1
|
Aldè M, Cantarella G, Zanetti D, Pignataro L, La Mantia I, Maiolino L, Ferlito S, Di Mauro P, Cocuzza S, Lechien JR, Iannella G, Simon F, Maniaci A. Autosomal Dominant Non-Syndromic Hearing Loss (DFNA): A Comprehensive Narrative Review. Biomedicines 2023; 11:1616. [PMID: 37371710 DOI: 10.3390/biomedicines11061616] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Autosomal dominant non-syndromic hearing loss (HL) typically occurs when only one dominant allele within the disease gene is sufficient to express the phenotype. Therefore, most patients diagnosed with autosomal dominant non-syndromic HL have a hearing-impaired parent, although de novo mutations should be considered in all cases of negative family history. To date, more than 50 genes and 80 loci have been identified for autosomal dominant non-syndromic HL. DFNA22 (MYO6 gene), DFNA8/12 (TECTA gene), DFNA20/26 (ACTG1 gene), DFNA6/14/38 (WFS1 gene), DFNA15 (POU4F3 gene), DFNA2A (KCNQ4 gene), and DFNA10 (EYA4 gene) are some of the most common forms of autosomal dominant non-syndromic HL. The characteristics of autosomal dominant non-syndromic HL are heterogenous. However, in most cases, HL tends to be bilateral, post-lingual in onset (childhood to early adulthood), high-frequency (sloping audiometric configuration), progressive, and variable in severity (mild to profound degree). DFNA1 (DIAPH1 gene) and DFNA6/14/38 (WFS1 gene) are the most common forms of autosomal dominant non-syndromic HL affecting low frequencies, while DFNA16 (unknown gene) is characterized by fluctuating HL. A long audiological follow-up is of paramount importance to identify hearing threshold deteriorations early and ensure prompt treatment with hearing aids or cochlear implants.
Collapse
Affiliation(s)
- Mirko Aldè
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giovanna Cantarella
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Diego Zanetti
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Lorenzo Pignataro
- Department of Clinical Sciences and Community Health, University of Milan, 20090 Milan, Italy
- Department of Specialist Surgical Sciences, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20090 Milan, Italy
| | - Ignazio La Mantia
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Luigi Maiolino
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Ferlito
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Paola Di Mauro
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| | - Jérôme René Lechien
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Giannicola Iannella
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Francois Simon
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
| | - Antonino Maniaci
- Otology Study Group of the Young-Otolaryngologists of the International Federations of Oto-Rhino-Laryngological Societies (YO-IFOS), 75000 Paris, France
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Singh S, Penney C, Griffin A, Woodland G, Werdyani S, Benteau TA, Abdelfatah N, Squires J, King B, Houston J, Dyer MJ, Roslin NM, Vincent D, Marquis P, O'Rielly DD, Hodgkinson K, Burt T, Baker A, Stanton SG, Young TL. Highly variable hearing loss due to POU4F3 (c.37del) is revealed by longitudinal, frequency specific analyses. Eur J Hum Genet 2023:10.1038/s41431-023-01358-0. [PMID: 37072551 DOI: 10.1038/s41431-023-01358-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Genotype-phenotype correlations add value to the management of families with hereditary hearing loss (HL), where age-related typical audiograms (ARTAs) are generated from cross-sectional regression equations and used to predict the audiogram phenotype across the lifespan. A seven-generation kindred with autosomal dominant sensorineural HL (ADSNHL) was recruited and a novel pathogenic variant in POU4F3 (c.37del) was identified by combining linkage analysis with whole exome sequencing (WES). POU4F3 is noted for large intrafamilial variation including the age of onset of HL, audiogram configuration and presence of vestibular impairment. Sequential audiograms and longitudinal analyses reveal highly variable audiogram features among POU4F3 (c.37del) carriers, limiting the utility of ARTAs for clinical prognosis and management of HL. Furthermore, a comparison of ARTAs against three previously published families (1 Israeli Jewish, 2 Dutch) reveals significant interfamilial differences, with earlier onset and slower deterioration. This is the first published report of a North American family with ADSNHL due to POU4F3, the first report of the pathogenic c.37del variant, and the first study to conduct longitudinal analysis, extending the phenotypic spectrum of DFNA15.
Collapse
Affiliation(s)
- Sushma Singh
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Cindy Penney
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Anne Griffin
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Geoffrey Woodland
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Salem Werdyani
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Tammy A Benteau
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nelly Abdelfatah
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Jessica Squires
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | | | - Jim Houston
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Matthew J Dyer
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, Canada
| | - Daniel Vincent
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Pascale Marquis
- Canadian Centre for Computational Genomics, McGill University, 740 Dr. Penfield Avenue, Montréal, QC, Canada
| | - Darren D O'Rielly
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Kathy Hodgkinson
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Taylor Burt
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Ashley Baker
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada
| | - Susan G Stanton
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada
| | - Terry-Lynn Young
- Communication Sciences and Disorders and National Centre for Audiology, Western University, Elborn College, 1201 Western Road, London, ON, Canada.
- Centre for Translational Genomics, Health Sciences Centre, 300 Prince Philip Drive, St. John's, NL, Canada.
- Faculty of Medicine, Health Sciences Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, Canada.
| |
Collapse
|
3
|
Genetic Load of Alternations of Transcription Factor Genes in Non-Syndromic Deafness and the Associated Clinical Phenotypes: Experience from Two Tertiary Referral Centers. Biomedicines 2022; 10:biomedicines10092125. [PMID: 36140227 PMCID: PMC9495667 DOI: 10.3390/biomedicines10092125] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Sensorineural hearing loss is one of the most common inherited sensory disorders. Functional classifications of deafness genes have shed light on genotype- and mechanism-based pharmacological approaches and on gene therapy strategies. In this study, we characterized the clinical phenotypes and genotypes of non-syndromic deafness caused by transcription factor (TF) gene variants, one of the functional classifications of genetic hearing loss. Of 1280 probands whose genomic DNA was subjected to molecular genetic testing, TF genes were responsible for hearing loss in 2.6%. Thirty-three pathogenic variants, including nine novel variants, accounting for non-syndromic deafness were clustered in only four TF genes (POU3F4, POU4F3, LMX1A, and EYA4), which is indicative of a narrow molecular etiologic spectrum of TF genes, and the functional redundancy of many other TF genes, in the context of non-syndromic deafness. The audiological and radiological characteristics associated with the four TF genes differed significantly, with a wide phenotypic spectrum. The results of this study reveal the genetic load of TF gene alterations among a cohort with non-syndromic hearing loss. Additionally, we have further refined the clinical profiles associated with TF gene variants as a basis for a personalized, genetically tailored approach to audiological rehabilitation.
Collapse
|
4
|
Huang S, Zhao G, Wu J, Li K, Wang Q, Fu Y, Zhang H, Bi Q, Li X, Wang W, Guo C, Zhang D, Wu L, Li X, Xu H, Han M, Wang X, Lei C, Qiu X, Li Y, Li J, Dai P, Yuan Y. Gene4HL: An Integrated Genetic Database for Hearing Loss. Front Genet 2021; 12:773009. [PMID: 34733322 PMCID: PMC8558372 DOI: 10.3389/fgene.2021.773009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Hearing loss (HL) is one of the most common disabilities in the world. In industrialized countries, HL occurs in 1–2/1,000 newborns, and approximately 60% of HL is caused by genetic factors. Next generation sequencing (NGS) has been widely used to identify many candidate genes and variants in patients with HL, but the data are scattered in multitudinous studies. It is a challenge for scientists, clinicians, and biologists to easily obtain and analyze HL genes and variant data from these studies. Thus, we developed a one-stop database of HL-related genes and variants, Gene4HL (http://www.genemed.tech/gene4hl/), making it easy to catalog, search, browse and analyze the genetic data. Gene4HL integrates the detailed genetic and clinical data of 326 HL-related genes from 1,608 published studies, along with 62 popular genetic data sources to provide comprehensive knowledge of candidate genes and variants associated with HL. Additionally, Gene4HL supports the users to analyze their own genetic engineering network data, performs comprehensive annotation, and prioritizes candidate genes and variations using custom parameters. Thus, Gene4HL can help users explain the function of HL genes and the clinical significance of variants by correlating the genotypes and phenotypes in humans.
Collapse
Affiliation(s)
- Shasha Huang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Guihu Zhao
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Jie Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Kuokuo Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Qiuquan Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Ying Fu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Honglei Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Qingling Bi
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaohong Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Weiqian Wang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Chang Guo
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Dejun Zhang
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Lihua Wu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xiaoge Li
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Huiyan Xu
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Mingyu Han
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Xin Wang
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Chen Lei
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Xiaofang Qiu
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Yang Li
- Angen Gene Medicine Technology Co., Ltd., Beijing, China
| | - Jinchen Li
- National Clinical Research Center for Geriatric Disorders, Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics & Hunan Key Laboratory, School of Life Sciences, Central South University, Changsha, China
| | - Pu Dai
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| | - Yongyi Yuan
- College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China.,National Clinical Research Center for Otolaryngologic Diseases, State Key Lab of Hearing Science, Ministry of Education, Beijing, China.,Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, China
| |
Collapse
|
5
|
A Missense POU4F3 Variant Associated with Autosomal Dominant Midfrequency Hearing Loss Alters Subnuclear Localization and Transcriptional Capabilities. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5574136. [PMID: 34250087 PMCID: PMC8238589 DOI: 10.1155/2021/5574136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022]
Abstract
Background The pathogenic variant, POU class 4 transcription factor 3 (POU4F3), is reported to cause autosomal dominant nonsyndromic hearing loss (ADNSHL). Previously, we have examined a four-generation midfrequency sensorineural hearing loss (MFSNHL) family (no. 6126) and established POU4F3 c.602T>C (p.Leu201Pro) as a potential disease-causing variant. Objectives We explored the structural and functional alterations that the c.602T>C (p.Leu201Pro) variant enforces on the POU4F3 protein. Methods We utilized wild-type (WT) and mutant (MUT) POU4F3 c.602T>C plasmid incorporation into HeLa cells to assess functional changes, by immunofluorescence and luciferase assays. To predict protein structural alterations in the MUT versus WT POU4F3, we also generated 3D structures to compare both types of POU4F3 proteins. Results The WT POU4F3 is ubiquitously present in the nucleus, whereas the MUT form of POU4F3 exhibits a more restricted nuclear presence. This finding is different from other publications, which report a cytoplasmic localization of the MUT POU4F3. We also demonstrated that, as opposed to WT POU4F3, the MUT POU4F3 had 40% reduced luciferase activity. Conclusions The reduced nuclear presence, combined with reduced transcriptional activity, suggests that the POU4F3 c.602T>C variant alters cellular activity and may contribute to the pathogenicity of POU4F3-related hearing loss. It, also, provides more evidence of the pathophysiological characteristics of MFSNHL.
Collapse
|
6
|
Gene therapy development in hearing research in China. Gene Ther 2020; 27:349-359. [PMID: 32681137 DOI: 10.1038/s41434-020-0177-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 12/15/2022]
Abstract
Sensorineural hearing loss, the most common form of hearing impairment, is mainly attributable to genetic mutations or acquired factors, such as aging, noise exposure, and ototoxic drugs. In the field of gene therapy, advances in genetic and physiological studies and profound increases in knowledge regarding the underlying mechanisms have yielded great progress in terms of restoring the auditory function in animal models of deafness. Nonetheless, many challenges associated with the translation from basic research to clinical therapies remain to be overcome before a total restoration of auditory function can be expected. In recent years, Chinese research teams have promoted various developmental efforts in this field, including gene sequencing to identify additional potential loci that cause deafness, studies to elucidate the underlying molecular mechanisms, and research to optimize vectors and delivery routes. In this review, we summarize the state of the field and focus mainly on the progress of gene therapy in animal model studies and the optimization of therapeutic strategies in China.
Collapse
|
7
|
Four Novel Variants in POU4F3 Cause Autosomal Dominant Nonsyndromic Hearing Loss. Neural Plast 2020; 2020:6137083. [PMID: 32684921 PMCID: PMC7349627 DOI: 10.1155/2020/6137083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Accepted: 06/09/2020] [Indexed: 12/30/2022] Open
Abstract
Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.
Collapse
|
8
|
Bai X, Zhang F, Xiao Y, Jin Y, Zheng Q, Wang H, Xu L. Identification of two novel mutations in POU4F3 gene associated with autosomal dominant hearing loss in Chinese families. J Cell Mol Med 2020; 24:6978-6987. [PMID: 32390314 PMCID: PMC7299729 DOI: 10.1111/jcmm.15359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/29/2022] Open
Abstract
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.
Collapse
Affiliation(s)
- Xiaohui Bai
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fengguo Zhang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yun Xiao
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Jin
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingyin Zheng
- Department of Otolaryngology-Head & Neck Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - Haibo Wang
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Xu
- Otologic Center, Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
9
|
Comprehensive genetic testing of Chinese SNHL patients and variants interpretation using ACMG guidelines and ethnically matched normal controls. Eur J Hum Genet 2019; 28:231-243. [PMID: 31541171 PMCID: PMC6974605 DOI: 10.1038/s41431-019-0510-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 05/10/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
Hereditary hearing loss is a monogenic disease with high genetic heterogeneity. Variants in more than 100 deafness genes underlie the basis of its pathogenesis. The aim of this study was to assess the ratio of SNVs in known deafness genes contributing to the etiology of both sporadic and familial sensorineural hearing loss patients from China. DNA samples from 1127 individuals, including normal hearing controls (n = 616), sporadic SNHL patients (n = 433), and deaf individuals (n = 78) from 30 hearing loss pedigrees were collected. The NGS tests included analysis of sequence alterations in 129 genes. The variants were interpreted according to the ACMG/AMP guidelines for genetic hearing loss combined with NGS data from 616 ethnically matched normal hearing adult controls. We identified a positive molecular diagnosis in 226 patients with sporadic SNHL (52.19%) and in patients from 17 deafness pedigrees (56.67%). Ethnically matched MAF filtering reduced the variants of unknown significance by 8.7%, from 6216 to 5675. Some complexities that may restrict causative variant identification are discussed. This report highlight the clinical utility of NGS panels identifying disease-causing variants for the diagnosis of hearing loss and underlines the importance of a broad data of control and ACMG/AMP standards for accurate clinical delineation of VUS variants.
Collapse
|