, the advent of mesenchymal stem cell treatments and other emerging pharmaceutical strategies could enable clinicians to better treat AKI. Due to the nonselective distribution and low bioavailability of some of the latest pharmaceutical strategies, there is hope that these treatment options may provide more efficacious avenues.
Collapse
Affiliation(s)
- Yali Xu
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Zou
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojing Cao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
14
|
Bu Y, Wu H, Deng R, Wang Y. Therapeutic Potential of SphK1 Inhibitors Based on Abnormal Expression of SphK1 in Inflammatory Immune Related-Diseases. Front Pharmacol 2021; 12:733387. [PMID: 34737701 PMCID: PMC8560647 DOI: 10.3389/fphar.2021.733387] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sphingosine kinase 1(SphK1) a key enzyme that catalyzes the conversion of sphingosine (Sph) to sphingosine 1-phosphate (S1P), so as to maintain the dynamic balance of sphingolipid-rheostat in cells and participate in cell growth and death, proliferation and migration, vasoconstriction and remodeling, inflammation and metabolism. The normal expression of SphK1 maintains the balance of physiological and pathological states, which is reflected in the regulation of inflammatory factor secretion, immune response in traditional immune cells and non-traditional immune cells, and complex signal transduction. However, abnormal SphK1 expression and activity are found in various inflammatory and immune related-diseases, such as hypertension, atherosclerosis, Alzheimer’s disease, inflammatory bowel disease and rheumatoid arthritis. In view of the therapeutic potential of regulating SphK1 and its signal, the current research is aimed at SphK1 inhibitors, such as SphK1 selective inhibitors and dual SphK1/2 inhibitor, and other compounds with inhibitory potency. This review explores the regulatory role of over-expressed SphK1 in inflammatory and immune related-diseases, and investigate the latest progress of SphK1 inhibitors and the improvement of disease or pathological state.
Collapse
Affiliation(s)
- Yanhong Bu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Hong Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Ran Deng
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| | - Yan Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China.,College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China.,Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Gupta P, Taiyab A, Hussain A, Alajmi MF, Islam A, Hassan MI. Targeting the Sphingosine Kinase/Sphingosine-1-Phosphate Signaling Axis in Drug Discovery for Cancer Therapy. Cancers (Basel) 2021; 13:1898. [PMID: 33920887 PMCID: PMC8071327 DOI: 10.3390/cancers13081898] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 04/03/2021] [Indexed: 02/07/2023] Open
Abstract
Sphingolipid metabolites have emerged as critical players in the regulation of various physiological processes. Ceramide and sphingosine induce cell growth arrest and apoptosis, whereas sphingosine-1-phosphate (S1P) promotes cell proliferation and survival. Here, we present an overview of sphingolipid metabolism and the compartmentalization of various sphingolipid metabolites. In addition, the sphingolipid rheostat, a fine metabolic balance between ceramide and S1P, is discussed. Sphingosine kinase (SphK) catalyzes the synthesis of S1P from sphingosine and modulates several cellular processes and is found to be essentially involved in various pathophysiological conditions. The regulation and biological functions of SphK isoforms are discussed. The functions of S1P, along with its receptors, are further highlighted. The up-regulation of SphK is observed in various cancer types and is also linked to radio- and chemoresistance and poor prognosis in cancer patients. Implications of the SphK/S1P signaling axis in human pathologies and its inhibition are discussed in detail. Overall, this review highlights current findings on the SphK/S1P signaling axis from multiple angles, including their functional role, mechanism of activation, involvement in various human malignancies, and inhibitor molecules that may be used in cancer therapy.
Collapse
Affiliation(s)
- Preeti Gupta
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.H.); (M.F.A.)
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; (P.G.); (A.T.); (A.I.)
| |
Collapse
|
16
|
Chen YC, Dinavahi SS, Feng Q, Gowda R, Ramisetti S, Xia X, LaPenna KB, Chirasani VR, Cho SH, Hafenstein SL, Battu MB, Berg A, Sharma AK, Kirchhausen T, Dokholyan NV, Amin S, He P, Robertson GP. Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby inhibiting cancer metastasis. Cancer Lett 2021; 506:107-119. [PMID: 33600895 DOI: 10.1016/j.canlet.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/22/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022]
Abstract
Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Saketh S Dinavahi
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Qilong Feng
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Raghavendra Gowda
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Srinivasa Ramisetti
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Xinghai Xia
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Kyle B LaPenna
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Venkat R Chirasani
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sung Hyun Cho
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Susan L Hafenstein
- Departments of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Arthur Berg
- Departments of Public Health Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Arun K Sharma
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Tom Kirchhausen
- Departments of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine at Boston Children's Hospital, MA, 02115, USA
| | - Nikolay V Dokholyan
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Shantu Amin
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Pingnian He
- Departments of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Gavin P Robertson
- Departments of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Departments of Pathology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Departments of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Foreman Foundation for Melanoma Research, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Melanoma and Skin Cancer Center, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
17
|
Sardoiwala MN, Karmakar S, Choudhury SR. Chitosan nanocarrier for FTY720 enhanced delivery retards Parkinson's disease via PP2A-EzH2 signaling in vitro and ex vivo. Carbohydr Polym 2020; 254:117435. [PMID: 33357908 DOI: 10.1016/j.carbpol.2020.117435] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/05/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) develops due to oxidative stress, mitochondrial aberrations, posttranslational modification, and α-Synuclein (α-Syn) aggregation. The α-synucleinopathy is attributed to phosphorylation and aggregation of α-Syn. A strategy to degrade or reduce phosphorylated protein paves the way to develop PD therapy. Hence, the neuroprotective efficiency of PP2A (Protein phosphatase 2) activator FTY720, loaded chitosan nanoformulation has been evaluated in vitro and ex vivo experimental PD models. Bio-compatible chitosan-based nanocarriers have been utilized to enhance the bio-availability and neuroprotective effect of FTY720. The neuroprotective effect of characterized nanoformulation was determined by the downregulation of PD hallmark phospho-serine 129 (pSer129) α-Syn, with anti-oxidative and anti-inflammatory potentials. The neuroprotective mechanism uncovered novel physical interaction of PP2A and polycomb group of protein Enhancer of zeste homolog 2 to mediate ubiquitination and degradation of agglomerated pSer129 α-Syn. Indeed, this study establishes the neuroprotective potential of chitosan based FTY720 nanoformulations by PP2A mediated epigenetic regulation for PD prevention.
Collapse
Affiliation(s)
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
18
|
Inhibition of Human Neutrophil Functions In Vitro by Multiple Sclerosis Disease-Modifying Therapies. J Clin Med 2020; 9:jcm9113542. [PMID: 33147889 PMCID: PMC7692529 DOI: 10.3390/jcm9113542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
There is a growing optimism about the potential of new disease-modifying therapies (DMTs) in the management of relapsing-remitting multiple sclerosis (RRMS) patients. However, this initial enthusiasm has been tempered by evidence indicating that multiple sclerosis (MS) patients undergoing DMT may be at higher risk of developing infections through incompletely understood mechanisms. As neutrophils provide the first line of defense against pathogens, here we have compared the effects of some of the commonly used MS DMTs (i.e., moderate-efficacy injective, first-line: interferonβ-1b (IFNβ-1b), glatiramer acetate (GA); and high-efficacy, second-line: fingolimod (FTY) and natalizumab (NAT)) on the in vitro viability and functions of neutrophils isolated from healthy subjects. All the DMTs tested impaired the ability of neutrophils to kill Klebsiella pneumoniae, whereas none of them affected the rate of neutrophil apoptosis or CD11b and CD62L cell surface expression. Intriguingly, only FTY exposure negatively affected K. pneumoniae-induced production of reactive oxygen species (ROS) in polymorphonuclear leukocytes (PMNs). Furthermore, neutrophils exposed to K. pneumoniae secreted enhanced amounts of CXCL8, IL-1β and TNF-α, which were differentially regulated following DMT pretreatment. Altogether, these findings suggest that DMTs may increase the susceptibility of MS patients to microbial infections, in part, through inhibition of neutrophil functions. In light of these data, we recommend that the design of personalized therapies for RRMS patients should take into account not just the mechanism of action of the chosen DMT but also the potential risk of infection associated with the administration of such therapeutic compounds to this highly vulnerable population.
Collapse
|
19
|
Guo Y, Gan X, Zhou H, Zhou H, Pu S, Long X, Ren C, Feng T, Tang H. Fingolimod suppressed the chronic unpredictable mild stress-induced depressive-like behaviors via affecting microglial and NLRP3 inflammasome activation. Life Sci 2020; 263:118582. [PMID: 33058911 DOI: 10.1016/j.lfs.2020.118582] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Depression is a common aspect of the modern lifestyle, and most patients are recalcitrant to the current antidepressants. Fingolimod (FTY720), a sphingosine analogue approved for the treatment of multiple sclerosis, has a significant neuroprotective effect on the central nervous system. The aim of this study was to determine the potential therapeutic effect of FTY720 on the behavior and cognitive function of rats exposed daily to chronic unpredictable mild stress (CUMS), and elucidate the underlying mechanisms. The 42-day CUMS modeling induced depression-like behavior as indicated by the scores of sugar water preference, forced swimming, open field and Morris water maze tests. Mechanistically, CUMS caused significant damage to the hippocampal neurons, increased inflammation and oxidative stress, activated the NF-κB/NLRP3 axis, and skewed microglial polarization to the M1 phenotype. FTY720 not only alleviated neuronal damage and oxidative stress, but also improved the depression-like behavior and cognitive function of the rats. It also inhibited NF-κB activation and blocked NLRP3 inflammasome assembly by down-regulating NLRP3, ACS and caspase-1. Furthermore, FTY720 inhibited the microglial M1 polarization markers iNOS and CD16, and promoted the M2 markers Arg-1 and CD206. This in turn reduced the levels of TNF-α, IL-6 and IL-1β, and increased that of IL-10 in the hippocampus. In conclusion, FTY720 protects hippocampal neurons from stress-induced damage and alleviates depressive symptoms by inhibiting neuroinflammation. Our study provides a theoretical basis for S1P receptor modulation in treating depression.
Collapse
Affiliation(s)
- Yuanxin Guo
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xiaohong Gan
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Houfeng Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongjing Zhou
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Shiyun Pu
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Xia Long
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Changyu Ren
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Tao Feng
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China
| | - Hongmei Tang
- Department of Pharmacy, Chengdu Fifth People's Hospital, Chengdu, Sichuan 611130, China.
| |
Collapse
|
20
|
Inhibitors of Ceramide- and Sphingosine-Metabolizing Enzymes as Sensitizers in Radiotherapy and Chemotherapy for Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12082062. [PMID: 32722626 PMCID: PMC7463798 DOI: 10.3390/cancers12082062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In the treatment of advanced head and neck squamous cell carcinoma (HNSCC), including oral SCC, radiotherapy is a commonly performed therapeutic modality. The combined use of radiotherapy with chemotherapy improves therapeutic effects, but it also increases adverse events. Ceramide, a central molecule in sphingolipid metabolism and signaling pathways, mediates antiproliferative responses, and its level increases in response to radiotherapy and chemotherapy. However, when ceramide is metabolized, prosurvival factors, such as sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glucosylceramide, are produced, reducing the antitumor effects of ceramide. The activities of ceramide- and sphingosine-metabolizing enzymes are also associated with radio- and chemo-resistance. Ceramide analogs and low molecular-weight compounds targeting these enzymes exert anticancer effects. Synthetic ceramides and a therapeutic approach using ultrasound have also been developed. Inhibitors of ceramide- and sphingosine-metabolizing enzymes and synthetic ceramides can function as sensitizers of radiotherapy and chemotherapy for HNSCC.
Collapse
|
21
|
Ryu J, Jhun J, Park MJ, Baek JA, Kim SY, Cho KH, Choi JW, Park SH, Choi JY, Cho ML. FTY720 ameliorates GvHD by blocking T lymphocyte migration to target organs and by skin fibrosis inhibition. J Transl Med 2020; 18:225. [PMID: 32505218 PMCID: PMC7276082 DOI: 10.1186/s12967-020-02386-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Fibrosis is the formation of excess connective tissue in an organ or tissue during a reparative or reactive process. Graft-versus-host disease (GvHD) is a medical complication of allogeneic tissue transplantation with transplanted donor T cell-mediated inflammatory response; it is characterized by a severe immune response with fibrosis in the final stage of the inflammatory process. T helper 17 cells play a critical role in the pathogenesis of GvHD. Fingolimod (FTY720), an analogue of sphingosine-1-phosphate (S1P), is an effective immunosuppressive agent in experimental transplantation models. METHODS In this study, we evaluated the effects of FTY720 as a treatment for an animal GvHD model with inflammation and fibrosis. The splenocytes, lymph nodes, blood, tissues from Syngeneic mice and GvHD-induced mice treated vehicle or FTY720 were compared using flow cytometry, hematological analyses, histologic analyses. RESULTS FTY720 reduced clinical scores based on the following five clinical parameters: weight loss, posture, activity, fur texture, and skin integrity. FACS data showed that T lymphocyte numbers increased in mesenteric lymph nodes and decreased in splenocytes of FTY720-treated mice. Tissue analysis showed that FTY720 reduced skin, intestinal inflammation, and fibrotic markers. FTY720 dramatically decreased α-smooth muscle actin, connective tissue growth factor, and fibronectin protein levels in keloid skin fibroblasts. CONCLUSIONS Thus, FTY720 suppressed migration of pathogenic T cells to target organs, reducing inflammation. FTY720 also inhibited fibrogenesis marker expression in vitro and in vivo. Together, these results suggest that FTY720 prevents GvHD progression via immunosuppression of TH17 and simultaneously acts an anti-fibrotic agent.
Collapse
Affiliation(s)
- Jaeyoon Ryu
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Min-Jung Park
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Ah Baek
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Keun-Hyung Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Won Choi
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jong Young Choi
- Division of Hepatology, Department of Internal Medicine, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, 137-040, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Department of Medical Lifescience, College of Medicine, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| |
Collapse
|
22
|
Bailly C. Regulation of PD-L1 expression on cancer cells with ROS-modulating drugs. Life Sci 2020; 246:117403. [DOI: 10.1016/j.lfs.2020.117403] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022]
|
23
|
Dunlap KA, White BG, Erikson DW, Satterfield MC, Pfarrer C, Wu G, Bazer FW, Burghardt RC, Bayless KJ, Johnson GA. FTY720, a sphingosine analog, altered placentome histoarchitecture in ewes. J Anim Sci Biotechnol 2020; 11:2. [PMID: 31911836 PMCID: PMC6943922 DOI: 10.1186/s40104-019-0411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/01/2019] [Indexed: 12/14/2022] Open
Abstract
Background The lysosphingolipid, sphingosine-1-phosphate, is a well-described and potent pro-angiogenic factor. Receptors, as well as the sphingosine phosphorylating enzyme sphingosine kinase 1, are expressed in the placentomes of sheep and the decidua of rodents; however, a function for this signaling pathway during pregnancy has not been established. The objective of this study was to investigate whether sphingosine-1-phosphate promoted angiogenesis within the placentomes of pregnant ewes. Ewes were given daily jugular injections of FTY720 (2-amino-2[2-(− 4-octylphenyl)ethyl]propate-1,3-diol hydrochloride), an S1P analog. Results FTY720 infusion from days 30 to 60 of pregnancy did not alter maternal organ weights nor total number or mass of placentomes, but did alter placentome histoarchitecture. Interdigitation of caruncular crypts and cotyledonary villi was decreased, as was the relative area of cotyledonary tissue within placentomes. Also, the percentage of area occupied by cotyledonary villi per unit of placentome was increased, while the thickness of the caruncular capsule was decreased in ewes treated with FTY720. Further, FTY720 infusion decreased the number and density of blood vessels within caruncular tissue near the placentome capsule where the crypts emerge from the capsule. Finally, FTY720 infusion decreased asparagine and glutamine in amniotic fluid and methionine in allantoic fluid, and decreased the crown rump length of day 60 fetuses. Conclusions While members of the sphingosine-1-phosphate signaling pathway have been characterized within the uteri and placentae of sheep and mice, the present study uses FTY720 to address the influence of S1P signaling on placental development. We present evidence that modulation of the S1P signaling pathway results in the alteration of caruncular vasculature, placentome architecture, abundance of amino acids in allantoic and amniotic fluids, and fetal growth during pregnancy in sheep. The marked morphological changes in placentome histoarchitecture, including alteration in the vasculature, may be relevant to fetal growth and survival. It is somewhat surprising that fetal length was reduced as early as day 60, because fetal growth in sheep is greatest after day 60. The subtle changes observed in the fetuses of ewes exposed to FTY720 may indicate an adaptive response of the fetuses to cope with altered placental morphology.
Collapse
Affiliation(s)
- Kathrin A Dunlap
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Bryan G White
- Okanagan College Salmon Arm Campus, Salmon Arm, British Columbia Canada
| | - David W Erikson
- 3Endocrine Technologies Core, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR USA
| | - M Carey Satterfield
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Christiane Pfarrer
- 4Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Guoyao Wu
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Fuller W Bazer
- 1Department of Animal Science, Texas A&M University, College Station, TX 77843 USA
| | - Robert C Burghardt
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Kayla J Bayless
- 6Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - Greg A Johnson
- 5Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
24
|
Synthesis and Biological Evaluation of BODIPY-PF-543. Molecules 2019; 24:molecules24234408. [PMID: 31810327 PMCID: PMC6930633 DOI: 10.3390/molecules24234408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) regulates the proliferation of various cells and promotes the growth of cancer cells. Sphingosine kinase (SK), which transforms sphingosine into S1P, has two isotypes: SK1 and SK2. To date, both isotypes are known to be involved in the proliferation of cancer cells. PF-543, an SK1 inhibitor developed by Pfizer, strongly inhibits SK1. However, despite its strong SK1 inhibitory effect, PF-543 shows low anticancer activity in vitro. Therefore, additional biological evidence on the anticancer activity of SK1 inhibitor is required. The present study aimed to investigate the intracellular localization of PF-543 and identify its association with anticancer activity by introducing a fluoroprobe into PF-543. Boron–dipyrromethene (BODIPY)-introduced PF-543 has a similar SK1 inhibitory effect as PF-543. These results indicate that the introduction of BODIPY does not significantly affect the inhibitory effect of SK1. In confocal microscopy after BODIPY-PF-543 treatment, the compound was mainly located in the cytosol of the cells. This study demonstrated the possibility of introducing fluorescent material into an SK inhibitor and designing a synthesized compound that is permeable to cells while maintaining the SK inhibitory effect.
Collapse
|
25
|
Downregulation of LncRNA-XIST inhibited development of non-small cell lung cancer by activating miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death. Aging (Albany NY) 2019; 11:7830-7846. [PMID: 31553952 PMCID: PMC6781979 DOI: 10.18632/aging.102291] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/14/2019] [Indexed: 12/22/2022]
Abstract
LncRNA-XIST participated in the regulation of Non-small cell lung cancer (NSCLC) progression, but the underlying mechanisms are still unclear. This study showed that LncRNA-XIST aberrantly overexpressed in either NSCLC tissues or cell lines comparing to their paired control groups. Knock-down of LncRNA-XIST promoted NSCLC cell apoptosis and inhibited cell proliferation, which were reversed by synergistically treating cells with pyroptosis inhibitor Necrosulfonamide (NSA). In addition, knock-down of LncRNA-XIST also promoted reactive oxygen species (ROS) production and NLRP3 inflammasome activation. In parallel, ROS scavenger N-acetyl cysteine (NAC) abrogated the effects of downregulated LncRNA-XIST on NSCLC cell pyroptosis. Furthermore, miR-335 was the downstream target of LncRNA-XIST and overexpressed LncRNA-XIST increased SOD2 expression levels by sponging miR-335. Mechanistically, miR-335 inhibitor reversed the effects of downregulated LncRNA-XIST on ROS levels and cell pyroptosis, which were abrogated by synergistically knocking down SOD2. Taken together, knock-down of LncRNA-XIST inhibited NSCLC progression by triggering miR-335/SOD2/ROS signal pathway mediated pyroptotic cell death.
Collapse
|
26
|
Soltan MY, Sumarni U, Assaf C, Langer P, Reidel U, Eberle J. Key Role of Reactive Oxygen Species (ROS) in Indirubin Derivative-Induced Cell Death in Cutaneous T-Cell Lymphoma Cells. Int J Mol Sci 2019; 20:ijms20051158. [PMID: 30866411 PMCID: PMC6429192 DOI: 10.3390/ijms20051158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/02/2019] [Indexed: 01/05/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) may develop a highly malignant phenotype in its late phase, and patients may profit from innovative therapies. The plant extract indirubin and its chemical derivatives represent new and promising antitumor strategies. This first report on the effects of an indirubin derivative in CTCL cells shows a strong decrease of cell proliferation and cell viability as well as an induction of apoptosis, suggesting indirubin derivatives for therapy of CTCL. As concerning the mode of activity, the indirubin derivative DKP-071 activated the extrinsic apoptosis cascade via caspase-8 and caspase-3 through downregulation of the caspase antagonistic proteins c-FLIP and XIAP. Importantly, a strong increase of reactive oxygen species (ROS) was observed as an immediate early effect in response to DKP-071 treatment. The use of antioxidative pre-treatment proved the decisive role of ROS, which turned out upstream of all other proapoptotic effects monitored. Thus, reactive oxygen species appear as a highly active proapoptotic pathway in CTCL, which may be promising for therapeutic intervention. This pathway can be efficiently activated by an indirubin derivative.
Collapse
Affiliation(s)
- Marwa Y Soltan
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Department of Dermatology and Venereology, Faculty of Medicine, Ain Shams University, Cairo 11591, Egypt.
| | - Uly Sumarni
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Chalid Assaf
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
- Clinic for Dermatology and Venereology, Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany.
| | - Peter Langer
- Institute of Chemistry, University of Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany.
- Leibniz Institute of Catalysis at the University of Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany.
| | - Ulrich Reidel
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jürgen Eberle
- Skin Cancer Centre Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|