1
|
Ellergezen P, Coşkun BN, Bozkurt ZY, Çeçen GS, Ağca H, Pehlivan Y, Dalkılıç HE, Çavun S, Yanar YB. α9β1 integrin & its ligands as new potential biomarkers in FMF. Indian J Med Res 2024; 160:102-108. [PMID: 39382510 PMCID: PMC11463857 DOI: 10.25259/ijmr_985_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Familial Mediterranean Fever (FMF) manifests as a hereditary condition characterized by repeated bouts of fever, abdominal, chest, and joint discomfort, and swelling. Colchicine is the most common form of treatment, but it does not eliminate the disease. The underlying causes of the inflammatory mechanism are still not fully known. Methods A total of 20 healthy controls, 16 individuals with FMF in the attack period, and 14 in the remission period participated in the study. ITGA9, ITGB1, OPN, TNC, VEGF, VCAM-1, TGM2, TSP-1, Emilin-1, and vWF levels were measured by ELISA by obtaining serum from blood samples of individuals. In addition, gene expressions of α9β1 (ITGA9, ITGB1) and its best known ligands (TNC, SPP1) were analyzed by quantitative real-time PCR (qPCR). Results The findings of this study showed that serum levels of α9β1 and its ligands were higher in individuals with FMF in the attack period than in the healthy controls and the FMF group in the remission period (P<0.05). The marker levels of the healthy group were also higher than those in the remission period (p<0.05). In addition, when the gene expressions were compared between the healthy controls and FMF group, no significant difference was found for ITGA9, ITGB1, TNC, and SPP1 genes. Interpretation & conclusions The function of α9β1 and its ligands in FMF disease was investigated for the first time in this study as per our knowledge. Serum levels of these biomarkers may help identify potential new targets for FMF disease diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Pınar Ellergezen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Belkıs Nihan Coşkun
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Zeynep Yılmaz Bozkurt
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Gülce Sevdar Çeçen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Harun Ağca
- Department of Medical Microbiology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yavuz Pehlivan
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Hüseyin Ediz Dalkılıç
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Sinan Çavun
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yusuf Berkcan Yanar
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| |
Collapse
|
2
|
Pandey N, Kaur H, Chorawala MR, Anand SK, Chandaluri L, Butler ME, Aishwarya R, Gaddam SJ, Shen X, Alfaidi M, Wang J, Zhang X, Beedupalli K, Bhuiyan MS, Bhuiyan MAN, Buchhanolla P, Rai P, Shah R, Chokhawala H, Jordan JD, Magdy T, Orr AW, Stokes KY, Rom O, Dhanesha N. Interactions between integrin α9β1 and VCAM-1 promote neutrophil hyperactivation and mediate poststroke DVT. Blood Adv 2024; 8:2104-2117. [PMID: 38498701 PMCID: PMC11063402 DOI: 10.1182/bloodadvances.2023012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/20/2024] [Accepted: 03/11/2024] [Indexed: 03/20/2024] Open
Abstract
ABSTRACT Venous thromboembolic events are significant contributors to morbidity and mortality in patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel model of poststroke DVT. Neutrophil-specific integrin α9-deficient mice (α9fl/flMrp8Cre+/-) exhibited a significant reduction in poststroke DVT severity along with decreased neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/- mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin α9. Collectively, we uncovered a previously unrecognized and critical pathway involving the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.
Collapse
Affiliation(s)
- Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Mehul R. Chorawala
- Department of Pharmacology and Pharmacy Practice, L.M. College of Pharmacy, Ahmedabad, India
| | - Sumit Kumar Anand
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Lakshmi Chandaluri
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Megan E. Butler
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Shiva J. Gaddam
- Department of Hematology and Oncology and Feist Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Xinggui Shen
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - Mabruka Alfaidi
- Division of Cardiology, Department of Internal Medicine, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Jian Wang
- Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Xiaolu Zhang
- Bioinformatics and Modeling Core, Center for Applied Immunology and Pathological Processes, Department of Microbiology and Immunology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Kavitha Beedupalli
- Department of Hematology and Oncology and Feist Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Md. Shenuarin Bhuiyan
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | | | - Prabandh Buchhanolla
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Prashant Rai
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Rahul Shah
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Himanshu Chokhawala
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - J. Dedrick Jordan
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Tarek Magdy
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| | - A. Wayne Orr
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA
| | - Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA
| |
Collapse
|
3
|
Martínez-Abarca Millán A, Martín-Bermudo MD. Integrins Can Act as Suppressors of Ras-Mediated Oncogenesis in the Drosophila Wing Disc Epithelium. Cancers (Basel) 2023; 15:5432. [PMID: 38001693 PMCID: PMC10670217 DOI: 10.3390/cancers15225432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is the second leading cause of death worldwide. Key to cancer initiation and progression is the crosstalk between cancer cells and their microenvironment. The extracellular matrix (ECM) is a major component of the tumour microenvironment and integrins, main cell-ECM adhesion receptors, are involved in every step of cancer progression. However, accumulating evidence has shown that integrins can act as tumour promoters but also as tumour suppressor factors, revealing that the biological roles of integrins in cancer are complex. This incites a better understating of integrin function in cancer progression. To achieve this goal, simple model organisms, such as Drosophila, offer great potential to unravel underlying conceptual principles. Here, we find that in the Drosophila wing disc epithelium the βPS integrins act as suppressors of tumours induced by a gain of function of the oncogenic form of Ras, RasV12. We show that βPS integrin depletion enhances the growth, delamination and invasive behaviour of RasV12 tumour cells, as well as their ability to affect the tumour microenvironment. These results strongly suggest that integrin function as tumour suppressors might be evolutionarily conserved. Drosophila can be used to understand the complex tumour modulating activities conferred by integrins, thus facilitating drug development.
Collapse
Affiliation(s)
| | - María D. Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, CSIC, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| |
Collapse
|
4
|
Sun L, Guo S, Xie Y, Yao Y. The characteristics and the multiple functions of integrin β1 in human cancers. J Transl Med 2023; 21:787. [PMID: 37932738 PMCID: PMC10629185 DOI: 10.1186/s12967-023-04696-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023] Open
Abstract
Integrins, which consist of two non-covalently linked α and β subunits, play a crucial role in cell-cell adhesion and cell-extracellular matrix (ECM) interactions. Among them, integrin β1 is the most common subunit and has emerged as a key mediator in cancer, influencing various aspects of cancer progression, including cell motility, adhesion, migration, proliferation, differentiation and chemotherapy resistance. However, given the complexity and sometimes contradictory characteristics, targeting integrin β1 for therapeutics has been a challenge. The emerging understanding of the mechanisms regulating by integrin β1 may guide the development of new strategies for anti-cancer therapy. In this review, we summarize the multiple functions of integrin β1 and signaling pathways which underlie the involvement of integrin β1 in several malignant cancers. Our review suggests the possibility of using integrin β1 as a therapeutic target and highlights the need for patient stratification based on expression of different integrin receptors in future clinical studies.
Collapse
Affiliation(s)
- Li Sun
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Shuwei Guo
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, People's Republic of China
| | - Yiping Xie
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China
| | - Yongliang Yao
- Department of Clinical Laboratory, Kunshan First People's Hospital, Affiliated to Jiangsu University, Kunshan, 215300, People's Republic of China.
| |
Collapse
|
5
|
de Azevedo ALK, Carvalho TM, Mara CS, Giner IS, de Oliveira JC, Gradia DF, Cavalli IJ, Ribeiro EMSF. Major regulators of the multi-step metastatic process are potential therapeutic targets for breast cancer management. Funct Integr Genomics 2023; 23:171. [PMID: 37211553 DOI: 10.1007/s10142-023-01097-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Metastasis is a multi-step process that leads to the dissemination of tumor cells to new sites and, consequently, to multi-organ neoplasia. Although most lethal breast cancer cases are related to metastasis occurrence, little is known about the dysregulation of each step, and clinicians still lack reliable therapeutic targets for metastasis impairment. To fill these gaps, we constructed and analyzed gene regulatory networks for each metastasis step (cell adhesion loss, epithelial-to-mesenchymal transition, and angiogenesis). Through topological analysis, we identified E2F1, EGR1, EZH2, JUN, TP63, and miR-200c-3p as general hub-regulators, FLI1 for cell-adhesion loss specifically, and TRIM28, TCF3, and miR-429 for angiogenesis. Applying the FANMOD algorithm, we identified 60 coherent feed-forward loops regulating metastasis-related genes associated with distant metastasis-free survival prediction. miR-139-5p, miR-200c-3p, miR-454-3p, and miR-1301-3p, among others, were the FFL's mediators. The expression of the regulators and mediators was observed to impact overall survival and to go along with metastasis occurrence. Lastly, we selected 12 key regulators and observed that they are potential therapeutic targets for canonical and candidate antineoplastics and immunomodulatory drugs, like trastuzumab, goserelin, and calcitriol. Our results highlight the relevance of miRNAs in mediating feed-forward loops and regulating the expression of metastasis-related genes. Altogether, our results contribute to understanding the multi-step metastasis complexity and identifying novel therapeutic targets and drugs for breast cancer management.
Collapse
Affiliation(s)
| | | | - Cristiane Sato Mara
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Igor Samesima Giner
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | | | - Daniela Fiori Gradia
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Iglenir João Cavalli
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil
| | - Enilze M S F Ribeiro
- Genetics Department, Federal University of Parana, P.O. Box 19071, CEP, Curitiba, Parana, 81531-990, Brazil.
| |
Collapse
|
6
|
Gao Q, Sun Z, Fang D. Integrins in human hepatocellular carcinoma tumorigenesis and therapy. Chin Med J (Engl) 2023; 136:253-268. [PMID: 36848180 PMCID: PMC10106235 DOI: 10.1097/cm9.0000000000002459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 03/01/2023] Open
Abstract
ABSTRACT Integrins are a family of transmembrane receptors that connect the extracellular matrix and actin skeleton, which mediate cell adhesion, migration, signal transduction, and gene transcription. As a bi-directional signaling molecule, integrins can modulate many aspects of tumorigenesis, including tumor growth, invasion, angiogenesis, metastasis, and therapeutic resistance. Therefore, integrins have a great potential as antitumor therapeutic targets. In this review, we summarize the recent reports of integrins in human hepatocellular carcinoma (HCC), focusing on the abnormal expression, activation, and signaling of integrins in cancer cells as well as their roles in other cells in the tumor microenvironment. We also discuss the regulation and functions of integrins in hepatitis B virus-related HCC. Finally, we update the clinical and preclinical studies of integrin-related drugs in the treatment of HCC.
Collapse
Affiliation(s)
- Qiong Gao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Zhaolin Sun
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
7
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
8
|
Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J. New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 2022; 13:1058204. [PMID: 36618360 PMCID: PMC9814969 DOI: 10.3389/fimmu.2022.1058204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,*Correspondence: Joanna Mika, ,
| |
Collapse
|
9
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
10
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
11
|
Wu Y, Chen J, Tan F, Wang B, Xu W, Yuan C. ITGA9: Potential Biomarkers and Therapeutic Targets in Different Tumors. Curr Pharm Des 2022; 28:1412-1418. [DOI: 10.2174/1381612828666220501165644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Integrins are a class of a cell surface adhesion molecule which composed of α subunit (ITGA) and β subunit (ITGB). They belong to heterodimer transmembrane glycoproteins. Its main function in organisms is as the receptor of cell adhesion molecules (CAMs) and extracellular matrix (ECM). According to the current research integration analysis, integrin α9 (ITGA9) is one of the integrin subunits, and there are few studies on ITGA9 among integrins. ITGA9 can improve cell migration and regulate various cellular biological functions, such as tumor cell proliferation, adhesion, invasion, and angiogenesis. But its abnormal expression mechanism in cancer and its specific role in tumor growth and metastasis are still unknown to a great extent. This review reveals the role of ITGA9 in the complex pathogenesis of many tumors and cancers, providing a new direction for the treatment of tumors and cancers. Relevant studies were retrieved and collected through the PubMed system. After determining ITGA9 as the research object, we found the close relationship between ITGA9 and tumorigenesis through the analysis of the research articles on ITGA9 in the PubMed system in the last 15 years, and further determined the references mainly based on the influencing factors of the articles. Thus, the role of ITGA9 in tumor and cancer genesis, proliferation, and metastasis was reviewed and analyzed.
ITGA9 is an integrin subunit, which has been proved to be abnormally expressed in many tumors. After sorting and analyzing the research data, it was found that the abnormal expression of ITGA9 in a variety of tumors, including glioblastoma, rhabdomyosarcoma, melanoma, hepatocellular carcinoma, nasopharyngeal carcinoma, multiple myeloma, non-small cell lung cancer, and prostate cancer, was closely related to the proliferation, metastasis, adhesion, and angiogenesis of tumor cells. These results suggest that ITGA9 plays an important role in the occurrence and development of tumors. The integrin subunit ITGA9 may serve as a biomarker for the diagnosis of tumors and a potential therapeutic target for anti-tumor therapies.
Collapse
Affiliation(s)
- Yinxin Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Jinlan Chen
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Fangshun Tan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Bei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Wen Xu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
- Medical College,China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine,State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy,China Three Gorges University, Yichang 443002, China
| |
Collapse
|
12
|
Varney SD, Wu L, Longmate WM, DiPersio CM, Van De Water L. Loss of integrin α9β1 on tumor keratinocytes enhances the stromal vasculature and growth of cutaneous tumors. J Invest Dermatol 2021; 142:1966-1975.e8. [PMID: 34843681 DOI: 10.1016/j.jid.2021.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Angiogenesis is critical to tumor progression and the function of integrins in tumor angiogenesis is complex. Here we report that loss of integrin α9β1 expression from epidermal tumor cells is critical to maintain persistent stromal vessel density. Forced expression of α9 in transformed mouse keratinocytes dramatically reduces vessel density in allograft tumors, in vivo, compared to the same cells lacking α9β1. Moreover, α9 mRNA expression is dramatically reduced in mouse and human epidermal tumors as is α9β1-dependent gene regulation. Loss of tumor cell α9β1 occurs through at least two mechanisms: (1) ITGA9 gene copy number loss in human tumors, and (2) epigenetic silencing in mouse and human tumors. Importantly, we show that reversal of epigenetic silencing of Itga9 restores α9 expression in mouse keratinocytes, and that human tumors without ITGA9 copy number loss have increased promoter methylation. Our data suggest that for epidermal tumorigenesis to occur, tumor cells must avoid the tumor and angiogenic suppressive effects of α9β1 by repressing its expression through deletion and/or epigenetic silencing, thereby promoting stromal development and tumor growth.
Collapse
Affiliation(s)
| | | | | | | | - Livingston Van De Water
- Department of Surgery; Department of Regenerative & Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| |
Collapse
|
13
|
Cui K, Wu X, Gong L, Yao S, Sun S, Liu B, Zhou M, Yin Y, Huang Z. Comprehensive Characterization of Integrin Subunit Genes in Human Cancers. Front Oncol 2021; 11:704067. [PMID: 34222028 PMCID: PMC8242346 DOI: 10.3389/fonc.2021.704067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
Although integrin subunit genes (ITGs) have been reported to be associated with some human cancer types, a systematic assessment of ITGs across human cancers is lacking. Hence, we performed comprehensive analyses to investigate mRNA expression, copy number variation (CNV), DNA methylation, mutation, and clinical landscapes of ITGs in more than 8000 cancer patients from The Cancer Genome Atlas (TCGA) dataset. Landscapes of ITGs were established across 20 human cancer types. We observed that ITGs are extensively dysregulated with heterogeneity in different system cancer types, part of which are driven by CNV, DNA hypomethylation or mutation. Furthermore, dysregulated prognosis-related ITGs were systematically identified in each cancer type, including ITGA11 in stomach adenocarcinoma (STAD). The models based on dysregulated ITGs with clinical relevance and TNM staging indexes are good indicators in STAD and head and neck squamous cell carcinoma. Finally, ITGA11 is overexpressed and associated with poor survival in STAD cases from the TCGA and additionally Gene Expression Omnibus cohorts. Functionally, ITGA11 knockdown inhibits malignant phenotypes in STAD cell lines AGS and MKN45, demonstrating the oncogenic role of ITGA11 in STAD. Together, this study highlights the important roles of ITGs in tumorigenesis as potential prognostic biomarkers, and provide an effective resource that identifies cancer-related genes of ITGs in human cancers.
Collapse
Affiliation(s)
- Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohan Wu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Liang Gong
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengbai Sun
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Bingxin Liu
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Mingyue Zhou
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, China.,Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
Prognostic value of aberrantly expressed methylation genes in human hepatocellular carcinoma. Biosci Rep 2021; 40:226463. [PMID: 32955083 PMCID: PMC7536330 DOI: 10.1042/bsr20192593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives: To identify the prognostic value of aberrantly methylated differentially expressed genes (DEGs) in hepatocellular carcinoma (HCC) and to explore the underlying mechanisms of tumorigenesis. Methods: Gene expression profiles (GSE65372 and GSE37988) were analyzed using GEO2R to obtain aberrantly methylated DEGs. Functional enrichment analysis of screened genes was performed by the Database for Annotation, Visualization, and Integrated Discovery (DAVID). Cytoscape software was used to analyze the PPI network and to select hub genes. Transcriptional and proteinic expression data of hub genes were obtained through UALCAN and the Human Protein Reference Database. Finally, we analyzed the prognostic value of hub genes with the Kaplan–Meier Plotter and MethSurv database. Results: In total, 24 up-hypomethylated oncogenes and 37 down-hypermethylated tumor suppressor genes (TSGs) were identified, and 8 hub genes, including 4 up-hypomethylated oncogenes (CDC5L, MERTK, RHOA and YBX1) and 4 down-hypermethylated TSGs (BCR, DFFA, SCUBE2 and TP63), were selected by PPI. Higher expression of methylated CDC5L-cg05671347, MERTK-cg08279316, RHOA-cg05657651 and YBX1-cg16306148, and lower expression of methylated BCR-cg25410636, DFFA-cg20696875, SCUBE2-cg19000089 and TP63-cg06520450, were associated with better overall survival (OS) in HCC patients. Multivariate analysis also showed they were independent prognostic factors for OS of HCC patients. Conclusions: In summary, different expression of methylated genes above mentioned were associated with better prognosis in HCC patients. Altering the methylation status of these genes may be a therapeutic target for HCC, but it should be further evaluated in clinical studies.
Collapse
|
15
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
16
|
Ciechanowska A, Popiolek-Barczyk K, Ciapała K, Pawlik K, Oggioni M, Mercurio D, de Simoni MG, Mika J. Traumatic brain injury in mice induces changes in the expression of the XCL1/XCR1 and XCL1/ITGA9 axes. Pharmacol Rep 2020; 72:1579-1592. [PMID: 33185818 PMCID: PMC7704520 DOI: 10.1007/s43440-020-00187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
Background Every year, millions of people suffer from various forms of traumatic brain injury (TBI), and new approaches with therapeutic potential are required. Although chemokines are known to be involved in brain injury, the importance of X-C motif chemokine ligand 1 (XCL1) and its receptors, X-C motif chemokine receptor 1 (XCR1) and alpha-9 integrin (ITGA9), in the progression of TBI remain unknown. Methods Using RT-qPCR/Western blot/ELISA techniques, changes in the mRNA/protein levels of XCL1 and its two receptors, in brain areas at different time points were measured in a mouse model of TBI. Moreover, their cellular origin and possible changes in expression were evaluated in primary glial cell cultures. Results Studies revealed the spatiotemporal upregulation of the mRNA expression of XCL1, XCR1 and ITGA9 in all the examined brain areas (cortex, thalamus, and hippocampus) and at most of the evaluated stages after brain injury (24 h; 4, 7 days; 2, 5 weeks), except for ITGA9 in the thalamus. Moreover, changes in XCL1 protein levels occurred in all the studied brain structures; the strongest upregulation was observed 24 h after trauma. Our in vitro experiments proved that primary murine microglial and astroglial cells expressed XCR1 and ITGA9, however they seemed not to be a main source of XCL1. Conclusions These findings indicate that the XCL1/XCR1 and XCL1/ITGA9 axes may participate in the development of TBI. The XCL1 can be considered as one of the triggers of secondary injury, therefore XCR1 and ITGA9 may be important targets for pharmacological intervention after traumatic brain injury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Maria-Grazia de Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland.
| |
Collapse
|
17
|
Su CY, Li JQ, Zhang LL, Wang H, Wang FH, Tao YW, Wang YQ, Guo QR, Li JJ, Liu Y, Yan YY, Zhang JY. The Biological Functions and Clinical Applications of Integrins in Cancers. Front Pharmacol 2020; 11:579068. [PMID: 33041823 PMCID: PMC7522798 DOI: 10.3389/fphar.2020.579068] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Integrins are the adhesion molecules and receptors of extracellular matrix (ECM). They mediate the interactions between cells-cells and cells-ECM. The crosstalk between cancer cells and their microenvironment triggers a variety of critical signaling cues and promotes the malignant phenotype of cancer. As a type of transmembrane protein, integrin-mediated cell adhesion is essential in regulating various biological functions of cancer cells. Recent evidence has shown that integrins present on tumor cells or tumor-associated stromal cells are involved in ECM remodeling, and as mechanotransducers sensing changes in the biophysical properties of the ECM, which contribute to cancer metastasis, stemness and drug resistance. In this review, we outline the mechanism of integrin-mediated effects on biological changes of cancers and highlight the current status of clinical treatments by targeting integrins.
Collapse
Affiliation(s)
- Chao-Yue Su
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jing-Quan Li
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Ling-Ling Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Feng-Hua Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi-Wen Tao
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yu-Qing Wang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Qiao-Ru Guo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jia-Jun Li
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yun Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yan-Yan Yan
- Institute of Immunology and School of Medicine, Shanxi Datong University, Datong, China
| | - Jian-Ye Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, China.,The First Affiliated Hospital, Hainan Medical University, Haikou, China
| |
Collapse
|
18
|
Hong R, Gu J, Niu G, Hu Z, Zhang X, Song T, Han S, Hong L, Ke C. PRELP has prognostic value and regulates cell proliferation and migration in hepatocellular carcinoma. J Cancer 2020; 11:6376-6389. [PMID: 33033521 PMCID: PMC7532499 DOI: 10.7150/jca.46309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is an aggressive and prevalent tumor threatening human health. A previous study suggested low PRELP (proline/arginine-rich end leucine-rich repeat protein) expression was associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). However, the role of PRELP in HCC has not yet been illuminated. Methods: PRELP expression analyses were carried out using transcriptomic datasets from the Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB). The correlations between PRELP expression and clinicopathological features, and prognostic analyses were performed with a tissue microarray (TMA) and immunohistochemistry (IHC). The endogenous expression and in vitro roles of PRELP were investigated in cultured HCC cell lines. The potential mechanisms were characterized by a Gene Set Enrichment Analysis (GSEA) and gene-gene correlation analyses. Results: We found that PRELP mRNA expression was dramatically decreased in HCCs in comparison with that in adjacent normal tissues (NTs) or hepatic cirrhosis. IHC staining showed that PRELP was down-regulated in HCCs, which mainly located in cytoplasm, and was also found in nuclei. The correlation analyses revealed that PRELP expression was relevant to later p-stages (p= 0.028) and tumor size (p= 0.001). The overall survival (OS) and relapse free survival (RFS) time was shorter in HCC patients with lower PRELP expression levels than that with higher PRELP expression levels. Overexpression of PRELP inhibited, while knockdown of PRELP promoted proliferation and migration of HCC cells. For potential mechanisms, PRELP may inhibit progression of HCCs by interacting with integrin family members and the extracellular microenvironment. Conclusion: Our findings demonstrated that overexpression of PRELP correlates with better patient survival and inhibits both cell proliferation and migration in HCC. Therefore, PRELP can serve as a potential prognostic biomarker and therapeutic target which deserves further investigation.
Collapse
Affiliation(s)
- Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Jiawei Gu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Xiaotian Zhang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Tao Song
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Shanliang Han
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Liang Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| |
Collapse
|
19
|
Porcine epidemic diarrhea virus infection blocks cell cycle and induces apoptosis in pig intestinal epithelial cells. Microb Pathog 2020; 147:104378. [PMID: 32653434 PMCID: PMC7347497 DOI: 10.1016/j.micpath.2020.104378] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/17/2020] [Accepted: 07/02/2020] [Indexed: 12/16/2022]
Abstract
Porcine epidemic diarrhea virus (PEDV) is responsible for the acute infectious swine disease porcine epidemic diarrhea (PED). PED causes damage to the intestine, including villus atrophy and shedding, leading to serious economic losses to the pig industry worldwide. We carried out an in vitro study to investigate cell apoptosis and the cell cycle in a PEDV-infected host using transcriptomic shotgun sequencing (RNA-Seq) to study gene responses to PEDV infection. Results revealed that the PEDV infection reduced proliferation activity, blocked the cell cycle at S-phase and induced apoptosis in IPEC-J2 cells. The expression of gene levels related to ribosome proteins and oxidative phosphorylation were significantly up-regulated post-PEDV infection. Although the significantly down-regulated on PI3K/Akt signaling pathway post-PEDV infection, the regulator-related genes of mTOR signaling pathway exerted significantly up-regulated or down-regulated in IPEC-J2 cells. These results indicated that ribosome proteins and oxidative phosphorylation process were widely involved in the pathological changes and regulation of host cells caused by PEDV infection, and PI3K/AKT and mTOR signaling pathways played a vital role in antiviral regulation in IPEC-J2 cells. These data might provide new insights into the specific pathogenesis of PEDV infection and pave the way for the development of effective therapeutic strategies.
Collapse
|
20
|
Profiling the circulating mRNA transcriptome in human liver disease. Oncotarget 2020; 11:2216-2232. [PMID: 32577166 PMCID: PMC7289528 DOI: 10.18632/oncotarget.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/16/2020] [Indexed: 01/05/2023] Open
Abstract
The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by RNAseq. Liver derived circulating transcripts such as albumin (ALB), apolipoprotein (APO) A1, A2 & H, serpin A1 & E1, ferritin light chain (FTL) and fibrinogen like 1 (FGL1) were significantly upregulated in HCC patient samples. Higher levels of some of these liver-specific transcripts in the plasma of HCC patients were confirmed by RT-qPCR in another cohort of 20 individuals. Several less abundant circulating transcripts associated with cancer were detected in most HCC samples, but not in healthy subjects. Liver specificity of circulating transcripts was confirmed by investigating their expression in HCC tumor and liver cancer cell lines. Liver specific mRNA sequences in the plasma were predominantly present outside circulating extracellular vesicles. Conclusions: The circulating “mRNA” transcriptome is remarkably consistent in diversity and expression from person to person. Detection of transcripts corresponding to disease selective polypeptides suggests the possibility that circulating mRNA can work as a biomarker analyte for cancer detection.
Collapse
|
21
|
Sun C, Hu A, Wang S, Tian B, Jiang L, Liang Y, Wang H, Dong J. ADAM17-regulated CX3CL1 expression produced by bone marrow endothelial cells promotes spinal metastasis from hepatocellular carcinoma. Int J Oncol 2020; 57:249-263. [PMID: 32319605 PMCID: PMC7252465 DOI: 10.3892/ijo.2020.5045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Spinal metastasis occurs in 50-75% of bone metastases caused by hepatocellular carcinoma (HCC), and HCC-derived spinal metastasis can lead to a less favorable prognosis. Recently, several studies have demonstrated that C-X3-C motif chemokine ligand 1 (CX3CL1) is closely associated with cancer metastasis, and its secretion is modulated by a disintegrin and metalloproteinase 17 (ADAM17). Bone marrow endothelial cells (BMECs) are an essential component of bone marrow. However, little is known about the roles in and effects of BMECs on HCC spinal metastasis. The present study demonstrated that CX3CL1 and C-X-C motif chemokine receptor 3 (CXCR3) expression was upregulated in HCC spinal metastases, and that CX3CL1 promoted the migration and invasion of HCC cells to the spine. Western blot analysis revealed that the Src/protein tyrosine kinase 2 (PTK2) axis participated in CX3CL1-induced HCC cell invasion and migration. CX3CL1 also increased the expression of M2 macrophage markers in THP-1 monocytes. BMECs promoted the migration and invasion of Hep3B and MHCC97H cells by secreting soluble CX3CL1, whereas the neutralization of CX3CL1 inhibited this enhancement. CX3CL1 enhanced the activation of the phosphatidylinositol-4,5-bisphos-phate 3-kinase catalytic subunit alpha (PIK3CA)/AKT serine/threonine kinase 1 (AKT1) and Ras homolog family member A (RHOA)/Rho associated coiled-coil containing protein kinase 2 (ROCK2) signaling pathways through the Src/PTK2 signaling pathway. Furthermore, ADAM17 was activated by mitogen-activated protein kinase (MAPK) z14 in BMECs and significantly promoted the secretion of CX3CL1. HCC cells enhanced the recruitment and proliferation of BMECs. The overexpression of CX3CR1 facilitated the spinal metastasis of HCC in a mouse model in vivo. In addition, in vivo experiments revealed that BMECs promoted the growth of HCC in the spine. The present study demonstrated that CX3CL1 participates in HCC spinal metastasis, and that BMECs play an important role in the regulation of CX3CL1 in the spinal metastatic environment.
Collapse
Affiliation(s)
- Chi Sun
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Annan Hu
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Shengxing Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Bo Tian
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Libo Jiang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Yun Liang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Jian Dong
- Department of Orthopedic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
22
|
Siracusano G, Tagliamonte M, Buonaguro L, Lopalco L. Cell Surface Proteins in Hepatocellular Carcinoma: From Bench to Bedside. Vaccines (Basel) 2020; 8:vaccines8010041. [PMID: 31991677 PMCID: PMC7157713 DOI: 10.3390/vaccines8010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Cell surface proteins act as the go-between in carrying the information from the extracellular environment to the intracellular signaling proteins. However, these proteins are often deregulated in neoplastic diseases, including hepatocellular carcinoma. This review discusses several recent studies that have investigated the role of cell surface proteins in the occurrence and progression of HCC, highlighting the possibility to use them as biomarkers of the disease and/or targets for vaccines and therapeutics.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
- Correspondence: ; Tel.: +39-022643-4957
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, “Fondazione Pascale”, 80131 Naples, Italy; (M.T.); (L.B.)
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milan, Italy;
| |
Collapse
|
23
|
Chakraborty S, Banerjee S, Raina M, Haldar S. Force-Directed “Mechanointeractome” of Talin–Integrin. Biochemistry 2019; 58:4677-4695. [DOI: 10.1021/acs.biochem.9b00442] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Soham Chakraborty
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Souradeep Banerjee
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Manasven Raina
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| | - Shubhasis Haldar
- Department of Biological Sciences, Ashoka University, Sonepat, Haryana 131029, India
| |
Collapse
|
24
|
Regulation of cell migration by α4 and α9 integrins. Biochem J 2019; 476:705-718. [PMID: 30819933 DOI: 10.1042/bcj20180415] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/09/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Integrins are heterodimeric transmembrane receptors that play an essential role in enabling cells to sense and bind to extracellular ligands. Activation and clustering of integrins leads to the formation of focal adhesions at the plasma membrane that subsequently initiate signalling pathways to control a broad range of functional endpoints including cell migration, proliferation and survival. The α4 and α9 integrins form a small sub-family of receptors that share some specific ligands and binding partners. Although relatively poorly studied compared with other integrin family members, emerging evidence suggests that despite restricted cell and tissue expression profiles, these integrins play a key role in the regulation of signalling pathways controlling cytoskeletal remodelling and migration in both adherent and non-adherent cell types. This review summarises the known shared and specific roles for α4 and α9 integrins and highlights the importance of these receptors in controlling cell migration within both homeostatic and disease settings.
Collapse
|