1
|
Bhusal M, Sharma K, Magar AB, Pant J, Sharma KR. Chemical analysis and biological activities on solvent extracts from different parts of Rhus chinensis mill. Nat Prod Res 2024:1-7. [PMID: 39094015 DOI: 10.1080/14786419.2024.2387831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The present research is focused on the preparation of a variety of solvent extracts using different parts of Rhus chinensis Mill. for the estimation of phytochemicals and to perform biological activities. The highest phenolic and flavonoid contents were recorded as 141.48 ± 0.67 mg GAE/g in methanol root extract and 54.34 ± 0.28 mg QE/g in ethyl acetate root extract. Ethyl acetate root extract displayed an IC50 of 7.83 ± 0.18 µg/mL in the DPPH assay. TPC and TFC were found moderately correlated with antioxidant activity. The root and leaf extracts showed antibacterial activities comparable to those of standard drugs against the gram-positive and gram-negative bacteria. The MIC and MBC for root extract against Staphylococcus aureus were 7.8125 mg/mL and 15.625 mg/mL respectively. Similarly, the MIC and MBC for leaf extract against Escherichia coli were 15.625 mg/mL and 31.25 mg/mL respectively.
Collapse
Affiliation(s)
- Manisha Bhusal
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Kamana Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Akash Budha Magar
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Jyoti Pant
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Khaga Raj Sharma
- Central Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
2
|
Shin S, Park J, Choi HY, Bu Y, Lee K. Vasorelaxant and Hypotensive Effects of Galla chinensis in Rats. Int J Mol Sci 2024; 25:7962. [PMID: 39063203 PMCID: PMC11276969 DOI: 10.3390/ijms25147962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Previous studies have revealed the medicinal and therapeutic effects of Galla chinensis. However, no studies have focused on the antihypertensive effects of G. chinensis. Therefore, we aimed to determine the vasorelaxant and hypotensive effects of G. chinensis 50% ethanolic extract (GCE). To evaluate the vascular relaxing effect of GCE, experiments were conducted using aortic segments dissected from Sprague Dawley rats. GCE showed a vasorelaxant effect via the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway, inhibiting Ca2+ channels, and activating K+ channels. The hypotensive effects of GCE were evaluated in spontaneously hypertensive rats (SHRs). The SHRs were randomly divided into a control group and orally administered GCE group (100 or 300 mg/kg). The systolic and diastolic blood pressure decreased significantly by -19.47 ± 4.58% and -31.14 ± 7.66% in the GCE 100 mg/kg group, and -21.64 ± 2.40% and -31.91 ± 5.75% in the GCE 300 mg/kg group at 4 h after administration. Considering its vasorelaxant and hypotensive effects, our results indicate that GCE may be a valuable solution for the control of hypertension. However, further studies on the long-term administration and toxicity of GCE are required.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea;
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-Y.C.); (Y.B.)
| | - Youngmin Bu
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-Y.C.); (Y.B.)
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.-Y.C.); (Y.B.)
| |
Collapse
|
3
|
Chen T, Wang Z, Gong X, Zhang J, Zhang N, Yang J, Zhu Y, Zhou Y. Preparation of Compound Salvia miltiorrhiza- Blumea balsamifera Nanoemulsion Gel and Its Effect on Hypertrophic Scars in the Rabbit Ear Model. Mol Pharm 2024; 21:2298-2314. [PMID: 38527915 DOI: 10.1021/acs.molpharmaceut.3c01091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Hypertrophic scars (HS) still remain an urgent challenge in the medical community. Traditional Chinese medicine (TCM) has unique advantages in the treatment of HS. However, due to the natural barrier of the skin, it is difficult for the natural active components of TCM to more effectively penetrate the skin and exert therapeutic effects. Therefore, the development of an efficient drug delivery system to facilitate enhanced transdermal absorption of TCM becomes imperative for its clinical application. In this study, we designed a compound Salvia miltiorrhiza-Blumea balsamifera nanoemulsion gel (CSB-NEG) and investigated its therapeutic effects on rabbit HS models. The prescription of CSB-NEG was optimized by single-factor, pseudoternary phase diagram, and central composite design experiments. The results showed that the average particle size and PDI of the optimized CSB-NE were 46.0 ± 0.2 nm and 0.222 ± 0.004, respectively, and the encapsulation efficiency of total phenolic acid was 93.37 ± 2.56%. CSB-NEG demonstrated excellent stability and skin permeation in vitro and displayed a significantly enhanced ability to inhibit scar formation compared to the CSB physical mixture in vivo. After 3 weeks of CSB-NEG treatment, the scar appeared to be flat, pink, and flexible. Furthermore, this treatment also resulted in a decrease in the levels of the collagen I/III ratio and TGF-β1 and Smad2 proteins while simultaneously promoting the growth and remodeling of microvessels. These findings suggest that CSB-NEG has the potential to effectively address the barrier properties of the skin and provide therapeutic benefits for HS, offering a new perspective for the prevention and treatment of HS.
Collapse
Affiliation(s)
- Teng Chen
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Zuhua Wang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xingchu Gong
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaojiao Zhang
- College of Food and Health, Zhejiang A&F University, Hangzhou 311300, China
| | - Ning Zhang
- School of Acupuncture-Moxibustion and Tuina, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Jing Yang
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yue Zhu
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Nano-drug Technology Research Center of Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
4
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
5
|
Banc R, Rusu ME, Filip L, Popa DS. Phytochemical Profiling and Biological Activities of Quercus sp. Galls (Oak Galls): A Systematic Review of Studies Published in the Last 5 Years. PLANTS (BASEL, SWITZERLAND) 2023; 12:3873. [PMID: 38005770 PMCID: PMC10674842 DOI: 10.3390/plants12223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
Quercus species have been widely used in traditional medicine, and recently, researchers' attention has focused on galls of the genus Quercus as a source of health-promoting phytochemicals. This review presents a summary of the most recent findings on the phytochemistry and bioactivity of oak galls, following the screening of scientific papers published in two relevant databases, PubMed and Embase, between January 2018 and June 2023. The oak galls are rich in active compounds, mostly gallotannins and phenolic acids. Due to these secondary metabolites, the reviewed studies have demonstrated a wide range of biological activities, including antioxidant and anti-inflammatory actions, antimicrobial properties, tissue-protective effects, and antitumor, anti-aging, and hypoglycemic potential. Thus, oak galls are a promising natural matrix, to be considered in obtaining pharmaceutical and cosmetic preparations used in anti-aging strategies and, together with medications, in the management of age-related diseases. In further evaluations, the valuable functional properties of oak galls, reported mostly in preclinical studies, should be confirmed with clinical studies that would also take into account the potential health risks of their use.
Collapse
Affiliation(s)
- Roxana Banc
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangǎ Street, 400010 Cluj-Napoca, Romania
| | - Lorena Filip
- Department of Bromatology, Hygiene, Nutrition, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania; (R.B.); (L.F.)
| | - Daniela-Saveta Popa
- Department of Toxicology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6 Pasteur Street, 400349 Cluj-Napoca, Romania;
| |
Collapse
|
6
|
Wang J, Sheng Z, Liu Y, Chen X, Wang S, Yang H. Combined proteomic and transcriptomic analysis of the antimicrobial mechanism of tannic acid against Staphylococcus aureus. Front Pharmacol 2023; 14:1178177. [PMID: 37654613 PMCID: PMC10466393 DOI: 10.3389/fphar.2023.1178177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Staphylococcus aureus is a zoonotic opportunistic pathogen that represents a significant threat to public health. Previous studies have shown that tannic acid (TA) has an inhibitory effect on a variety of bacteria. In this study, the proteome and transcriptome of S. aureus were analyzed to comprehensively assess changes in genes and proteins induced by TA. Initial observations of morphological changes revealed that TA damaged the integrity of the cell membrane. Next, proteomic and genetic analyses showed that exposure to TA altered the expression levels of 651 differentially expressed proteins (DEPs, 283 upregulated and 368 downregulated) and 503 differentially expressed genes (DEGs, 191 upregulated and 312 downregulated). Analysis of the identified DEPs and DEGs suggested that TA damages the integrity of the cell envelope by decreasing the expression and protein abundance of enzymes involved in the synthesis of peptidoglycans, teichoic acids and fatty acids, such as murB, murQ, murG, fmhX and tagA. After treatment with TA, the assembly of ribosomes in S. aureus was severely impaired by significant reductions in available ribosome components, and thus protein synthesis was hindered. The levels of genes and proteins associated with amino acids and purine synthesis were remarkably decreased, which further reduced bacterial viability. In addition, ABC transporters, which are involved in amino acid and ion transport, were also badly affected. Our results reveal the molecular mechanisms underlying the effects of TA on S. aureus and provide a theoretical basis for the application of TA as an antibacterial chemotherapeutic agent.
Collapse
Affiliation(s)
- Jing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Zhicun Sheng
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Yunying Liu
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
- Zhongchong Sino Biotech Taizhou Co., Ltd., Taizhou, Jiangsu Province, China
| | - Xiaolan Chen
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Shuaibing Wang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| | - Haifeng Yang
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, Jiangsu Province, China
| |
Collapse
|
7
|
Wang Y, Sun H, He X, Chen M, Zang H, Liu X, Piao H. Phytochemical Analysis, Antioxidant and Enzyme-Inhibitory Activities, and Multivariate Analysis of Insect Gall Extracts of Picea koraiensis Nakai. Molecules 2023; 28:6021. [PMID: 37630273 PMCID: PMC10459859 DOI: 10.3390/molecules28166021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Picea koraiensis Nakai (PK) is an evergreen tree. It plays an important role in landscaping and road greening. Insect galls of PK are formed by parasitism of the adelgid Adelges laricis. Except for phenolics, other chemical constituents and biological activity of insect gall from PK are still unknown. Thus, here, we performed phytochemical and biological activity analyses of PK insect gall extracts, aiming to turn waste into treasure and serve human health. PK insect gall extracts were prepared using seven solvents. Antioxidant activities of the extracts were examined via antioxidant assays (radical and oxidizing substance quenching, metal chelating, and reducing power). The inhibitory activities of the extracts were determined toward the key human-disease-related enzymes α-glucosidase, α-amylase, cholinesterase, tyrosinase, urease, and xanthine oxidase. The content of numerous active constituents was high in the methanol and ethanol extracts of PK insect gall, and these extracts had the highest antioxidant and enzyme-inhibitory activities. They also showed excellent stability and low toxicity. These extracts have potential for use as stabilizers of olive and sunflower seed oils.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Tonghua Health School, Tonghua 134000, China
| | - Hui Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Xu He
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Meihua Chen
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Hao Zang
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Xuekun Liu
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China
| | - Huri Piao
- College of Pharmacy, Yanbian University, Yanji 133000, China
| |
Collapse
|
8
|
Abdullah H, Ismail I, Suppian R, Zakaria NM. Natural Gallic Acid and Methyl Gallate Induces Apoptosis in Hela Cells through Regulation of Intrinsic and Extrinsic Protein Expression. Int J Mol Sci 2023; 24:ijms24108495. [PMID: 37239840 DOI: 10.3390/ijms24108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Induction of apoptosis is one of the targeted approaches in cancer therapies. As previously reported, natural products can induce apoptosis in in vitro cancer treatments. However, the underlying mechanisms of cancer cell death are poorly understood. The present study aimed to elucidate cell death mechanisms of gallic acid (GA) and methyl gallate (MG) from Quercus infectoria toward human cervical cancer cell lines (HeLa). The antiproliferative activity of GA and MG was characterised by an inhibitory concentration using 50% cell populations (IC50) by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. Cervical cancer cells, HeLa, were treated with GA and MG for 72 h and calculated for IC50 values. The IC50 concentration of both compounds was used to elucidate the apoptotic mechanism using acridine orange/propidium iodide (AO/PI) staining, cell cycle analysis, the Annexin-V FITC dual staining assay, apoptotic proteins expressions (p53, Bax and Bcl-2) and caspase activation analysis. GA and MG inhibited the growth of HeLa cells with an IC50 value of 10.00 ± 0.67 µg/mL and 11.00 ± 0.58 µg/mL, respectively. AO/PI staining revealed incremental apoptotic cells. Cell cycle analysis revealed an accumulation of cells at the sub-G1 phase. The Annexin-V FITC assay showed that cell populations shifted from the viable to apoptotic quadrant. Moreover, p53 and Bax were upregulated, whereas Bcl-2 was markedly downregulated. Activation of caspase 8 and 9 showed an ultimate apoptotic event in HeLa cells treated with GA and MG. In conclusion, GA and MG significantly inhibited HeLa cell growth through apoptosis induction by the activation of the cell death mechanism via extrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Hasmah Abdullah
- Faculty of Resilience, Rabdan Academy, Al Dhafeer Street, Abu Dhabi 22401, United Arab Emirates
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ilyana Ismail
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Gong Badak Campus, Kuala Nerus 21300, Terengganu, Malaysia
| | - Rapeah Suppian
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Nor Munirah Zakaria
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
9
|
Wang W, Cao J, Yang J, Niu X, Liu X, Zhai Y, Qiang C, Niu Y, Li Z, Dong N, Wen B, Ouyang Z, Zhang Y, Li J, Zhao M, Zhao J. Antimicrobial Activity of Tannic Acid In Vitro and Its Protective Effect on Mice against Clostridioides difficile. Microbiol Spectr 2023; 11:e0261822. [PMID: 36537806 PMCID: PMC9927261 DOI: 10.1128/spectrum.02618-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/21/2022] [Indexed: 02/16/2023] Open
Abstract
Clostridioides difficile infection (CDI), recurrently reported as an urgent threat owing to its increased prevalence and mortality, has attracted significant attention. As the use of antibiotics to treat CDI has many limitations, such as high recurrence rate, the need to actively seek and develop other drugs that can effectively treat CDI with fewer side effects has become a key issue in CDI prevention and treatment. This study aimed to evaluate the inhibitory effect of Galla chinensis (GC) and its main component, tannic acid (TA), against C. difficile in vitro and its therapeutic effect on CDI in vivo. When GC and TA concentrations were 250 and 64 mg/L, respectively, the cumulative antibacterial rate against C. difficile reached 100%. The sub-MIC of TA significantly inhibited C. difficile sporulation, toxin production, and biofilm formation in vitro. Compared with the CDI control group, TA-treated mice lost less weight and presented a significantly improved survival rate. TA significantly reduced the number of spores in feces, decreased serum TcdA level, and increased serum interleukin 10 (IL-10). Based on the inhibitory effect of TA on C. difficile in vitro and its therapeutic effect on the CDI mouse model, we consider TA as a potentially effective drug for treating CDI. IMPORTANCE Clostridioides difficile is one of the major pathogens to cause antibiotic-associated diarrhea. Although antibiotic treatment is still the most commonly used and effective treatment for CDI, the destruction of indigenous intestinal microbiota by antibiotics is the main reason for the high CDI recurrence rate of about 20%, which is increasing every year. Moreover, the growing problem of drug resistance has also become a major hidden danger in antibiotic treatment. GC has been used to treat diarrhea in traditional Chinese medicine. In the present study, we evaluated the inhibitory effect of TA, the main component of GC, on dissemination and pathogenic physiological functions of C. difficile in vitro, as well as its therapeutic efficacy in a CDI model. Overall, TA is considered to be a potentially effective drug for CDI treatment.
Collapse
Affiliation(s)
- Weigang Wang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jing Cao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jing Yang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Xiaoran Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Xiaoxuan Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yu Zhai
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Cuixin Qiang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yanan Niu
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Zhirong Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Ning Dong
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Baojiang Wen
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Zirou Ouyang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Yulian Zhang
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jiayiren Li
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Min Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| | - Jianhong Zhao
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Provincial Center for Clinical Laboratories, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Kılınçarslan Aksoy Ö, Seçme M, Mammadov R. Antioxidant, Cytotoxicity, Apoptotic Properties of Extracts of Andricus sternlichti galls and Their Phenolic Characterisation by HPLC. Chem Biodivers 2023; 20:e202200742. [PMID: 36478153 DOI: 10.1002/cbdv.202200742] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Quercus L. galls have been used in Western and Eastern cultures for various diseases in traditional medicine. Galls are also used in the East for many purposes, including consumption as food, commercial inks, leather tanning. In the current study, Andricus sternlichti Bellido, Pujade-Villar & Melika, 2003 galls were extracted in different solvents. The possible antioxidant effects of gall extracts were determined using 7 different methods (β-carotene-linoleic acid assay, Phosphomolybdenum assay, DPPH and ABTS radical scavenging activity, CUPRAC and FRAP assay, Metal Chelating activity) to support each other. Total phenolic, flavonoid and tannin amounts of extracts are calculated by using standard curves. In addition, HPLC method used to characterize the phenolic component with 15 different standards. The MIA PaCa-2 cell lines was preferred to identify possible cytotoxic activities of galls. Expression of some genes (Bax, Bcl-2, FAS, BID, caspase-3, caspase-8, caspase-9, caspase-10, FADD, TRADD) role in the apoptosis was determined to investigate apoptotic effects of extracts. According the results, the gall extracts of A. sternlichti may be considered as a potential source of biological agents for their antioxidant capacity and rich bioactive compounds. The gall extracts exhibit antiproliferative activity via regulating expressions of apoptotic genes.
Collapse
Affiliation(s)
| | - Mücahit Seçme
- Ordu University, Faculty of Medicine, Department of Medical Biology, Ordu, Turkey
| | - Ramazan Mammadov
- Muğla Sıtkı Koçman University, Faculty of Science, Department of Molecular Biology and Genetics, Muğla, Turkey
| |
Collapse
|
11
|
Jing W, Xiaolan C, Yu C, Feng Q, Haifeng Y. Pharmacological effects and mechanisms of tannic acid. Biomed Pharmacother 2022; 154:113561. [PMID: 36029537 DOI: 10.1016/j.biopha.2022.113561] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/04/2022] [Accepted: 08/14/2022] [Indexed: 12/18/2022] Open
Abstract
In recent years, increasing attention has been paid to the pharmacological efficacy of tannins. Tannic acid (TA), the simplest hydrolysable tannin that has been approved by the FDA as a safe food additive, is one of the most important components of these traditional medicines. Studies have shown that TA displays a wide range of pharmacological activities, such as anti-inflammatory, neuroprotective, antitumor, cardioprotective, and anti-pathogenic effects. Here, we summarize the known pharmacological effects and associated mechanisms of TA. We focus on the effect and mechanism of TA in various animal models of inflammatory disease and organ, brain, and cardiovascular injury. Moreover, we discuss the possible molecular targets and signaling pathways of TA, in addition to the pharmacological effects of TA-based nanoparticles and TA in combination with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Wang Jing
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China.
| | - Chen Xiaolan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Chen Yu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| | - Qin Feng
- Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, PR China
| | - Yang Haifeng
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu 225300, PR China
| |
Collapse
|
12
|
Espina A, Cañamares MV, Jurašeková Z, Sanchez-Cortes S. Analysis of Iron Complexes of Tannic Acid and Other Related Polyphenols as Revealed by Spectroscopic Techniques: Implications in the Identification and Characterization of Iron Gall Inks in Historical Manuscripts. ACS OMEGA 2022; 7:27937-27949. [PMID: 35990485 PMCID: PMC9386834 DOI: 10.1021/acsomega.2c01679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
In this work, a structural analysis of the polyphenol complexes with iron and copper at several conditions is reported. The investigated polyphenols were tannic acid, gallic acid, pyrogallol, and syringic acid, being components and molecular models of the gallnuts usually employed in the past in fabrication of iron gall inks (IGIs). Commercial tannic acid extracted from gallnuts, which is a complex mixture of different gallotannins and simpler galloylglucoses, was also employed in this analysis. This analysis comprised the use of Raman, Fourier-transform infrared (FTIR), UV-vis absorption, and fluorescence spectroscopy. The complexation of iron with these molecules leads to a strong change in color due to the deep restructuring of the polyphenol that can be clearly seen by Raman and FTIR spectra. Three main Raman bands appeared at 1450-1490 cm-1 (ν1), 1320-1345 cm-1 (ν2), and 400-650 cm-1 (ν3), which are characteristic of the metal complexes. The structural changes of the polyphenol complexes with iron were also investigated at different pHs and different polyphenol/iron stoichiometries. Other effects of the interaction of polyphenols with iron are the pH decrease of the mixture upon metal complexation and fluorescence quenching induced by the interaction of iron. This quenching is important since it facilitates the Raman inspection of manuscripts since polyphenols show a strong fluorescence emission that overlaps the Raman spectrum. Furthermore, DFT calculations were performed for the first time on the gallic acid complex with iron in order to elaborate a detailed assignment of the vibrational modes of polyphenols and their metal complexes, something that was missed in previous applications of Raman to IGIs.
Collapse
Affiliation(s)
- Alba Espina
- Department of Biophysics, Faculty of Science, P. J. Safarik University, Kosice 04154, Slovakia
| | | | - Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, P. J. Safarik University, Kosice 04154, Slovakia
| | - Santiago Sanchez-Cortes
- Instituto de Estructura de la Materia (CSIC), Serrano, 121. Madrid 28006, Spain
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University, Kosice 04154, Slovakia
| |
Collapse
|
13
|
Yang Q, Tang S, Lu D, Li Y, Wan F, Li J, Chen Q, Cong Z, Zhang X, Wu S. Pollen Typhae-Based Magnetic-Powered Microrobots toward Acute Gastric Bleeding Treatment. ACS APPLIED BIO MATERIALS 2022; 5:4425-4434. [PMID: 35969274 DOI: 10.1021/acsabm.2c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditional Chinese herbal medicine (TCHM) is the naturally available pharmaceutical with millennia of evolution from ancient China, capable of a superior therapeutic index and minimized unwanted effects on the human body. This work presents a therapeutic microrobotic platform based on pollen typhae (PT), a typical type of TCHM, fabricated by coating porous PT microspheres with Fe3O4 nanoparticles (PT robots) via electrostatic adsorption. The PT robots exhibit effective and controllable motion in various biological media upon external magnetic control and, meanwhile, preserve the inherent hemostasis property of PT. The blood clotting capacity of PT robots is attributed to their stimulation of the endogenous blood coagulation pathway and platelets with increased counts, which could be further improved by their effective magnetic propulsion. The remote magnetic control also allows the manipulation of PT robots in mice stomach, inducing enhanced binding and prolonged retention of PT robots in stomach mucosa. Moreover, PT robots upon magnetic control show an enhanced hemostatic effect in treating the mice bearing acute gastric bleeding compared with other passive groups. This work offers a facile and feasible route to integrate TCHM with manmade micromachines possessing the innate curative features of TCHM. Such a design expanded the versatility of microrobots and can be generalized to vast types of TCHM for broader biomedical applications.
Collapse
Affiliation(s)
- Qingxin Yang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Songsong Tang
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Dongdong Lu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Yangyang Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Fangchen Wan
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Jiahong Li
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiwei Chen
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Zhaoqing Cong
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, P. R. China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University, Luohu Hospital Group, Shenzhen 518000, P. R. China
- South China Hospital, Shenzhen University, Shenzhen 518116, P. R. China
| |
Collapse
|
14
|
Abstract
Tannic Acid (TA) is a naturally occurring antioxidant polyphenol that has gained popularity over the past decade in the field of biomedical research for its unique biochemical properties. Tannic acid, typically extracted from oak tree galls, has been used in many important historical applications. TA is a key component in vegetable tanning of leather, iron gall ink, red wines, and as a traditional medicine to treat a variety of maladies. The basis of TA utility is derived from its many hydroxyl groups and its affinity for forming hydrogen bonds with proteins and other biomolecules. Today, the study of TA has led to the development of many new pharmaceutical and biomedical applications. TA has been shown to reduce inflammation as an antioxidant, act as an antibiotic in common pathogenic bacterium, and induce apoptosis in several cancer types. TA has also displayed antiviral and antifungal activity. At certain concentrations, TA can be used to treat gastrointestinal disorders such as hemorrhoids and diarrhea, severe burns, and protect against neurodegenerative diseases. TA has also been utilized in biomaterials research as a natural crosslinking agent to improve mechanical properties of natural and synthetic hydrogels and polymers, while also imparting anti-inflammatory, antibacterial, and anticancer activity to the materials. TA has also been used to develop thin film coatings and nanoparticles for drug delivery. In all, TA is fascinating molecule with a wide variety of potential uses in pharmaceuticals, biomaterials applications, and drug delivery strategies.
Collapse
Affiliation(s)
- Andrew Baldwin
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| | - Brian W Booth
- RinggoldID:170373Department of Bioengineering, Clemson University, Clemson, SC USA
| |
Collapse
|
15
|
Espina A, Sanchez-Cortes S, Jurašeková Z. Vibrational Study (Raman, SERS, and IR) of Plant Gallnut Polyphenols Related to the Fabrication of Iron Gall Inks. Molecules 2022; 27:279. [PMID: 35011511 PMCID: PMC8746386 DOI: 10.3390/molecules27010279] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
FT-Raman, FTIR, and SERS spectra of the structurally related gallnut polyphenols tannic acid, gallic acid, pyrogallol, and syringic acid are reported in this work aiming at performing a comparative assignation of the bands and finding specific marker features that can identify these compounds in complex polyphenol mixtures. Tannic and gallic acids are the principal components in oak gallnuts, and they can be found in iron gall inks. The different functional groups existing in these molecules and their spatial distribution lead to slight changes of the vibrations. The Raman spectra are dominated by bands corresponding to the ring vibrations, but the substituents in the ring strongly affect these vibrations. In contrast, the FTIR spectra of these molecules are dominated by the peripheral oxygen-containing substituents of the aromatic ring and afford complementary information. SERS spectroscopy can be used to analyze trace amounts of these compounds, but the spectra of these polyphenols show strong changes in comparison with the Raman spectra, indicating a strong interaction with the metal. The most significant modification observed in the SERS spectra of these compounds is the weakening of the benzene 8a ring vibration and the subsequent intensification of the 19a mode of the benzene ring. This mode is also more intense in the FTIR spectra, and its intensification in the SERS spectra could be related to a drastic change in the molecular polarizability associated with the interaction of the polyphenol with the metal in Ag NPs.
Collapse
Affiliation(s)
- Alba Espina
- Department of Biophysics, Faculty of Science, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| | - Santiago Sanchez-Cortes
- Instituto de Estructura de la Materia (CSIC), Serrano, 121, 280 06 Madrid, Spain;
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia
| | - Zuzana Jurašeková
- Department of Biophysics, Faculty of Science, Pavol Jozef Safarik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
16
|
Baldwin A, Hartl M, Tschaikowsky M, Balzer BN, Booth BW. Degradation and release of tannic acid from an injectable tissue regeneration bead matrix in vivo. J Biomed Mater Res B Appl Biomater 2021; 110:1165-1177. [PMID: 34904786 DOI: 10.1002/jbm.b.34990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/03/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
The development of multifunctional biomaterials as both tissue regeneration and drug delivery devices is currently a major focus in biomedical research. Tannic Acid (TA), a naturally occurring plant polyphenol, displays unique medicinal abilities as an antioxidant, an antibiotic, and as an anticancer agent. TA has applications in biomaterials acting as a crosslinker in polymer hydrogels improving thermal stability and mechanical properties. We have developed injectable cell seeded collagen beads crosslinked with TA for breast reconstruction and anticancer activity following lumpectomy. This study determined the longevity of the bead implants by establishing a degradation time line and TA release profile in vivo. Beads crosslinked with 0.1% TA and 1% TA were compared to observe the differences in TA concentration on degradation and release. We found collagen/TA beads degrade at similar rates in vivo, yet are resistant to complete degradation after 16 weeks. TA is released over time in vivo through diffusion and cellular activity. Changes in mechanical properties in collagen/TA beads before implantation to after 8 weeks in vivo also indicate loss of TA over a longer period of time. Elastic moduli decreased uniformly in both 0.1% and 1% TA beads. This study establishes that collagen/TA materials can act as a drug delivery system, rapidly releasing TA within the first week following implantation. However, the beads retain TA long term allowing them to resist degradation and remain in situ acting as a cell scaffold and tissue filler. This confirms its potential use as an anticancer and minimally invasive breast reconstructive device following lumpectomy.
Collapse
Affiliation(s)
- Andrew Baldwin
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | | | - Mathaeus Tschaikowsky
- Institue of Physical Chemistry, University of Freiburg, Freiburg, Germany.,G.E.R.N. Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bizan N Balzer
- Institue of Physical Chemistry, University of Freiburg, Freiburg, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany.,Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Brian W Booth
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
17
|
Gallotannin-Enriched Fraction from Quercus infectoria Galls as an Antioxidant and Inhibitory Agent against Human Glioblastoma Multiforme. PLANTS 2021; 10:plants10122581. [PMID: 34961052 PMCID: PMC8708140 DOI: 10.3390/plants10122581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
In recent years, herbal medicine has experienced rapid development in the search for alternative anticancer compounds. Various phytochemicals present in Quercus infectoria (QI) galls have been reported to trigger cytotoxic effects on many types of cancer cells. However, a specific active constituent of QI galls with the potential to inhibit highly invasive stage IV malignant brain tumor, glioblastoma multiforme (GBM), is yet to be discovered. In this study, a two-phase system composed of aqueous soxhlet extraction and methanolic enrichment fractionation was employed to extract an anticancer compound, gallotannin, from the QI galls. This optimized two-phase system successfully generated a fraction (F4) with ~71% gallotannin, verified by the TLC and HPLC assays. Astoundingly, this fraction showed significantly higher (~1.15-fold) antioxidant activities compared to its crude extract, as well as to a commercial synthetic pure gallotannin. The F4 was also found to significantly suppress GBM cell growth, better than the synthetic pure gallotannin and the QI gall crude extract, probably related to its significantly higher antioxidant property. Moreover, the inhibitory effects exerted by the F4 treatment on GBM cells were comparable to the effects of two clinically used chemo-drugs (Temozolomide and Tamoxifen), indicating its high efficiency in combating human cancer. In conclusion, this study pioneered the development of an optimized extraction procedure for enriched yield of the natural gallotannin metabolite from the galls of the QI medicinal plant with high antioxidant potential and inhibitory effects on human GBM cells.
Collapse
|
18
|
Yusof WNSW, Abdullah H. Phytochemicals and Cytotoxicity of Quercus infectoria Ethyl Acetate Extracts on Human Cancer Cells. Trop Life Sci Res 2020; 31:69-84. [PMID: 32963712 PMCID: PMC7485533 DOI: 10.21315/tlsr2020.31.1.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conventional and modern cancer treatment were reported to manifest adverse effects to the patients. More researches were conducted to search for selective cytotoxic agent of plant natural product on cancer cells. The presences of wide range phytochemicals in Quercus infectoria (QI) extract have been implicated with the cytotoxic effect against various types of cancer cell which remain undiscovered. This present study aimed to evaluate cytotoxic effect of QI extracts on selected human cancer cells and then, the most potent extract was further analysed for general phytochemical constituents. QI galls were extracted successively with n-hexane, ethyl acetate and methanol yielded three main extracts; n-hexane (QIH), ethyl acetate (QIEA) and methanol (QIM), respectively. The most potent extract was qualitatively analysed for the present of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. Next, the extracts were tested to determine the cytotoxic activity against cervical cancer cells (HeLa), breast cancer cells (MDA-MB-231) and liver cancer cells (Hep G2) using MTT assay. Cytotoxic activity of QI extracts against normal fibroblast (L929) cell line was also evaluated to determine the cytoselective property. Meanwhile, DMSO-treated cells served as negative control while cisplatin-treated cells served as positive control. The most potent extract then chosen to be further investigated for DNA fragmentation as hallmark of apoptosis using Hoechst staining. Qualitative phytochemical analysis revealed the presence of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. QIEA extract exhibited the most potent cytotoxic activity against HeLa cells with (IC50 value = 6.33 ± 0.33 μg/mL) and showed cytoselective property against L929 cells. DNA fragmentation revealed QIEA induced apoptosis in the treated cells. The richness of phytochemical constituents in QIEA extract might contribute to the potency of cytotoxic activity towards HeLa cells.
Collapse
Affiliation(s)
- Wan Nur Suzilla Wan Yusof
- School of Health Sciences, USM Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Hasmah Abdullah
- School of Health Sciences, USM Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
19
|
Chemical Composition and Attractant Activity of Volatiles from Rhus potaninii to The Spring Aphid Kaburagia rhusicola. Molecules 2020; 25:molecules25153412. [PMID: 32731414 PMCID: PMC7435823 DOI: 10.3390/molecules25153412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/04/2022] Open
Abstract
Rhus potaninii Maxim, a type of sumac, is an economically important tree widely cultivated in mountainous areas of western and central China. A gall, called the bellied gallnut, induced by the aphid, Kaburagia rhusicola Takagi, is important in the food, medical, and chemical industries in China. Volatiles from R. potaninii were found to attract K. rhusicola, but little is known about them. The chemical composition of these volatiles was investigated using GC–MS analysis and Y-tube olfactometer methods. Twenty-five compounds accounting for 55.3% of the volatiles were identified, with the highest proportion of 1-(4-ethylphenyl)ethanone (11.8%), followed by 1-(4-hydroxy-3-methylphenyl)ethanone (11.2%) and p-cymen-7-ol (7.1%). These findings provide a theoretical basis for the preparation of attractants and could eventually lead to increased bellied gallnut yield.
Collapse
|