1
|
Cheng M, Tao X, Wang F, Shen N, Xu Z, Hu Y, Huang P, Luo P, He Q, Zhang Y, Yan F. Underlying mechanisms and management strategies for regorafenib-induced toxicity in hepatocellular carcinoma. Expert Opin Drug Metab Toxicol 2024; 20:907-922. [PMID: 39225462 DOI: 10.1080/17425255.2024.2398628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) accounts for 85% of liver cancer cases and is the third leading cause of cancer death. Regorafenib is a multi-target inhibitor that dramatically prolongs progression-free survival in HCC patients who have failed sorafenib therapy. However, one of the primary factors limiting regorafenib's clinical utilization is toxicity. Using Clinical Trials.gov and PubMed, we gathered clinical data on regorafenib and conducted a extensive analysis of the medication's adverse reactions and mechanisms. Next, we suggested suitable management techniques to improve regorafenib's effectiveness. AREAS COVERED We have reviewed the mechanisms by which regorafenib-induced toxicity occurs and general management strategies through clinical trials of regorafenib. Furthermore, by examining the literature on regorafenib and other tyrosine kinase inhibition, we summarized the mechanics of the onset of regorafenib toxicity and mechanism-based intervention strategies by reviewing the literature related to regorafenib and other tyrosine kinase inhibition. EXPERT OPINION One of the primary factors restricting regorafenib's clinical utilization and combination therapy is its toxicity reactions. To optimize regorafenib treatment regimens, it is especially important to further understand the specific toxicity mechanisms of regorafenib as a multi-kinase inhibitor.
Collapse
Affiliation(s)
- Mengting Cheng
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xinyu Tao
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fei Wang
- Outpatient Pharmacy, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nonger Shen
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhifei Xu
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
| | - Yuhuai Hu
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Ping Huang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
| | - Peihua Luo
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Qiaojun He
- College of Pharmaceutical Sciences, Center for Drug Safety Evaluation and Research of Zhejiang University, Hangzhou, China
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
| | - Yiwen Zhang
- Clinical Pharmacy Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for malignant tumor, Hangzhou, Zhejiang, People's Republic of China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Fangjie Yan
- Department of Pharmacology and Toxicology, Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, China
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Gobbo M, Joy J, Guedes H, Shazib MA, Anderson C, Abdalla-Aslan R, Peechatanan K, Lajolo C, Nasir KS, Gueiros LA, Nagarajan N, Hafezi Motlagh K, Kandwal A, Rupe C, Xu Y, Ehrenpreis ED, Tonkaboni A, Epstein JB, Bossi P, Wardill HR, Graff SL. Emerging pharmacotherapy trends in preventing and managing oral mucositis induced by chemoradiotherapy and targeted agents. Expert Opin Pharmacother 2024; 25:727-742. [PMID: 38808634 DOI: 10.1080/14656566.2024.2354451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/08/2024] [Indexed: 05/30/2024]
Abstract
INTRODUCTION The introduction of targeted therapy and immunotherapy has tremendously changed the clinical outcomes and prognosis of cancer patients. Despite innovative pharmacological therapies and improved radiotherapy (RT) techniques, patients continue to suffer from side effects, of which oral mucositis (OM) is still the most impactful, especially for quality of life. AREAS COVERED We provide an overview of current advances in cancer pharmacotherapy and RT, in relation to their potential to cause OM, and of the less explored and more recent literature reports related to the best management of OM. We have analyzed natural/antioxidant agents, probiotics, mucosal protectants and healing coadjuvants, pharmacotherapies, immunomodulatory and anticancer agents, photobiomodulation and the impact of technology. EXPERT OPINION The discovery of more precise pathophysiologic mechanisms of CT and RT-induced OM has outlined that OM has a multifactorial origin, including direct effects, oxidative damage, upregulation of immunologic factors, and effects on oral flora. A persistent upregulated immune response, associated with factors related to patients' characteristics, may contribute to more severe and long-lasting OM. The goal is strategies to conjugate individual patient, disease, and therapy-related factors to guide OM prevention or treatment. Despite further high-quality research is warranted, the issue of prevention is paramount in future strategies.
Collapse
Affiliation(s)
- Margherita Gobbo
- Unit of Oral and Maxillofacial Surgery, Ca' Foncello Hospital, Piazzale Ospedale, Treviso, Italy
| | - Jamie Joy
- Department of Pharmacy, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Helena Guedes
- Medical Oncology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, Porto, Portugal
| | - Muhammad Ali Shazib
- Workman School of Dental Medicine, High Point University, High Point, NC, USA
| | - Carryn Anderson
- Department of Radiation Oncology, University of Iowa Hospitals & Clinics, Iowa City, USA
| | - Ragda Abdalla-Aslan
- Department of Oral and Maxillofacial Surgery, Rambam Health Care Campus, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Khunthong Peechatanan
- Supportive and Palliative Care Unit, Monash Health, Clayton, VIC, Australia
- Department of Medicine, Division of Medical Oncology, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Carlo Lajolo
- Head and Neck Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, School of Dentistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Khawaja Shehryar Nasir
- Department of Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan
| | - Luiz Alcino Gueiros
- Department of Clinic and Preventive Dentistry & Oral Medicine Unit, Health Sciences Center, Hospital das Clínicas, Federal University of Pernambuco, Recife, Brazil
| | - Nivethitha Nagarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, California, USA
| | - Kimia Hafezi Motlagh
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Abhishek Kandwal
- Himalayan Institute of Medical Sciences Cancer Research Institute Swami Rama Himalayan University, Uttarakhand, India
| | - Cosimo Rupe
- Head and Neck Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, School of Dentistry, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Yuanming Xu
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Eli D Ehrenpreis
- Department of Medicine, Advocate Lutheran General Hospital, Park Ridge, IL, USA
- E2Bio Life Sciences, Skokie, IL, USA
| | - Arghavan Tonkaboni
- Oral Medicine Department, School of Dentistry, Tehran University of Medical Science, Tehran, Iran
| | - Joel B Epstein
- Department of Surgery, City of Hope National Cancer Center, Duarte, CA, USA
| | - Paolo Bossi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center, Brown University, Providence, RI, USA
| |
Collapse
|
3
|
Li Q, Li Y, Qiao Q, Zhao N, Yang Y, Wang L, Wang Y, Guo C, Guo Y. Oral administration of Bifidobacterium breve improves anti-angiogenic drugs-derived oral mucosal wound healing impairment via upregulation of interleukin-10. Int J Oral Sci 2023; 15:56. [PMID: 38072973 PMCID: PMC10711028 DOI: 10.1038/s41368-023-00263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Recent studies have suggested that long-term application of anti-angiogenic drugs may impair oral mucosal wound healing. This study investigated the effect of sunitinib on oral mucosal healing impairment in mice and the therapeutic potential of Bifidobacterium breve (B. breve). A mouse hard palate mucosal defect model was used to investigate the influence of sunitinib and/or zoledronate on wound healing. The volume and density of the bone under the mucosal defect were assessed by micro-computed tomography (micro-CT). Inflammatory factors were detected by protein microarray analysis and enzyme-linked immunosorbent assay (ELISA). The senescence and biological functions were tested in oral mucosal stem cells (OMSCs) treated with sunitinib. Ligated loop experiments were used to investigate the effect of oral B. breve. Neutralizing antibody for interleukin-10 (IL-10) was used to prove the critical role of IL-10 in the pro-healing process derived from B. breve. Results showed that sunitinib caused oral mucosal wound healing impairment in mice. In vitro, sunitinib induced cellular senescence in OMSCs and affected biological functions such as proliferation, migration, and differentiation. Oral administration of B. breve reduced oral mucosal inflammation and promoted wound healing via intestinal dendritic cells (DCs)-derived IL-10. IL-10 reversed cellular senescence caused by sunitinib in OMSCs, and IL-10 neutralizing antibody blocked the ameliorative effect of B. breve on oral mucosal wound healing under sunitinib treatment conditions. In conclusion, sunitinib induces cellular senescence in OMSCs and causes oral mucosal wound healing impairment and oral administration of B. breve could improve wound healing impairment via intestinal DCs-derived IL-10.
Collapse
Affiliation(s)
- Qingxiang Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuke Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Qiao Qiao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yuanning Yang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yifei Wang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chuanbin Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yuxing Guo
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
4
|
Takahashi S, Matsumoto K, Ohba K, Nakano Y, Miyazawa Y, Kawaguchi T. The Incidence and Management of Cancer-Related Anorexia During Treatment with Vascular Endothelial Growth Factor Receptor-Tyrosine Kinase Inhibitors. Cancer Manag Res 2023; 15:1033-1046. [PMID: 37771675 PMCID: PMC10522463 DOI: 10.2147/cmar.s417238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Cancer-related anorexia is a common complication and frequently occurs in cancer patients treated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKIs). Anorexia contributes to malnutrition, body weight loss, and cachexia in affected patients. Furthermore, patients who experience anorexia have worse outcomes than those who maintain their appetite, highlighting the importance of managing anorexia and related symptoms. However, as the causes of anorexia are both diverse and interconnected, there have been challenges in evaluating and implementing effective interventions. In this review, we described the contributing factors to cancer-related anorexia and reviewed recent literature for the frequency of anorexia symptoms in patients treated with VEGFR-TKIs. Additionally, we evaluated the evidence for current interventions and the potential benefits of multimodal and multidisciplinary approaches to care. The frequency of anorexia symptoms in patients who received VEGFR-TKIs ranged from 14%-58% for all-grade anorexia and 0%-6% for grade 3 or 4 anorexia. While many of the interventions for cancer-related anorexia have minimal benefit or adverse events, recent advances in our understanding of cancer-related anorexia suggest that multimodal therapy with multidisciplinary care is a promising avenue of investigation. Several studies currently underway are anticipated to further assess the effectiveness of multimodal approaches.
Collapse
Affiliation(s)
- Shunji Takahashi
- Department of Medical Oncology, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koji Matsumoto
- Department of Medical Oncology, Hyogo Cancer Center, Akashi, Japan
| | - Kojiro Ohba
- The Department of Urology and Renal Transplantation, Nagasaki University Hospital, Nagasaki, Japan
| | - Yasuhiro Nakano
- Department of Pharmacy, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Yasushi Miyazawa
- Department of Clinical Nutrition, Tokyo Medical University Hospital, Tokyo, Japan
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
5
|
Yang L, Tu PH, Zhang CX, Xie RR, Dong M, Jing Y, Chen X, Wei G, Song HD. Influence of two anti-tumor drugs, pazopanib, and axitinib, on the development and thyroid-axis of zebrafish ( Danio rerio) embryos/larvae. Front Endocrinol (Lausanne) 2023; 14:1204678. [PMID: 37600710 PMCID: PMC10433177 DOI: 10.3389/fendo.2023.1204678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/06/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction In recent years, the potential toxicities of different pharmaceuticals toward the thyroid system have received increasing attention. In this study, we aim to evaluate the toxic effects of pazopanib and axitinib, two anti-tumor drugs with widespread clinical use, on thyroid function in the zebrafish model. Methods We measured levels of thyroid-related hormones using the commercial Enzyme-Linked Immunosorbent Assay (ELISA) kit. Whole-mount in situ hybridization (WISH) analysis was employed to detect target gene expression changes. Morphology of the thyroid were evaluated by using transgenic Tg (tg: EGFP) fish line under a confocal microscope. The relative mRNA expression of key genes was verified through quantitative real-time polymerase chain reaction (RT‒qPCR). The size and number of the follicles was quantified whereby Hematoxylin-Eosin (H & E) staining under a light microscope. Results The results revealed that fertilized zebrafish embryos were incubated in pazopanib or axitinib for 96 hours, development and survival were significantly affected, which was accompanied by significant disturbances in thyroid endocrine system (e.g., increased thyroid-stimulating hormone (TSH) content and decreased triiodothyronine (T3) and thyroxine (T4) content, as well as transcription changes of genes associated with the hypothalamus-pituitary-thyroid (HPT) axis. Moreover, based on whole-mount in situ hybridization staining of tg and histopathological examination of zebrafish embryos treated with pazopanib and axitinib, we observed a significantly abnormal development of thyroid follicles in the Tg (tg: EGFP) zebrafish transgenic line. Conclusion Collectively, these findings indicate that pazopanib and axitinib may have toxic effects on thyroid development and function, at least partially, by influencing the regulation of the HPT axis. Thus, we believe that the potential thyroid toxicities of pazopanib and axitinib in their clinical applications should receive greater attention.
Collapse
Affiliation(s)
- Liu Yang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping-hui Tu
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cao-xu Zhang
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Rong-rong Xie
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mei Dong
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Jing
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xia Chen
- Department of Endocrinology, Shanghai Gongli Hospital, Shanghai, China
| | - Gang Wei
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
- Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Diabetes Institute, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Endocrinology and Metabolism, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Huai-dong Song
- Department of Molecular Diagnostics, The Core Laboratory in Medical Center of Clinical Research, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrinology, Shanghai Ninth People’s Hospital, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Villa A, Kuten-Shorrer M. Pathogenesis of Oral Toxicities Associated with Targeted Therapy and Immunotherapy. Int J Mol Sci 2023; 24:ijms24098188. [PMID: 37175898 PMCID: PMC10179284 DOI: 10.3390/ijms24098188] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Targeted therapy and immunotherapy have redefined cancer treatment. While they have enhanced tumor response and improved survival rates in many cancer types, toxicities continue to occur, and these often involve the oral cavity. Broadly reported as "mucositis" or "stomatitis," oral toxicities induced by targeted therapies differ clinically and mechanistically from those associated with conventional chemotherapy. Manifesting primarily as mucosal lesions, salivary gland hypofunction, or orofacial neuropathies, these oral toxicities may nonetheless lead to significant morbidity and impact patients' quality of life, thereby compromising clinical outcomes. We conclude that familiarity with the spectrum of associated toxicities and understanding of their pathogenesis represent important areas of clinical research and may lead to better characterization, prevention, and management of these adverse events.
Collapse
Affiliation(s)
- Alessandro Villa
- Oral Medicine, Oral Oncology and Dentistry, Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- The Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33176, USA
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Michal Kuten-Shorrer
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, New York, NY 14642, USA
| |
Collapse
|
7
|
Vimalraj S. A concise review of VEGF, PDGF, FGF, Notch, angiopoietin, and HGF signalling in tumor angiogenesis with a focus on alternative approaches and future directions. Int J Biol Macromol 2022; 221:1428-1438. [PMID: 36122781 DOI: 10.1016/j.ijbiomac.2022.09.129] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022]
Abstract
Angiogenesis forms new vessels from existing ones. Abnormal angiogenesis, which is what gives tumor microenvironments their distinctive features, is characterised by convoluted, permeable blood vessels with a variety of shapes and high perfusion efficiency. Tumor angiogenesis controls cancer growth by allowing invasion and metastasis and is highly controlled by signalling networks. Therapeutic techniques targeting VEGF, PDGF, FGF Notch, Angiopoietin, and HGF signalling restrict the tumor's vascular supply. Numerous pathways regulate angiogenesis, and when one of those processes is blocked, the other pathways may step in to help. VEGF signalling inhibition alone has limits as an antiangiogenic therapy, and additional angiogenic pathways such as FGF, PDGF, Notch, angiopoietin, and HGF are important. For the treatment of advanced solid tumors, there are also new, emerging medicines that target multiple angiogenic pathways. Recent therapies block numerous signalling channels concurrently. This study focuses on 'alternative' methods to standard antiangiogenic medicines, such as cyclooxygenase-2 blocking, oligonucleotide binding complementary sites to noncoding RNAs to regulate mRNA target, matrix metalloproteinase inhibition and CRISPR/Cas9 based gene edition and dissecting alternative angiogenesis mechanism in tumor microenvironment.
Collapse
|
8
|
Bilici S, Yazici GN, Altuner D, Aggul AG, Suleyman H. Effect of Sunitinib on Liver Oxidative and Proinflammatory Damage Induced by Ischemia-Reperfusion in Rats. Transplant Proc 2021; 53:2140-2146. [PMID: 34417031 DOI: 10.1016/j.transproceed.2021.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/19/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ischemia-reperfusion (IR) injury is defined as a complex pathologic process that begins with the oxygen deprivation of tissue, continues with the production of reactive oxygen radicals (ROS), and expands with an inflammatory response. This study investigates the protective effects of sunitinib, an anticancer drug with demonstrated antioxidant and anti-inflammatory activity, against liver IR damage. Our study aims to investigate the biochemical and histopathologic effects of sunitinib on IR-induced liver damage in rats. METHODS Albino Wistar male rats were divided into 3 groups: liver IR control (IR), 25 mg/kg sunitinib + liver IR (S+IR), and sham operation (SHAM). RESULTS In the liver tissue of the IR group, oxidant and proinflammatory cytokine levels such as malondialdehyde, nuclear factor κ B, tumor necrosis factor-α, and interleukin-1β increased compared with the SHAM and S+IR groups. In addition, antioxidant levels such as total glutathione, glutathione reductase, and glutathione peroxidase were found to be significantly lower in the IR group than in the SHAM and S+IR groups. Although severe histopathologic damage was observed in the IR group, it was evaluated as mild in the S+IR group. The results obtained suggest that sunitinib may be helpful in the treatment of liver IR injury.
Collapse
Affiliation(s)
- Sami Bilici
- Department of General Surgery, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulce Naz Yazici
- Department of Histology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ahmet Gokhan Aggul
- Department of Biochemistry, Faculty of Pharmacy, Ibrahim Cecen University, Agri, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
9
|
Yıldırım N, Karatas A, Cengiz M, Onalan E, Yazıcı GN, Sunar M, Mammadov R, Coban A, Suleyman H. Protective effect of adenosine triphosphate against sunitinib-related skin damage in rats. Hum Exp Toxicol 2020; 39:1737-1746. [PMID: 32677474 DOI: 10.1177/0960327120940365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cutaneous side effects associated with sunitinib use are a major problem in patients receiving cancer treatment. The aim of this study was to investigate the protective effect of adenosine triphosphate (ATP) against possible skin damage resulting from sunitinib use in rats. Thirty Albino Winstar rats were divided into the following three groups: healthy controls (HCs, n = 10), sunitinib (SUN, n = 10), and sunitinib + ATP (SAT, n = 10). ATP was injected intraperitoneally at a dose of 2 mg/kg. One hour subsequent to the administration of ATP and 0.9% NaCl, the SAT and SUN groups were orally administered a dose of 25 mg/kg sunitinib to the stomach. Macroscopic evaluation of the skin indicated lower levels of skin damage in the SAT group than in the SUN group. As an indicator of oxidative stress, malondialdehyde (MDA), total oxidant status (TOS), and oxidative stress index (OSI) levels were significantly higher in the SUN group than in the HC group, while total glutathione (tGSH) and total antioxidant status (TAS) levels were significantly lower. However, MDA, TOS, and OSI levels were significantly lower in the SAT group than in the SUN group, while tGSH and TAS levels were significantly higher. Histopathological examination revealed keratin plugs with edema, vasopathology, and inflammatory cell infiltration in the SUN group. The SAT group showed less necrotic epithelium, keratin plugs, edema, and vasopathology than the SUN group. ATP can be effective in preventing skin damage caused by sunitinib use by reducing oxidative stress.
Collapse
Affiliation(s)
- N Yıldırım
- Department of Medical Oncology, 64177Firat University Faculty of Medicine, Elazığ, Turkey
| | - A Karatas
- Department of Internal Medicine, 64177Firat University Faculty of Medicine, Elazıg, Turkey
| | - M Cengiz
- Department of Internal Medicine, Faculty of Medicine, 472600Biruni University, Istanbul, Turkey
| | - E Onalan
- Department of Internal Medicine, 64177Firat University Faculty of Medicine, Elazıg, Turkey
| | - G N Yazıcı
- Department of Histology and Embryology, Faculty of Medicine, Binali Yıldırım University, Erzincan, Turkey
| | - M Sunar
- Department of Anatomy, Faculty of Medicine, Binali Yıldırım University, Erzincan, Turkey
| | - R Mammadov
- Department of Pharmacology, Faculty of Medicine, Binali Yıldırım University, Erzincan, Turkey
| | - A Coban
- Department of Biochemistry, Faculty of Medicine, Binali Yıldırım University, Erzincan, Turkey
| | - H Suleyman
- Department of Pharmacology, Faculty of Medicine, Binali Yıldırım University, Erzincan, Turkey
| |
Collapse
|
10
|
Folic Acid Reduces Mucositis in Metastatic Renal Cell Carcinoma Patients: A Retrospective Study. Clin Genitourin Cancer 2019; 17:254-259. [DOI: 10.1016/j.clgc.2019.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/19/2019] [Accepted: 03/21/2019] [Indexed: 11/20/2022]
|
11
|
Mucosal Injury during Anti-Cancer Treatment: From Pathobiology to Bedside. Cancers (Basel) 2019; 11:cancers11060857. [PMID: 31226812 PMCID: PMC6627284 DOI: 10.3390/cancers11060857] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022] Open
Abstract
Mucositis is one of the most common debilitating side effects related to chemotherapy (CT), radiation therapy (RT), targeted agents and immunotherapy. It is a complex process potentially involving any portion of the gastrointestinal tract and injuring the mucosa, leading to inflammatory or ulcerative lesions. Mechanisms and clinical presentation can differ according both to the anatomic site involved (oral or gastrointestinal) and the treatment received. Understanding the pathophysiology and management of mucosal injury as a secondary effect of anti-cancer treatment is an important area of clinical research. Prophylaxis, early diagnosis, and adequate management of complications are essential to increase therapeutic success and, thus, improve the survival outcomes of cancer patients. This review focuses on the pathobiology and management guidelines for mucositis, a secondary effect of old and new anti-cancer treatments, highlighting recent advances in prevention and discussing future research options.
Collapse
|