1
|
Ho SY, Lin CH, Huang CC, Lin CH, Lin MT, Wang YJ, Ma JT, Shieh LT, Chang CP, Lin HJ. Hyperbaric oxygen therapy attenuates brain radiation-induced cognitive deficits in rats. Int J Med Sci 2025; 22:283-297. [PMID: 39781518 PMCID: PMC11704689 DOI: 10.7150/ijms.104248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Effective therapies for cognitive impairments induced by brain irradiation are currently lacking. This study investigated the therapeutic potential of hyperbaric oxygen therapy (HBOT) for radiation-induced brain injury in a randomized controlled experimental model using adult male Wistar rats. Adult male Wistar rats were divided into four experimental groups: 0 Gy whole brain radiotherapy (WBRT) with normal baric air (NBA) treatment, 0 Gy WBRT with HBOT, 10 Gy WBRT with NBA, and 10 Gy WBRT with HBOT. Behavioral tests and histochemical analyses were conducted four weeks post-WBRT to assess cognitive function, hippocampal microgliosis, apoptosis, and lipid peroxidation. Compared with the rats with 0 Gy WBRT on 28 days, the rats with 10 Gy WBRT on 28 days had significantly higher severity of spatial learning and memory dysfunction and hippocampal microgliosis, newborn neuronal apoptosis, and lipid peroxidation. HBOT significantly prevented and reversed WBRT-induced cognitive deficits, hippocampal microgliosis, newborn neuronal apoptosis, and lipid peroxidation. In addition, HBOT prevented and reversed the increased apoptosis among newborn neural stem cells and neuroblasts caused by 10 Gy WBRT on 7 days. The findings suggest that WBRT disrupts neurogenesis and enhance microgliosis, apoptosis of neuronal progenitors, and lipid peroxidation in the dentate gyrus, potentially leading to cognitive deficits and neuronal death. HBOT may offer a protective effect against these cognitive impairments and their underlying mechanisms in adult male rats following WBRT.
Collapse
Affiliation(s)
- Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
- Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan
| | - Chia-Hui Lin
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University, Kaohsiung 81201, Taiwan
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Ti Ma
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Li-Tsun Shieh
- Department of Radiation Oncology, Chi Mei Medical Center, Tainan, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
2
|
Yuan M, Hu X, Xing W, Wu X, Pu C, Guo W, Zhu X, Yao M, Ao L, Li Z, Xu X. B2M is a Biomarker Associated With Immune Infiltration In High Altitude Pulmonary Edema. Comb Chem High Throughput Screen 2024; 27:168-185. [PMID: 37165489 PMCID: PMC10804239 DOI: 10.2174/1386207326666230510095840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/15/2023] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND High altitude pulmonary edema (HAPE) is a serious mountain sickness with certain mortality. Its early diagnosis is very important. However, the mechanism of its onset and progression is still controversial. AIM This study aimed to analyze the HAPE occurrence and development mechanism and search for prospective biomarkers in peripheral blood. METHODS The difference genes (DEGs) of the Control group and the HAPE group were enriched by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and then GSEA analysis was performed. After identifying the immune-related hub genes, QPCR was used to verify and analyze the hub gene function and diagnostic value with single-gene GSEA and ROC curves, and the drugs that acted on the hub gene was found in the CTD database. Immune infiltration and its association with the hub genes were analyzed using CIBERSORT. Finally, WGCNA was employed to investigate immune invasion cells' significantly related gene modules, following enrichment analysis of their GO and KEGG. RESULTS The dataset enrichment analysis, immune invasion analysis and WGCNA analysis showed that the occurrence and early progression of HAPE were unrelated to inflammation. The hub genes associated with immunity obtained with MCODE algorithm of Cytoscape were JAK2 and B2M.. RT-qPCR and ROC curves confirmed that the hub gene B2M was a specific biomarker of HAPE and had diagnostic value, and single-gene GSEA analysis confirmed that it participated in MHC I molecule-mediated antigen presentation ability decreased, resulting in reduced immunity. CONCLUSION Occurrence and early progression of high altitude pulmonary edema may not be related to inflammation. B2M may be a new clinical potential biomarker for HAPE for early diagnosis and therapeutic evaluation as well as therapeutic targets, and its decrease may be related to reduced immunity due to reduced ability of MCH I to participate in antigen submission.
Collapse
Affiliation(s)
- Mu Yuan
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Xueting Hu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Wei Xing
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Xiaofeng Wu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Chengxiu Pu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Wei Guo
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Xiyan Zhu
- Department of Military Traffic Injury Prevention and Treatment, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Mengwei Yao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Luoquan Ao
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Zhan Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
- Central Laboratory, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, 400010, Chongqing, China
| |
Collapse
|
3
|
Wang LW, Chio CC, Chao CM, Chao PY, Lin MT, Chang CP, Lin HJ. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Sci Prog 2024; 107:368504241231154. [PMID: 38425276 PMCID: PMC10908245 DOI: 10.1177/00368504241231154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Pi-Yu Chao
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
4
|
Chen X, Zhang J, Lin Y, Li Y, Wang H, Wang Z, Liu H, Hu Y, Liu L. Mechanism, prevention and treatment of cognitive impairment caused by high altitude exposure. Front Physiol 2023; 14:1191058. [PMID: 37731540 PMCID: PMC10507266 DOI: 10.3389/fphys.2023.1191058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/05/2023] [Indexed: 09/22/2023] Open
Abstract
Hypobaric hypoxia (HH) characteristics induce impaired cognitive function, reduced concentration, and memory. In recent years, an increasing number of people have migrated to high-altitude areas for work and study. Headache, sleep disturbance, and cognitive impairment from HH, severely challenges the physical and mental health and affects their quality of life and work efficiency. This review summarizes the manifestations, mechanisms, and preventive and therapeutic methods of HH environment affecting cognitive function and provides theoretical references for exploring and treating high altitude-induced cognitive impairment.
Collapse
Affiliation(s)
- Xin Chen
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiexin Zhang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- Faculty of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei, China
| | - Yuan Lin
- Sichuan Xincheng Biological Co., LTD., Chengdu, Sichuan, China
| | - Yan Li
- Department of General Surgery, The 77th Army Hospital, Leshan, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Clinical Laboratory Medicine, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yonghe Hu
- Faculty of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Lei Liu
- Medical Research Center, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Wei L, Lin C, Xue X, Jila S, Dai Y, Pan L, Wei W, Dun G, Shen Y, Zong T, Wu J, Li Y, Wu L, Xian J, Yu A. The Effect of Hemoglobin Concentration on Hyperbaric Oxygen and Non-hyperbaric Oxygen in the Treatment of Hypertensive Intracerebral Hemorrhage After Operation at the High Altitude. Front Hum Neurosci 2022; 16:834427. [PMID: 35845240 PMCID: PMC9279571 DOI: 10.3389/fnhum.2022.834427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe prognosis of hypertensive intracerebral hemorrhage (HICH) is poor at high altitudes. The objective of this study was to explore whether hyperbaric oxygen (HBO) can improve the results of computed tomography perfusion (CTP) imaging and the neurological function of patients with HICH, and influence the hemoglobin concentration.MethodThe patients with HICH were treated with puncture and drainage. Twenty-one patients (51.22% of 41 patients in total) were treated with HBO after the operation, and the other patients received conventional treatment. CTP was performed twice, and all indices were measured. Scatter plots were used to determine the effect of hemoglobin concentration on CTP imaging. Receiver operating characteristic (ROC) curves were plotted to analyze the effects of hemoglobin concentration and hematoma volume on recovery results. The patients were followed up for 6 months.ResultsForty-one patients with HICH were treated with puncture and drainage. In total, 21 were treated with HBO after the operation, and 20 received conventional treatment as the control group. No significant differences in the CBV and CBF values of the two groups were noted before treatment. After 10 days, the values of CBV and CBF in the HBO group were significantly higher than those in the control group. A scatter diagram showed there was no significant in the HBO group, but significant correlation for the CBV and CBF values in the control group’s hematoma center and margin. The ROC curves showed that hematoma volume had an influence on prognosis of the control group. The Glasgow Coma Scale (GOS) scores of the HBO group were significantly higher than those of the control group (p < 0.05).ConclusionsHBO therapy can improve the postoperative CBV and CBF values of patients with HICH and ameliorate their prognoses. There was no significant correlation between HBO group and hemoglobin concentration on admission.
Collapse
Affiliation(s)
- Linjie Wei
- Department of Neurosurgery, PLA 956th Hospital, Linzhi, China
- *Correspondence: Linjie Wei,
| | - Chi Lin
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Xingsen Xue
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiju Jila
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yalan Dai
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Pan
- Medical Imaging Department, General Hospital of Tibet Military Region, Lhasa, China
| | - Wei Wei
- Department of Neurosurgery, PLA 956th Hospital, Linzhi, China
| | - Guodong Dun
- Department of Neurosurgery, PLA 956th Hospital, Linzhi, China
| | - Yong Shen
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Taoxi Zong
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Jingjing Wu
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Yafang Li
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Lixia Wu
- Department of Neurosurgery, First People’s Hospital of Honghe City, Honghe, China
| | - Jishu Xian
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Anyong Yu
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Anyong Yu,
| |
Collapse
|
6
|
Bazhu, Shi Y, Ren S, Shu L, Li Q. Posterior reversible encephalopathy syndrome secondary to acute post-streptococcal glomerulonephritis in a child: a case report from the Tibetan plateau. BMC Neurol 2022; 22:225. [PMID: 35717141 PMCID: PMC9206370 DOI: 10.1186/s12883-022-02750-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Posterior reversible encephalopathy syndrome (PRES) is a disorder of reversible vasogenic brain oedema with acute neurologic symptoms. It is a rare but serious disease that affects the central nervous system. PRES is a rare complication of acute post-streptococcal glomerulonephritis (APSGN). High altitude can accelerate vasogenic brain oedema by increasing cerebral blood flow (CBF), impairing cerebral autoregulation and promoting vascular inflammation. We report a case of PRES induced by acute post-streptococcal glomerulonephritis in a high-altitude environment. Case presentation A fourteen-year-old Tibetan girl presented with progressive headache with haematuria, facial swelling, dizziness and vomiting for 2 weeks as well as multiple episodes of tonic–clonic seizures for 14 h. She was diagnosed with APSGN based on laboratory tests and clinical symptoms. Brain magnetic resonance imaging (MRI) and computed tomography (CT) revealed bilateral frontal, parietal and occipital lesions that were compatible with the radiological diagnosis of PRES. The treatments included an antibiotic (penicillin), an antiepileptic drug, and hyperbaric oxygen (HBO) therapy. Follow-up MRI obtained 1 week after admission and CT obtained 4 weeks and 6 weeks after admission demonstrated complete resolution of the brain lesions. Conclusions The case illustrates a rare occurrence of PRES following APSGN in a 14-year-old child in the Tibetan Plateau. The hypoxic conditions of a high-altitude setting might lower the cerebral autoregulation threshold and amplify the endothelial inflammatory reaction, thus inducing PRES in patients with APSGN. It is important to recognize the clinical and radiologic features of PRES, and adjuvant HBO therapy can promote rapid recovery from this condition in high-altitude areas.
Collapse
Affiliation(s)
- Bazhu
- Department of Neurosurgery, Shigatse People's Hospital, Tibet, China
| | - Yanhui Shi
- Department of Neurology, Xuhui District Central Hospital, Shanghai, China
| | - Shuang Ren
- Department of Neurosurgery, Shigatse People's Hospital, Tibet, China
| | - Liang Shu
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Qiang Li
- Department of Neurosurgery, Shigatse People's Hospital, Tibet, China. .,Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
7
|
RŮŽIČKA J, DEJMEK J, BOLEK L, BENEŠ J, KUNCOVÁ J. Hyperbaric oxygen influences chronic wound healing – a cellular level review. Physiol Res 2021; 70:S261-S273. [DOI: 10.33549/physiolres.934822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Chronic wound is a serious medical issue due to its high prevalence and complications; hyperbaric oxygen therapy (HBOT) is also considered in comprehensive treatment. Clinical trials, including large meta-analyses bring inconsistent results about HBOT efficacy. This review is summarizing the possible effect of HBOT on the healing of chronic wound models at the cellular level. HBOT undoubtedly escalates the production of reactive oxygen and nitrogen radicals (ROS and RNS), which underlie both the therapeutic and toxic effects of HBOT on certain tissues. HBOT paradoxically elevates the concentration of Hypoxia inducible factor (HIF) 1 by diverting the HIF-1 degradation to pathways that are independent of the oxygen concentration. Elevated HIF-1 stimulates the production of different growth factors, boosting the healing process. HBOT supports synthesis of Heat shock proteins (HSP), which are serving as chaperones of HIF-1. HBOT has antimicrobial effect, increases the effectiveness of some antibiotics, stimulates fibroblasts growth, collagen synthesis and suppresses the activity of proteolytic enzymes like matrix metalloproteinases. All effects of HBOT were investigated on cell cultures and animal models, the limitation of their translation is discussed at the end of this revie
Collapse
Affiliation(s)
- J RŮŽIČKA
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J DEJMEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - L BOLEK
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J BENEŠ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| | - J KUNCOVÁ
- Biomedical Centre, Faculty of Medicine in Plzeň, Charles University, Plzeň, Czech Republic
| |
Collapse
|