1
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
2
|
Lontro Alves L, Gomes Pereira P, Torres Ciambarella B, Porto Campos M, Rabelo K, Rosa Nascimento AL, Leal de Carvalho dos Santos Cunha R, Borba Vieira Andrade C, Cesar Nunes Moraes A, Bernardi A, Verdini Guimarães F, Fuentes Ribeiro da Silva J, José de Carvalho J. Beneficial Effects of Capybara Oil Supplementation on Steatosis and Liver Apoptosis in Obese Mice. J Obes 2024; 2024:7204607. [PMID: 38831961 PMCID: PMC11147678 DOI: 10.1155/2024/7204607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
Obesity is a complex chronic disease characterized by excess body fat (adipose) that is harmful to health and has been a major global health problem. It may be associated with several diseases, such as nonalcoholic fatty liver disease (NAFLD). Polyunsaturated fatty acids (PUFA) are lipid mediators that have anti-inflammatory characteristics and can be found in animals and plants, with capybara oil (CO) being a promising source. So, we intend to evaluate the hepatic pathophysiological alterations in C57Bl/6 mice with NAFLD, caused by obesity, and the possible beneficial effects of OC in the treatment of this disease. Eighteen 3-month-old male C57Bl/6 mice received a control or high-fat diet for 18 weeks. From the 15th to the 18th week, the animals received treatment-through orogastric gavage-with placebo or free capybara oil (5 g/kg). Parameters inherent to body mass, glucose tolerance, evaluation of liver enzymes, percentage of hepatic steatosis, oxidative stress, the process of cell death with the apoptotic biomarkers (Bax, Bcl2, and Cytochrome C), and the ultrastructure of hepatocytes were analyzed. Even though the treatment with CO was not able to disassemble the effects on the physiological parameters, it proved to be beneficial in reversing the morphological and ultrastructural damage present in the hepatocytes. Thus, demonstrating that CO has beneficial effects in reducing steatosis and the apoptotic pathway, it is a promising treatment for NAFLD.
Collapse
Affiliation(s)
- Luciana Lontro Alves
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Priscila Gomes Pereira
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bianca Torres Ciambarella
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Miguel Porto Campos
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Ana Lúcia Rosa Nascimento
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | - Cherley Borba Vieira Andrade
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Alan Cesar Nunes Moraes
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
- Electron Microscopy Laboratory of Biology Institute, Federal Fluminense University, Rio de Janeiro, Brazil
| | - Andressa Bernardi
- Inflammation Laboratory, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | | | - Jorge José de Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Pereira PG, Alves LL, Ciambarella BT, Rabelo K, Nascimento ALR, Moraes ACN, Bernardi A, Guimarães FV, Carvalho GM, da Silva JFR, de Carvalho JJ. Capybara Oil Improves Renal Pathophysiology and Inflammation in Obese Mice. Nutrients 2023; 15:2925. [PMID: 37447251 DOI: 10.3390/nu15132925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity is an inflammatory disease associated with secondary diseases such as kidney disease, which can cause lipotoxicity, inflammation and loss of organ function. Polyunsaturated fatty acids act in the production of lipid mediators and have anti-inflammatory characteristics. In this work, the objective was to evaluate renal histopathology in obese mice and the effects of treatment with capybara oil (CO) (5000 mg/kg/day for 4 weeks). Parameters such as body mass, lipid profile, systolic blood pressure, urinary creatinine and protein excretion, structure and ultrastructure of the renal cortex, fibrosis, tissue inflammation and oxidative stress were analyzed. CO treatment in obese mice showed improvement in the lipid profile and reduction in systolic blood pressure levels, in addition to beneficial remodeling of the renal cortex. Our data demonstrated that CO decreased inflammation, oxidative stress and renal fibrosis, as evidenced by quantifying the expression of TNF-α, IL-10, CAT, SOD, α-SMA and TGF-β. Although treatment with CO did not show improvement in renal function, ultrastructural analysis showed that the treatment was effective in restoring podocytes and pedicels, with restructuring of the glomerular filtration barrier. These results demonstrate, for the first time, that treatment with CO is effective in reducing kidney damage, being considered a promising treatment for obesity.
Collapse
Affiliation(s)
- Priscila G Pereira
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Luciana L Alves
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Bianca T Ciambarella
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Kíssila Rabelo
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Ana Lúcia R Nascimento
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Alan Cesar N Moraes
- Electron Microscopy Laboratory of Biology Institute, University of Federal Fluminense, Rio de Janeiro 21040-900, RJ, Brazil
| | - Andressa Bernardi
- Inflammation Laboratory, Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Gabriela M Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Jemima F R da Silva
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| | - Jorge J de Carvalho
- Ultrastructure and Tissue Biology Laboratory, Institute of Biology, Rio de Janeiro State University, Boulevard Vinte e Oito de Setembro, 87 Fundos, 3° Andar Vila Isabel, Rio de Janeiro 20551-030, RJ, Brazil
| |
Collapse
|
4
|
Ishida N, Yamada H, Hirose M. Euphausia pacifica (North Pacific Krill): Review of Chemical Features and Potential Benefits of 8-HEPE against Metabolic Syndrome, Dyslipidemia, NAFLD, and Atherosclerosis. Nutrients 2021; 13:nu13113765. [PMID: 34836021 PMCID: PMC8618228 DOI: 10.3390/nu13113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Marine n-3 fatty acids are well known to have health benefits. Recently, krill oil, which contains phospholipids, has been in the spotlight as an n-3 PUFA-containing oil. Euphausia pacifica (E. pacifica), also called North Pacific krill, is a small, red crustacean similar to shrimp that flourishes in the North Pacific Ocean. E. pacifica oil contains 8-hydroxyeicosapentaenoic acid (8-HEPE) at a level more than 10 times higher than Euphausia superba oil. 8-HEPE can activate the transcription of peroxisome proliferator-activated receptor alpha (PPARα), PPARγ, and PPARδ to levels 10, 5, and 3 times greater than eicosapentaenoic acid, respectively. 8-HEPE has beneficial effects against metabolic syndrome (reduction in body weight gain, visceral fat area, amount of gonadal white adipose tissue, and gonadal adipocyte cell size), dyslipidemia (reduction in serum triacylglycerol and low-density lipoprotein cholesterol and induction of serum high-density lipoprotein cholesterol), atherosclerosis, and nonalcoholic fatty liver disease (reduction in triglyceride accumulation and hepatic steatosis in the liver) in mice. Further studies should focus on the beneficial effects of North Pacific krill oil products and 8-HEPE on human health.
Collapse
Affiliation(s)
- Nanae Ishida
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
| | - Hidetoshi Yamada
- Faculty of Life & Environmental Science, Teikyo University of Science, Tokyo 120-0045, Japan;
| | - Masamichi Hirose
- Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University, Iwate 028-3694, Japan;
- Correspondence: ; Tel.: +81-19-651-5110
| |
Collapse
|
5
|
Askarpour M, Djafarian K, Ghaedi E, Sadeghi O, Sheikhi A, Shab-Bidar S. Effect of L-Carnitine Supplementation on Liver Enzymes: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Arch Med Res 2020; 51:82-94. [DOI: 10.1016/j.arcmed.2019.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/02/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023]
|