1
|
Wang H, Wei Z, Xu C, Fang F, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates UUO-induced renal fibrosis by inhibiting the PI3K/AKT pathway. Sci Rep 2024; 14:24787. [PMID: 39433882 PMCID: PMC11494048 DOI: 10.1038/s41598-024-76219-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024] Open
Abstract
As an ultra-early response gene, Nuclear receptor 4A1 (NR4A1) has been reported to be involved in the development of various diseases through various pathological pathways, but its specific mechanism in chronic kidney disease (CKD) is unknown currently. Our study showed that the expression of NR4A1 was reduced in unilateral ureteral obstruction (UUO) mice and it could exacerbate UUO-induced renal pathological injury when knocked down NR4A1 in UUO mice. We found that the knockdown of NR4A1 could promote angiogenesis, renal inflammation, and cell apoptosis to aggravate renal fibrosis induced by UUO. As an agonist of NR4A1, Cytosporone B (Csn-B) could inhibit the renal fibrosis by attenuating angiogenesis, renal inflammation and cell apoptosis. In addition, the PI3K/AKT pathway was activated with NR4A1 knockdown in vivo and in vitro experiments. In conclusion, our study demonstrates that NR4A1 can ameliorate renal fibrosis. Furthermore, we speculate that its underlying mechanism may be related to the activation of PI3K/AKT pathway according to our present results.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Ziheng Wei
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, 050011, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
- Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei Key Laboratory of Integrative Medicine On Liver-Kidney Patterns, Shijiazhuang, 050091, China.
| |
Collapse
|
2
|
Song J, Ke B, Fang X. APC and ZBTB2 May Mediate M2 Macrophage Infiltration to Promote the Development of Renal Fibrosis: A Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2024; 2024:5674711. [PMID: 39328595 PMCID: PMC11424844 DOI: 10.1155/2024/5674711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 04/25/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024]
Abstract
Background and Purpose: The continuous accumulation of M2 macrophages may potentially contribute to the development of kidney fibrosis in chronic kidney disease (CKD). The purpose of this study was to analyze the infiltration of M2 macrophages in uremic patients and to seek new strategies to slow down the progression of renal fibrosis. Methods: We conducted a comprehensive search for expression data pertaining to uremic samples within the Gene Expression Omnibus (GEO) database, encompassing the time frame from 2010 to 2022. Control and uremic differentially expressed genes (DEGs) were identified. Immune cell infiltration was investigated by CIBERSORT and modules associated with M2 macrophage infiltration were identified by weighted gene coexpression network analysis (WGCNA). Consistent genes were identified using the least absolute shrinkage and selection operator (LASSO) and selection and visualization of the most relevant features (SVM-RFE) methods to search for overlapping genes. Receiver operating characteristic (ROC) curves were examined for the diagnostic value of candidate genes. Quantitative real-time PCR (qPCR) examined the expression levels of candidate genes obtained from uremic patients in M2 macrophage. Results: A total of 1298 DEGs were identified within the GSE37171 dataset. Significant enrichment of DEGs was observed in 20 biological processes (BP), 19 cellular components (CC), 6 molecular functions (MF), and 70 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. CIBERSORT analysis observed a significant increase in B-cell memory, dendritic cell activation, M0, M1, M2, and plasma cell numbers in uremic samples. We identified the 10 most interrelated genes. In particular, adenomatous polyposis coli (APC) and zinc finger and BTB structural domain 2 (ZBTB2) were adversely associated with the infiltration of M2 macrophages. Importantly, the expression levels of APC and ZBTB2 were far lower in M2 macrophages from uremic patients than those in healthy individuals. Conclusion: The development of renal fibrosis may be the result of M2 macrophage infiltration promoted by APC and ZBTB2.
Collapse
Affiliation(s)
- Jianling Song
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Ben Ke
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| | - Xiangdong Fang
- Department of NephrologyThe Second Affiliated HospitalJiangxi Medical CollegeNanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
3
|
Xue JL, Ji JL, Zhou Y, Zhang Y, Liu BC, Ma RX, Li ZL. The multifaceted effects of mitochondria in kidney diseases. Mitochondrion 2024; 79:101957. [PMID: 39270830 DOI: 10.1016/j.mito.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria serve as the primary site for aerobic respiration within cells, playing a crucial role in maintaining cellular homeostasis. To maintain homeostasis and meet the diverse demands of the cells, mitochondria have evolved intricate systems of quality control, mainly including mitochondrial dynamics, mitochondrial autophagy (mitophagy) and mitochondrial biogenesis. The kidney, characterized by its high energy requirements, is particularly abundant in mitochondria. Interestingly, the mitochondria display complex behaviors and functions. When the kidney is suffered from obstructive, ischemic, hypoxic, oxidative, or metabolic insults, the dysfunctional mitochondrial derived from the defects in the mitochondrial quality control system contribute to cellular inflammation, cellular senescence, and cell death, posing a threat to the kidney. However, in addition to causing injury to the kidney in several cases, mitochondria also exhibit protective effect on the kidney. In recent years, accumulating evidence indicated that mitochondria play a crucial role in adaptive repair following kidney diseases caused by various etiologies. In this article, we comprehensively reviewed the current understanding about the multifaceted effects of mitochondria on kidney diseases and their therapeutic potential.
Collapse
Affiliation(s)
- Jia-Le Xue
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jia-Ling Ji
- Department of Pediatrics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Zhou
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Yao Zhang
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China
| | - Rui-Xia Ma
- Department of Nephrology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zuo-Lin Li
- Institute of Nephrology, Zhongda Hospital, Southeast University School of Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
4
|
de Combiens E, Sakhi IB, Lourdel S. A Focus on the Proximal Tubule Dysfunction in Dent Disease Type 1. Genes (Basel) 2024; 15:1175. [PMID: 39336766 PMCID: PMC11431675 DOI: 10.3390/genes15091175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Dent disease type 1 is a rare X-linked recessive inherited renal disorder affecting mainly young males, generally leading to end-stage renal failure and for which there is no cure. It is caused by inactivating mutations in the gene encoding ClC-5, a 2Cl-/H+ exchanger found on endosomes in the renal proximal tubule. This transporter participates in reabsorbing all filtered plasma proteins, which justifies why proteinuria is commonly observed when ClC-5 is defective. In the context of Dent disease type 1, a proximal tubule dedifferentiation was shown to be accompanied by a dysfunctional cell metabolism. However, the exact mechanisms linking such alterations to chronic kidney disease are still unclear. In this review, we gather knowledge from several Dent disease type 1 models to summarize the current hypotheses generated to understand the progression of this disorder. We also highlight some urinary biomarkers for Dent disease type 1 suggested in different studies.
Collapse
Affiliation(s)
- Elise de Combiens
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| | | | - Stéphane Lourdel
- Laboratoire de Physiologie Rénale et Tubulopathies, Centre de Recherche des Cordeliers, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Université, Université Paris Cité, F-75006 Paris, France; (E.d.C.); (S.L.)
- Unité Métabolisme et Physiologie Rénale, Centre National de la Recherche Scientifique (CNRS) EMR8228, F-75006 Paris, France
| |
Collapse
|
5
|
Yuan S, Liu J, Yang L, Zhang X, Zhuang K, He S. Knockdown of circ_0044226 promotes endoplasmic reticulum stress-mediated autophagy and apoptosis in hepatic stellate cells via miR-4677-3p/SEC61G axis. J Bioenerg Biomembr 2024; 56:261-271. [PMID: 38421527 DOI: 10.1007/s10863-024-10007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Downregulation of circ_0044226 has been demonstrated to reduce pulmonary fibrosis, but the role of circ_0044226 in liver fibrosis remains to be explored. In this work, we found that circ_0044226 expression was upregulated during liver fibrosis. Knockdown of circ_0044226 inhibited proliferation, promoted autophagy and apoptosis of hepatic stellate cell LX-2. Bioinformatic analysis and dual luciferase reporter assays confirmed the interaction between circ_0044226, miR-4677-3p and SEC61G. Mechanistically, knockdown of circ_0044226 suppressed SEC61G expression by releasing miR-4677-3p, thereby enhancing endoplasmic reticulum stress. Overexpression of SEC61G or endoplasmic reticulum stress inhibitor 4-phenylbutiric acid partially reversed the effect of knockdown circ_0044226 on LX-2 cell function. In vivo experiments showed that inhibition of circ_0044226 attenuated CCL4-induced liver fibrosis in mice. These imply that circ_0044226 may be a potential target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shanshan Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Jiaming Liu
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Li Yang
- Department of Ultrasonography, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, Shaanxi, China
| | - Xin Zhang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Kun Zhuang
- Department of Gastroenterology, Xi'an Central Hospital, Xi'an, 710004, Shaanxi, China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No.277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
- Clinical Medical Research Center for Digestive Diseases of Shaanxi Province (Oncology), Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
6
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Zhao Q, Dong J, Liu H, Chen H, Yu H, Ye S, Yu S, Li Y, Qiu L, Song N, Xu H, Liu Q, Luo Z, Li Y, Wang R, Chen G, Jiang X. Design and discovery of a highly potent ultralong-acting GLP-1 and glucagon co-agonist for attenuating renal fibrosis. Acta Pharm Sin B 2024; 14:1283-1301. [PMID: 38486997 PMCID: PMC10935026 DOI: 10.1016/j.apsb.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/09/2023] [Accepted: 11/09/2023] [Indexed: 03/17/2024] Open
Abstract
The role of co-agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) in chronic kidney disease (CKD) remains unclear. Herein we found that GLP-1R and GCGR expression levels were lower in the kidneys of mice with CKD compared to healthy mice and were correlated with disease severity. Interestingly, GLP-1R or GCGR knockdown aggravated the progression of kidney injury in both diabetic db/db mice and non-diabetic mice undergoing unilateral ureteral obstruction (UUO). Based on the importance of GLP-1R and GCGR in CKD, we reported a novel monomeric peptide, 1907-B, with dual-agonism on both GLP-1R and GCGR. The data confirmed that 1907-B had a longer half-life than long-acting semaglutide in rats or cynomolgus monkeys (∼2-3 fold) and exhibited better therapeutic contribution to CKD than best-in-class monoagonists, semaglutide, or glucagon, in db/db mice and UUO mice. Various lock-of-function models, including selective pharmacological activation and genetic knockdown, confirmed that 1907-B's effects on ameliorating diabetic nephropathy in db/db mice, as well as inhibiting kidney fibrosis in UUO mice, were mediated through GLP-1 and glucagon signaling. These findings highlight that 1907-B, a novel GLP-1R and GCGR co-agonist, exerts multifactorial improvement in kidney injuries and is an effective and promising therapeutic option for CKD treatment.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiale Dong
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Han Liu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Hui Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Huan Yu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuyin Ye
- Shenzhen Turier Biotech. Co., Ltd., Shenzhen 518118, China
| | - Shuangjin Yu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Li
- Shenzhen Turier Biotech. Co., Ltd., Shenzhen 518118, China
| | - Longhui Qiu
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Nazi Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Qi Liu
- Shenzhen Turier Biotech. Co., Ltd., Shenzhen 518118, China
| | - Zhiteng Luo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuyi Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Rui Wang
- School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences & Research Unit of Peptide Science, Chinese Academy of Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Guodong Chen
- Organ Transplant Center, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
8
|
Zhang YH, Bin Liu, Meng Q, Zhang D, Yang H, Li G, Wang Y, Liu M, Liu N, Yu J, Liu S, Zhou H, Xu ZX, Wang Y. ACOX1 deficiency-induced lipid metabolic disorder facilitates chronic interstitial fibrosis development in renal allografts. Pharmacol Res 2024; 201:107105. [PMID: 38367917 DOI: 10.1016/j.phrs.2024.107105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Chronic interstitial fibrosis presents a significant challenge to the long-term survival of transplanted kidneys. Our research has shown that reduced expression of acyl-coenzyme A oxidase 1 (ACOX1), which is the rate-limiting enzyme in the peroxisomal fatty acid β-oxidation pathway, contributes to the development of fibrosis in renal allografts. ACOX1 deficiency leads to lipid accumulation and excessive oxidation of polyunsaturated fatty acids (PUFAs), which mediate epithelial-mesenchymal transition (EMT) and extracellular matrix (ECM) reorganization respectively, thus causing fibrosis in renal allografts. Furthermore, activation of Toll-like receptor 4 (TLR4)-nuclear factor kappa-B (NF-κB) signaling induced ACOX1 downregulation in a DNA methyltransferase 1 (DNMT1)-dependent manner. Overconsumption of PUFA resulted in endoplasmic reticulum (ER) stress, which played a vital role in facilitating ECM reorganization. Supplementation with PUFAs contributed to delayed fibrosis in a rat model of renal transplantation. The study provides a novel therapeutic approach that can delay chronic interstitial fibrosis in renal allografts by targeting the disorder of lipid metabolism.
Collapse
Affiliation(s)
- Yang-He Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Hongxia Yang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Guangtao Li
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yuxiong Wang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Nian Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Jinyu Yu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Si Liu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
9
|
Wang C, Chen H, Su H, Sheng Q, Lang Y, Yu Q, Lv Z, Wang R. The role and mechanism of RIPK1 in vascular endothelial dysfunction in chronic kidney disease. FASEB J 2024; 38:e23446. [PMID: 38275125 DOI: 10.1096/fj.202301916rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024]
Abstract
Endothelial dysfunction is common in patients with chronic kidney disease (CKD) and cardiovascular events, but the mechanism is unclear. In our study, we found elevated levels of RIPK1 in patients with CKD and cardiovascular events through bioinformation analysis. Elevated RIPK1 levels were found in serum samples of CKD patients and were associated with vascular endothelial dysfunction and renal function. We constructed the five of six nephrectomy of CKD mice model, finding that RIPK1 expressions were elevated in abdominal aorta endothelial cells. After RIPK1 inhibition and overexpression, it was found that RIPK1 could regulate the expression of endothelial nitric oxide synthase (eNOS) and cell adhesion molecule 1 (ICAM-1), and activation of inflammatory responses and endoplasmic reticulum (ER) stress. In addition, uremic toxin induced abnormal expression of RIPK1 in vitro. We observed RIPK1-mediating endothelial dysfunction and inflammation responses by ER stress pathways through gain and loss of function. In order to explore the specific mechanism, we conducted co-immunoprecipitation and expression regulation of RIPK1 and IKK, finding that RIPK1 formed complex with IKK and regulated IKK expression. In conclusion, we demonstrated that RIPK1 levels were closely associated with vascular endothelial dysfunction in patients with CKD. With uremic toxins, RIPK1 expression was elevated, which led to the activation of inflammation through the ER stress pathway, resulting in vascular endothelial injury. Besides, activation of RIPK1-IKK-NF-κB axis was a key driver of endothelial dysfunction in CKD. Our study provides a new perspective for the study of cardiovascular events in CKD.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huimin Chen
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hong Su
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Qinghao Sheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qun Yu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
10
|
Diao C, Yang Z, Hu Q, Yao P, Qu X, Li C, Zhang S, Zhou J. Celastrol Alleviates Mitochondrial Oxidative Stress and Brain Injury After Intracerebral Hemorrhage by Promoting OPA1-Dependent Mitochondrial Fusion. Neuroscience 2024; 536:79-91. [PMID: 37996053 DOI: 10.1016/j.neuroscience.2023.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/01/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Mitochondrial oxidative stress is one of the characteristics of secondary brain injury (SBI) after intracerebral hemorrhage (ICH), contributing largely to the apoptosis of neurons. Celastrol, a quinone methide triterpene that possesses antioxidant and mitochondrial protective properties, has emerged as a neuroprotective agent. However, the activity of celastrol has not been tested in ICH-induced SBI. In this study, we found that celastrol could effectively alleviate neurological function deficits and reduce brain oedema and neuronal apoptosis caused by ICH. Through electron microscopy, we found that celastrol could significantly attenuate mitochondrial morphology impairment. Therefore, we tested the regulatory proteins of mitochondrial dynamics and found that celastrol could reverse the downwards trend of OPA1 expression after ICH. In view of this, by culturing OPA1-deficient primary neurons and constructing neuron-specific OPA1 conditional knockout mice, we found that the protective effects of celastrol on mitochondrial morphology and function after ICH were counteracted in the absence of OPA1. Further experiments also showed that OPA1 is indispensable for the protective effects of celastrol on ICH-induced secondary brain injury. In summary, we have demonstrated that celastrol is a potential drug for the treatment of ICH and have revealed a novel mechanism by which celastrol exerts its antioxidant effects by promoting OPA1-mediated mitochondrial fusion.
Collapse
Affiliation(s)
- Chunyan Diao
- School of Pharmacy, The Fourth Military Medical University, No. 169 West Changle Road, Xi'an 710032, PR China
| | - Zhengxuan Yang
- Department of Emergency, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Qing Hu
- Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Pengfei Yao
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Xiaodong Qu
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Changdong Li
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China
| | - Shenghao Zhang
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China.
| | - Jie Zhou
- Department of Neurosurgery, The 940th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, PR China.
| |
Collapse
|
11
|
Shi Y, Jiang B, Zhao J. Induction mechanisms of autophagy and endoplasmic reticulum stress in intestinal ischemia-reperfusion injury, inflammatory bowel disease, and colorectal cancer. Biomed Pharmacother 2024; 170:115984. [PMID: 38070244 DOI: 10.1016/j.biopha.2023.115984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024] Open
Abstract
In recent years, the incidence of intestinal ischemia-reperfusion injury (II/RI), inflammatory bowel disease (IBD), and colorectal cancer (CRC) has been gradually increasing, posing significant threats to human health. Autophagy and endoplasmic reticulum stress (ERS) play important roles in II/RI. Damage caused by ischemia and cellular stress can activate ERS, which in turn initiates autophagy to clear damaged organelles and abnormal proteins, thereby alleviating ERS and maintaining the intestinal environment. In IBD, chronic inflammation damages intestinal tissues and activates autophagy and ERS. Autophagy is initiated by upregulating ATG genes and downregulating factors that inhibit autophagy, thereby clearing abnormal proteins, damaged organelles, and bacteria. Simultaneously, persistent inflammatory stimulation can also trigger ERS, leading to protein imbalance and abnormal folding in the ER lumen. The activation of ERS can maintain cellular homeostasis by initiating the autophagy process, thereby reducing inflammatory responses and cell apoptosis in the intestine. In CRC, excessive cell proliferation and protein synthesis lead to increased ERS. The activation of ERS, regulated by signaling pathways such as IRE1α and PERK, can initiate autophagy to clear abnormal proteins and damaged organelles, thereby reducing the negative effects of ERS. It can be seen that autophagy and ERS play a crucial regulatory role in the development of intestinal diseases. Therefore, the progress in targeted therapy for intestinal diseases based on autophagy and ERS provides novel strategies for managing intestinal diseases. In this paper, we review the advances in regulation of autophagy and ERS in intestinal diseases, emphasizing the potential molecular mechanisms for therapeutic applications.
Collapse
Affiliation(s)
- Yan Shi
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, PR China
| | - Jingwen Zhao
- Department of Proctology, Baoji Traditional Chinese Medicine Hospital, Baoji 721001, Shanxi, PR China.
| |
Collapse
|
12
|
Zhang L, Zeng J, Wu H, Tian H, Song D, Wu W, Dong F. Knockdown of TXNDC5 alleviates CCL4-induced hepatic fibrosis in mice by enhancing endoplasmic reticulum stress. Am J Med Sci 2023; 366:449-457. [PMID: 37716602 DOI: 10.1016/j.amjms.2023.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 04/28/2023] [Accepted: 08/01/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Hepatic fibrosis is a common pathological process in many chronic liver diseases. TXNDC5 has been shown to be involved in the progression of renal and pulmonary fibrosis. However, the role of TXNDC5 in hepatic fibrosis is unknown. The purpose of this study is to explore the role and mechanism of TXNDC5 in hepatic fibrosis. METHODS We used TGF-β1 to activate LX-2 cells and reduced TXNDC5 expression by short hairpin RNA. Cell viability was assessed by CCK-8 assay. Cell apoptosis was analyzed by flow cytometry or Tunel assay. The fibrosis-related proteins and endoplasmic reticulum stress (ERs)-related proteins were measured by western blot. ELISA was performed to detect COL1AL levels and MMP2/9 activities in cell medium. A mouse model of hepatic fibrosis was constructed by intraperitoneal injection of CCL4. HE and Masson staining were performed to assess fibrosis in mouse liver tissue. RESULTS The results show that TXNDC5 was up-regulated in activated LX-2 cells and CCL4-induced hepatic fibrosis mice. Knockdown of TXNDC5 inhibited the viability of activated LX-2 cells and the production of collagen COL1A1. Knockdown of TXNDC5 promoted apoptosis of activated LX-2 cells. Mechanically, inhibition of TXNDC5 enhanced ERs, and the ERs inhibitor 4-Phenylbutyric acid (4-PBA) reversed the effect of TXNDC5 on activated LX-2 cells. More importantly, knockdown of TXNDC5 alleviated CCl4-induced hepatic fibrosis in mice. CONCLUSIONS Knockdown of TXNDC5 may reduce hepatic fibrosis by regulating ERs, and targeting TXNDC5 seems to be a candidate treatment for hepatic fibrosis.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Health Management, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jieying Zeng
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huaiyu Wu
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Hongtian Tian
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Di Song
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Weiqing Wu
- Department of Health Management, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Fajin Dong
- Department of Ultrasound, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Pala R, Barui AK, Mohieldin AM, Zhou J, Nauli SM. Folate conjugated nanomedicines for selective inhibition of mTOR signaling in polycystic kidneys at clinically relevant doses. Biomaterials 2023; 302:122329. [PMID: 37722182 PMCID: PMC10836200 DOI: 10.1016/j.biomaterials.2023.122329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent). The NPs increased the efficacy, potency and tolerability of rapamycin resulting in an increased survival rate and improved kidney function by decreasing side effects and reducing biodistribution to other organs in PKD mice. The daily administration of rapamycin-alone (1 mg/kg/day) could now be achieved with a weekly injection of NPs containing rapamycin (379 μg/kg/week). This polycystic kidney-targeting nanotechnology, for the first time, integrated advances in the use of 1) nanoparticles as a delivery cargo, 2) folate for targeting, 3) near-infrared Cy5-fluorophore for in vitro and in vivo live imaging, 4) rapamycin as a pharmacological therapy, and 5) TEMPO as a combinational therapy. The slow sustained-release of rapamycin by polycystic kidney-targeting NPs demonstrates a new era of nanomedicine in treatment for chronic kidney diseases at clinically relevant doses.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| | - Ayan K Barui
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Ashraf M Mohieldin
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA
| | - Jing Zhou
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Surya M Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA, 92618, USA; Marlin Biopharma, Irvine, CA, 92620, USA.
| |
Collapse
|
14
|
Bai Y, Tian M, He P, Zhang Y, Chen J, Zhao Z, Lan J, Zhang B. LMCD1 is involved in tubulointerstitial inflammation in the early phase of renal fibrosis by promoting NFATc1-mediated NLRP3 activation. Int Immunopharmacol 2023; 121:110362. [PMID: 37311356 DOI: 10.1016/j.intimp.2023.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023]
Abstract
Prolonged renal inflammation contributes to fibrosis, which may eventually lead to irreversible chronic kidney disease. Our previous work demonstrated that LIM and cysteine-rich domain 1 (LMCD1) are associated with renal interstitial fibrosis in a 21-day unilateral ureteral obstruction (21UUO) mouse model. Interestingly, based on the gene expression omnibus database, we found that LMCD1 is enhanced in the mouse kidney as early as 5, 7, and 10 days following unilateral ureteral obstruction (UUO), suggesting that LMCD1 may exert its function in an earlier phase. To validate this conjecture, a 7UUO mouse model and a tumor necrosis factor-α (TNF-α)-stimulated HK-2 cell model were established, followed by injection of adenovirus vectors carrying short hairpin RNA targeting LMCD1. LMCD1 silencing ameliorated renal collagen deposition and reduced the expression of profibrotic factors in the 7UUO model. LMCD1 silencing alleviated tubulointerstitial inflammation by mitigating F4/80+ cell infiltration, monocyte chemoattractant protein-1 release and nuclear factor-κB activation. In addition, LMCD1 silencing suppressed NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and nuclear factor of activated T cells 1 (NFATc1) nuclear translocation. Consistent results were obtained in TNF-α-stimulated HK-2 cells in vitro. Mechanistically, the transcriptional coactivator LMCD1 cooperates with the transcription factor NFATc1 to increase NLRP3 expression. Collectively, these findings suggest that LMCD1 participates in tubulointerstitial inflammation via an LMCD1-NFATc1/NLRP3 mechanism. LMCD1 may therefore become a potential target for the control of renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yu Bai
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Mi Tian
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Ping He
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Yongzhe Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jie Chen
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Zixia Zhao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Jingsi Lan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, People's Republic of China.
| |
Collapse
|
15
|
Mapuskar KA, Vasquez-Martinez G, Mayoral-Andrade G, Tomanek-Chalkley A, Zepeda-Orozco D, Allen BG. Mitochondrial Oxidative Metabolism: An Emerging Therapeutic Target to Improve CKD Outcomes. Biomedicines 2023; 11:1573. [PMID: 37371668 DOI: 10.3390/biomedicines11061573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic kidney disease (CKD) predisposes one toward end-stage renal disease (ESRD) and its associated morbidity and mortality. Significant metabolic perturbations in conjunction with alterations in redox status during CKD may induce increased production of reactive oxygen species (ROS), including superoxide (O2●-) and hydrogen peroxide (H2O2). Increased O2●- and H2O2 may contribute to the overall progression of renal injury as well as catalyze the onset of comorbidities. In this review, we discuss the role of mitochondrial oxidative metabolism in the pathology of CKD and the recent developments in treating CKD progression specifically targeted to the mitochondria. Recently published results from a Phase 2b clinical trial by our group as well as recently released data from a ROMAN: Phase 3 trial (NCT03689712) suggest avasopasem manganese (AVA) may protect kidneys from cisplatin-induced CKD. Several antioxidants are under investigation to protect normal tissues from cancer-therapy-associated injury. Although many of these antioxidants demonstrate efficacy in pre-clinical models, clinically relevant novel compounds that reduce the severity of AKI and delay the progression to CKD are needed to reduce the burden of kidney disease. In this review, we focus on the various metabolic pathways in the kidney, discuss the role of mitochondrial metabolism in kidney disease, and the general involvement of mitochondrial oxidative metabolism in CKD progression. Furthermore, we present up-to-date literature on utilizing targets of mitochondrial metabolism to delay the pathology of CKD in pre-clinical and clinical models. Finally, we discuss the current clinical trials that target the mitochondria that could potentially be instrumental in advancing the clinical exploration and prevention of CKD.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Gabriela Vasquez-Martinez
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Gabriel Mayoral-Andrade
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ann Tomanek-Chalkley
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, College of Medicine, Columbus, OH 43210, USA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
16
|
He H, Zhou Y, Liu L, Cui J, Pei Y, Cao J, Hao X, Guo L, Wang H, Liu H. Bioinformatics analysis reveals lipid metabolism may play an important role in the SiO 2-stimulated rat model. Cell Signal 2023:110716. [PMID: 37224986 DOI: 10.1016/j.cellsig.2023.110716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Silicosis is a progressive and irreversible common occupational disease caused by long-term inhalation of a large amount of free silica dust. Its pathogenesis is complex, and the existing prevention and treatment methods can not effectively improve silicosis injury. To uncover potential differential genes in silicosis, SiO2-stimulated rats and their control original transcriptomic data sets GSE49144, GSE32147 and GSE30178 were downloaded for further bioinformatics analysis. We used R packages to extract and standardize transcriptome profiles, then screened differential genes, and enriched GO and KEGG pathways through clusterProfiler packages. In addition, we investigated the role of lipid metabolism in the progression of silicosis by qRT-PCR validation and transfection with si-CD36. A total of 426 differential genes were identified in this study. Based on GO and KEGG enrichment analysis, it was found that lipid and atherosclerosis were significantly enriched. qRT-PCR was used to detect the relative expression level of differential genes in this signaling pathway of silicosis rat models. mRNA levels of Abcg1, Il1b, Sod2, Cyba, Cd14, Cxcl2, Ccl3, Cxcl1, Ccl2 and CD36 increased, mRNA levels of Ccl5, Cybb and Il18 decreased. In addition, at the cellular level, SiO2-stimulated lead to lipid metabolism disorder in NR8383, and silencing CD36 inhibited SiO2-induced lipid metabolism disorder. These results indicate that lipid metabolism plays an important role in the progression of silicosis, and the genes and pathways reported in this study may provide new ideas for the pathogenesis of silicosis.
Collapse
Affiliation(s)
- Hailan He
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yuhui Zhou
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Lekai Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jie Cui
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yongchao Pei
- School of Clinical Medicine, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jiahui Cao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Xiaohui Hao
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Lingli Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Hongli Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Heliang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China; Hebei Key Laboratory of Organ Fibrosis, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| |
Collapse
|
17
|
Fairley LH, Das S, Dharwal V, Amorim N, Hegarty KJ, Wadhwa R, Mounika G, Hansbro PM. Mitochondria-Targeted Antioxidants as a Therapeutic Strategy for Chronic Obstructive Pulmonary Disease. Antioxidants (Basel) 2023; 12:973. [PMID: 37107348 PMCID: PMC10135688 DOI: 10.3390/antiox12040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is a major hallmark of COPD, contributing to inflammatory signaling, corticosteroid resistance, DNA damage, and accelerated lung aging and cellular senescence. Evidence suggests that oxidative damage is not solely due to exogenous exposure to inhaled irritants, but also endogenous sources of oxidants in the form of reactive oxygen species (ROS). Mitochondria, the major producers of ROS, exhibit impaired structure and function in COPD, resulting in reduced oxidative capacity and excessive ROS production. Antioxidants have been shown to protect against ROS-induced oxidative damage in COPD, by reducing ROS levels, reducing inflammation, and protecting against the development of emphysema. However, currently available antioxidants are not routinely used in the management of COPD, suggesting the need for more effective antioxidant agents. In recent years, a number of mitochondria-targeted antioxidant (MTA) compounds have been developed that are capable of crossing the mitochondria lipid bilayer, offering a more targeted approach to reducing ROS at its source. In particular, MTAs have been shown to illicit greater protective effects compared to non-targeted, cellular antioxidants by further reducing apoptosis and offering greater protection against mtDNA damage, suggesting they are promising therapeutic agents for the treatment of COPD. Here, we review evidence for the therapeutic potential of MTAs as a treatment for chronic lung disease and discuss current challenges and future directions.
Collapse
Affiliation(s)
- Lauren H. Fairley
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Shatarupa Das
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Vivek Dharwal
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Karl J. Hegarty
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Guntipally Mounika
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
18
|
Srivastava A, Tomar B, Sharma D, Rath SK. Mitochondrial dysfunction and oxidative stress: Role in chronic kidney disease. Life Sci 2023; 319:121432. [PMID: 36706833 DOI: 10.1016/j.lfs.2023.121432] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
Chronic kidney disease (CKD) is associated with a variety of distinct disease processes that permanently change the function and structure of the kidney across months or years. CKD is characterized as a glomerular filtration defect or proteinuria that lasts longer than three months. In most instances, CKD leads to end-stage kidney disease (ESKD), necessitating kidney transplantation. Mitochondrial dysfunction is a typical response to damage in CKD patients. Despite the abundance of mitochondria in the kidneys, variations in mitochondrial morphological and functional characteristics have been associated with kidney inflammatory responses and injury during CKD. Despite these variations, CKD is frequently used to define some classic signs of mitochondrial dysfunction, including altered mitochondrial shape and remodeling, increased mitochondrial oxidative stress, and a marked decline in mitochondrial biogenesis and ATP generation. With a focus on the most significant developments and novel understandings of the involvement of mitochondrial remodeling in the course of CKD, this article offers a summary of the most recent advances in the sources of procured mitochondrial dysfunction in the advancement of CKD. Understanding mitochondrial biology and function is crucial for developing viable treatment options for CKD.
Collapse
Affiliation(s)
- Anjali Srivastava
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bhawna Tomar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divyansh Sharma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Srikanta Kumar Rath
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
19
|
Buonvicino D, Ranieri G, Guasti D, Pistolesi A, La Rocca AI, Rapizzi E, Chiarugi A. Early derangement of axonal mitochondria occurs in a mouse model of progressive but not relapsing-remitting multiple sclerosis. Neurobiol Dis 2023; 178:106015. [PMID: 36702320 DOI: 10.1016/j.nbd.2023.106015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Derangement of axonal mitochondrial bioenergetics occurs during progressive multiple sclerosis (PMS). However, whether this is a delayed epiphenomenon or an early causative event of disease progression waits to be understood. Answering this question might further our knowledge of mechanisms underlying neurobiology of PMS and related therapy. METHODS MOG35-55-immunized NOD and PLP139-151-immunized SJL female mice were adopted as models of progressive or relapsing-remitting experimental autoimmune encephalomyelitis (EAE), respectively. Multiple parameters of mitochondrial homeostasis were analyzed in the mouse spinal cord during the early asymptomatic stage, also evaluating the effects of scavenging mitochondrial reactive oxygen species with Mito-TEMPO. RESULTS Almost identical lumbar spinal cord immune infiltrates consisting of Th1 cells and neutrophils without B and Th17 lymphocytes occurred early upon immunization in both mouse strains. Still, only NOD mice showed axon-restricted dysregulation of mitochondrial homeostasis, with reduced mtDNA contents and increased cristae area. Increased expression of mitochondrial respiratory complex subunits Nd2, Cox1, Atp5d, Sdha also exclusively occurred in lumbar spinal cord of NOD and not SJL mice. Accordingly, in this region genes regulating mitochondrial morphology (Opa1, Mfn1, Mfn2 and Atp5j2) and mitochondriogenesis (Pgc1α, Foxo, Hif-1α and Nrf2) were induced early upon immunization. A reduced extent of mitochondrial derangement occurred in the thoracic spinal cord. Notably, the mitochondrial radical scavenger Mito-TEMPO reduced H2O2 content and prevented both mtDNA depletion and cristae remodeling, having no effects on dysregulation of mitochondrial transcriptome. DISCUSSION We provide here the first evidence that axonal-restricted derangement of mitochondrial homeostasis already occurs during the asymptomatic state exclusively in a mouse model of PMS. Data further our understanding of mechanisms related to EAE progression, and point to very early axonal mitochondrial dysfunction as central to the neuropathogenesis of MS evolution.
Collapse
Affiliation(s)
- Daniela Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy.
| | - Giuseppe Ranieri
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Guasti
- Imaging Platform, Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandra Pistolesi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Antonino Iurato La Rocca
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health (NEUROFARBA),University of Florence, Florence, Italy
| | - Elena Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Chiarugi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
20
|
Melis N, Rubera I, Giraud S, Cougnon M, Duranton C, Poet M, Jarretou G, Thuillier R, Counillon L, Hauet T, Pellerin L, Tauc M, Pisani DF. Renal Ischemia Tolerance Mediated by eIF5A Hypusination Inhibition Is Regulated by a Specific Modulation of the Endoplasmic Reticulum Stress. Cells 2023; 12:cells12030409. [PMID: 36766751 PMCID: PMC9913814 DOI: 10.3390/cells12030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Through kidney transplantation, ischemia/reperfusion is known to induce tissular injury due to cell energy shortage, oxidative stress, and endoplasmic reticulum (ER) stress. ER stress stems from an accumulation of unfolded or misfolded proteins in the lumen of ER, resulting in the unfolded protein response (UPR). Adaptive UPR pathways can either restore protein homeostasis or can turn into a stress pathway leading to apoptosis. We have demonstrated that N1-guanyl-1,7-diamineoheptane (GC7), a specific inhibitor of eukaryotic Initiation Factor 5A (eIF5A) hypusination, confers an ischemic protection of kidney cells by tuning their metabolism and decreasing oxidative stress, but its role on ER stress was unknown. To explore this, we used kidney cells pretreated with GC7 and submitted to either warm or cold anoxia. GC7 pretreatment promoted cell survival in an anoxic environment concomitantly to an increase in xbp1 splicing and BiP level while eiF2α phosphorylation and ATF6 nuclear level decreased. These demonstrated a specific modulation of UPR pathways. Interestingly, the pharmacological inhibition of xbp1 splicing reversed the protective effect of GC7 against anoxia. Our results demonstrated that eIF5A hypusination inhibition modulates distinctive UPR pathways, a crucial mechanism for the protection against anoxia/reoxygenation.
Collapse
Affiliation(s)
- Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Isabelle Rubera
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Sebastien Giraud
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Marc Cougnon
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Christophe Duranton
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Mallorie Poet
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Gisèle Jarretou
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Raphaël Thuillier
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Laurent Counillon
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Thierry Hauet
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Luc Pellerin
- INSERM U1313, IRMETIST, Université de Poitiers et CHU de Poitiers, 86000 Poitiers, France
| | - Michel Tauc
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
| | - Didier F. Pisani
- Université Côte d’Azur, CNRS, LP2M, 06108 Nice, France
- Laboratories of Excellence Ion Channel Science and Therapeutics, 06103 Nice, France
- Correspondence:
| |
Collapse
|
21
|
Zidni I, Lee HB, Yoon JH, Park JY, Jang HS, Co YS, Pratiwi DY, Lim HK. Intermediate-Term Storage of Spotted Halibut ( Verasper variegatus) Sperm: Effects of Storage Methods, Extenders Supplemented with Antibiotics and Antioxidants on Sperm Quality. Antioxidants (Basel) 2023; 12:122. [PMID: 36670984 PMCID: PMC9854475 DOI: 10.3390/antiox12010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Intermediate-term preservation of sperm assists the reproductive management of fish spermatozoa; however, no information is available on sperm of the spotted halibut, Verasper variegatus. We aimed to identify the optimum diluents, temperatures, dilution ratios, antibiotics, and antioxidants for sperm motility and cell viability. The diluents evaluated were marine fish Ringer’s solution (MFRS), Stein’s solution, 300 mM sucrose, and 300 mM glucose (diluted 1:1 [sperm: diluent], 1:2, 1:4, and 1:10 and stored at 0, 2, 4, and 6 °C). Neomycin and gentamycin (100, 200, 400, and 800 mg/L) and antioxidants (Mito-TEMPO [0, 25, 50, 75, 100, 125, 150, 175, and 200 µM], reduced glutathione [0, 2, 4, 6, 8, and 10 mM], and trehalose [0, 50, 100, 150, 200, and 250 mM]) were assessed in terms of sperm preservation. The most effective condition for cold storage of spotted halibut sperm was Stein’s solution at a dilution ratio of 1:4 at 2 °C, with a combination of neomycin 800 mg/L and 250 mM trehalose that showed spermatozoa motility of > 43% after 60 days. These storage conditions will be valuable for spotted halibut hatcheries.
Collapse
Affiliation(s)
- Irfan Zidni
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
- Department of Fisheries, The Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang Regency 45363, Indonesia
| | - Hyo-Bin Lee
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
| | - Ji-Hye Yoon
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
| | - Jung-Yeol Park
- Department of Aquaculture and Aquatic Science, Kunsan National University, 558 Daehak-ro, Gunsan 54150, Republic of Korea
| | - Hyun-Seok Jang
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
| | - Youn-Su Co
- Department of Fishery Biology, Pukyong National University, Busan 48512, Republic of Korea
| | - Dian Yuni Pratiwi
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
- Department of Fisheries, The Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Sumedang Regency 45363, Indonesia
| | - Han-Kyu Lim
- Department of Biomedicine, Health & Life Convergence Science, BK21 Four, Mokpo National University, Muan 58554, Republic of Korea
- Department of Marine and Fisheries Resources, Mokpo National University, Muan 58554, Republic of Korea
| |
Collapse
|
22
|
Akkermansia muciniphila ameliorates chronic kidney disease interstitial fibrosis via the gut-renal axis. Microb Pathog 2023; 174:105891. [PMID: 36427659 DOI: 10.1016/j.micpath.2022.105891] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022]
Abstract
CONTEXT Chronic kidney disease (CKD) affects approximately 10% of the global population. The abundance of Akkermansia muciniphila (AKK) is significantly reduced in CKD patients. OBJECTIVE This study investigated the effects of AKK bacteria on kidney damage and the renal interstitium in rats with CKD. MATERIALS AND METHODS CKD model 5/6 nephrectomy rats were used. CKD rats were supplemented with AKK (2 × 108 cfu/0.2 mL) for 8 weeks. RESULTS AKK administration significantly suppressed epithelial-mesenchymal transition (EMT), and high-throughput 16S rRNA pyrosequencing showed that AKK supplementation restored the disordered intestinal microecology in CKD rats. AKK also enhanced the intestinal mucosal barrier function. AKK may regulate the intestinal microecology and reduce renal interstitial fibrosis by enhancing the abundance of probiotics and reducing damage to the intestinal mucosal barrier. CONCLUSION The results suggest that AKK administration could be a novel therapeutic strategy for treating renal fibrosis and CKD.
Collapse
|
23
|
Oxidative Stress and Mitochondrial Dysfunction in Chronic Kidney Disease. Cells 2022; 12:cells12010088. [PMID: 36611880 PMCID: PMC9818928 DOI: 10.3390/cells12010088] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The kidney contains many mitochondria that generate ATP to provide energy for cellular processes. Oxidative stress injury can be caused by impaired mitochondria with excessive levels of reactive oxygen species. Accumulating evidence has indicated a relationship between oxidative stress and kidney diseases, and revealed new insights into mitochondria-targeted therapeutics for renal injury. Improving mitochondrial homeostasis, increasing mitochondrial biogenesis, and balancing mitochondrial turnover has the potential to protect renal function against oxidative stress. Although there are some reviews that addressed this issue, the articles summarizing the relationship between mitochondria-targeted effects and the risk factors of renal failure are still few. In this review, we integrate recent studies on oxidative stress and mitochondrial function in kidney diseases, especially chronic kidney disease. We organized the causes and risk factors of oxidative stress in the kidneys based in their mitochondria-targeted effects. This review also listed the possible candidates for clinical therapeutics of kidney diseases by modulating mitochondrial function.
Collapse
|
24
|
Chen DQ, Chen L, Guo Y, Wu XQ, Zhao TT, Zhao HL, Zhang HJ, Yan MH, Zhang GQ, Li P. Poricoic acid A suppresses renal fibroblast activation and interstitial fibrosis in UUO rats via upregulating Sirt3 and promoting β-catenin K49 deacetylation. Acta Pharmacol Sin 2022; 44:1038-1050. [PMID: 36470978 PMCID: PMC10104829 DOI: 10.1038/s41401-022-01026-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/06/2022] [Indexed: 12/12/2022] Open
Abstract
AbstractRenal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg−1·d−1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-β1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-β1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated β-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of β-catenin was responsible for Sirt3-mediated β-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating β-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing β-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.
Collapse
|
25
|
Yao L, Zhao R, He S, Feng Q, Qiao Y, Wang P, Li J. Effects of salvianolic acid A and salvianolic acid B in renal interstitial fibrosis via PDGF-C/PDGFR-α signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154414. [PMID: 36057144 DOI: 10.1016/j.phymed.2022.154414] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is the main pathological feature of end-stage renal disease (ESRD) caused by various chronic kidney diseases (CKD), and is closely related to renal dysfunction and patient prognosis. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B), isolated from traditional Chinese medicine Salviae miltiorrhizae, have been confirmed to have anti-fibrotic effects on liver, cardiac and kidney. However, the precise molecular mechanism underlying the nephroprotective effects of Sal A and Sal B, and whether there is a difference between the two in RIF are still unclear. PURPOSE This study investigated the pharmacological effects of Sal A and Sal B in RIF and explore the underlying mechanisms by in vivo and in vitro experiments. METHODS The nephroprotective effects of Sal A, Sal B and Sal A+B were evaluated by assessing the parameters related to kidney function such as renal histology, renal function, urinary protein NAG, urinary β2 microglobulin. In addition, RIF-related markers such as CTCF and Par3 were also detected. Thereafter, the related protein or gene levels of PDGF-C/PDGFR-α signaling pathways, apoptosis and endoplasmic reticulum stress (ERS) were determined by western blot, real-time PCR, flow cytometry or immunofluorescence staining. RESULTS In vivo, the results showed that Sal A, Sal B and Sal A+B partially improved kidney dysfunction, increased the expression of Par-3 and reduced the expression of CTGF, PDGF-C and PDGFR-α. In vitro, the results also showed that Sal A, Sal B and Sal A+B reversed apoptosis and ERS in HSA-induced HK-2 cells via regulating PDGF-C/PDGFR-α signaling pathway. CONCLUSION This article revealed a novel mechanism linking PDGF-C/PDGFR-α signaling pathway to RIF and suggested that Sal A, Sal B and Sal A+B were considered as potential therapeutic agents for the amelioration of RIF.
Collapse
Affiliation(s)
- Lan Yao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China; Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Renjie Zhao
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China; Department of Nephrology, the Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Shiyang He
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjin Qiao
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China
| | - Pei Wang
- Blood Purification Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, China.
| | - Jun Li
- Basic and Applied Laboratory of Traditional Chinese Medicine, the Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519000, China; Key Laboratory of Pharmacology, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
26
|
Wang J, Li J, Zhang X, Zhang M, Hu X, Yin H. Molecular mechanisms of histone deacetylases and inhibitors in renal fibrosis progression. Front Mol Biosci 2022; 9:986405. [PMID: 36148005 PMCID: PMC9485629 DOI: 10.3389/fmolb.2022.986405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis is a common progressive manifestation of chronic kidney disease. This phenomenon of self-repair in response to kidney damage seriously affects the normal filtration function of the kidney. Yet, there are no specific treatments for the condition, which marks fibrosis as an irreversible pathological sequela. As such, there is a pressing need to improve our understanding of how fibrosis develops at the cellular and molecular levels and explore specific targeted therapies for these pathogenic mechanisms. It is now generally accepted that renal fibrosis is a pathological transition mediated by extracellular matrix (ECM) deposition, abnormal activation of myofibroblasts, and epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells under the regulation of TGF-β. Histone deacetylases (HDACs) appear to play an essential role in promoting renal fibrosis through non-histone epigenetic modifications. In this review, we summarize the mechanisms of renal fibrosis and the signaling pathways that might be involved in HDACs in renal fibrosis, and the specific mechanisms of action of various HDAC inhibitors (HDACi) in the anti-fibrotic process to elucidate HDACi as a novel therapeutic tool to slow down the progression of renal fibrosis.
Collapse
|
27
|
Li A, Gao M, Liu B, Qin Y, Chen L, Liu H, Gong G. Inhibition of mitochondrial superoxide promotes the development of hiPS-CMs during differentiation. Free Radic Biol Med 2022; 190:94-104. [PMID: 35952922 DOI: 10.1016/j.freeradbiomed.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
Abstract
The redox state is a crucial determinant of the maturation transition of cardiomyocytes in vivo. Mitochondria, the primary site of superoxide generation, are very sensitive to various stimulations, including oxygen and nutrient supply. How mitochondrial superoxide affects the differentiation and development of induced pluripotent stem cell (iPSC)-derived cardiac myocytes (iPS-CMs) is not completely clear. To address the questions, we monitored the superoxide level during the differentiation and development of human iPS-CMs using MitoSOX. Mitochondria-targeted antioxidant Mito-TEMPO was used to treat hiPS-CMs in the differentiation period. We found that mitochondrial superoxide generation was dramatically enhanced during the differentiation and early development of iPS-CMs. Increased oxidative stress induced oxidative damage to macromolecules in iPS-CMs, such as lipids, proteins, and DNA. Mito-TEMPO protected mitochondrial functions, alleviated oxidative damage to lipids, proteins, and DNA and improved cellular structure and fatty acid utilization. Our findings confirmed that iPS-CM suffered from oxidative stress during differentiation and that mitochondrial-targeted antioxidant is beneficial for the maturation of iPS-CMs.
Collapse
Affiliation(s)
- Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
28
|
Liu B, Wang D, Cao Y, Wu J, Zhou Y, Wu W, Wu J, Zhou J, Qiu J. MitoTEMPO protects against podocyte injury by inhibiting NLRP3 inflammasome via PINK1/Parkin pathway-mediated mitophagy. Eur J Pharmacol 2022; 929:175136. [DOI: 10.1016/j.ejphar.2022.175136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
|
29
|
Hepatoprotective Effect of Mitochondria-Targeted Antioxidant Mito-TEMPO against Lipopolysaccharide-Induced Liver Injury in Mouse. Mediators Inflamm 2022; 2022:6394199. [PMID: 35769207 PMCID: PMC9236847 DOI: 10.1155/2022/6394199] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 12/12/2022] Open
Abstract
The liver is vulnerable to sepsis, and sepsis-induced liver injury is closely associated with poor survival of sepsis patients. Studies have found that the overproduction of reactive oxygen species (ROS) is the major cause of oxidative stress, which is the main pathogenic factor for the progression of septic liver injury. The mitochondria are a major source of ROS. Mito-TEMPO is a mitochondria-specific superoxide scavenger. The aim of this study was to investigate the effect of Mito-TEMPO on lipopolysaccharide- (LPS-) induced sepsis mice. We found that Mito-TEMPO pretreatment inhibited inflammation, attenuated LPS-induced liver injury, and enhanced the antioxidative capability in septic mice, as evidenced by the decreased MDA content and the increased SOD activity. In addition, Mito-TEMPO restored mitochondrial size and improved mitochondrial function. Finally, we found that the levels of pyroptosis-related proteins in the liver of LPS-treated mice were lower after pretreatment with Mito-TEMPO. The mechanisms could be related to Mito-TEMPO enhanced antioxidative capability and improved mitochondrial function, which reflects the ability to neutralize ROS.
Collapse
|
30
|
Miglioranza Scavuzzi B, Holoshitz J. Endoplasmic Reticulum Stress, Oxidative Stress, and Rheumatic Diseases. Antioxidants (Basel) 2022; 11:1306. [PMID: 35883795 PMCID: PMC9312221 DOI: 10.3390/antiox11071306] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND The endoplasmic reticulum (ER) is a multi-functional organelle responsible for cellular homeostasis, protein synthesis, folding and secretion. It has been increasingly recognized that the loss of ER homeostasis plays a central role in the development of autoimmune inflammatory disorders, such as rheumatic diseases. Purpose/Main contents: Here, we review current knowledge of the contribution of ER stress to the pathogenesis of rheumatic diseases, with a focus on rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We also review the interplay between protein folding and formation of reactive oxygen species (ROS), where ER stress induces oxidative stress (OS), which further aggravates the accumulation of misfolded proteins and oxidation, in a vicious cycle. Intervention studies targeting ER stress and oxidative stress in the context of rheumatic diseases are also reviewed. CONCLUSIONS Loss of ER homeostasis is a significant factor in the pathogeneses of RA and SLE. Targeting ER stress, unfolded protein response (UPR) pathways and oxidative stress in these diseases both in vitro and in animal models have shown promising results and deserve further investigation.
Collapse
Affiliation(s)
| | - Joseph Holoshitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
31
|
Ayaz M, Anwar F, Saleem U, Shahzadi I, Ahmad B, Mir A, Ismail T. Parkinsonism Attenuation by Antihistamines via Downregulating the Oxidative Stress, Histamine, and Inflammation. ACS OMEGA 2022; 7:14772-14783. [PMID: 35557705 PMCID: PMC9088957 DOI: 10.1021/acsomega.2c00145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/07/2022] [Indexed: 05/17/2023]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder of the motor activity of the brain, regulated by dopaminergic neurons of substantia nigra, resulting in an increased density of histaminergic fibers. This study was aimed to evaluate the effects of H1 antagonist's ebastine and levocetirizine in PD per se and in combination. Animals were divided into 9 groups (n = 10). Group 1 received carboxymethyl cellulose CMC (1 mL/kg). Group II was treated with haloperidol (1 mg/kg) (diseased group). Group III was treated with levodopa/carbidopa (levo 20 mg/kg). Groups IV and V were treated with ebastine at dose levels of 2 and 4 mg/kg, respectively. Groups VI and VII were treated with levocetirizine at dose levels of 0.5 and 1 mg/kg, respectively. Group VIII was treated with ebastine (4 mg/kg) + levo (20 mg/kg) in combination. Group IX was treated with levocetirizine (1 mg/kg) + levo (20 mg/kg). PD was induced with haloperidol (1 mg/kg iv, once daily for 23 days) for a duration of 30 min. Behavioral tests like rotarod, block and triple horizontal bars, actophotometer, and open field were performed. Biochemical markers of oxidative stress, i.e., SOD, CAT, GSH, MDA, dopamine, serotonin, and nor-adrenaline and nitrite, were determined. Histamine, mRNA expression of α-synuclein, and TNF-α level in the serum and brain of mice were analyzed. Endogenous biochemical markers were increased except mRNA expression of α-synuclein, which was reduced. In combination therapy with the standard drug, ebastine (4 mg/kg) significantly improved the cataleptic state and dopamine levels, but no significant difference in the renal and liver functioning tests was observed. This study concluded that ebastine (4 mg/kg) might work in the treatment of PD as it improves the cataleptic state in haloperidol-induced catalepsy.
Collapse
Affiliation(s)
- Maira Ayaz
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Fareeha Anwar
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
- . Tel: +92-3338883251
| | - Uzma Saleem
- Faculty
of Pharmaceutical Sciences, Government College
University, Faisalabad 38000, Pakistan
| | - Irum Shahzadi
- Department
of Biotechnology, COMSAT University, Abbottabad 22060, Pakistan
| | - Bashir Ahmad
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Ali Mir
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Lahore Campus, Lahore 54000, Pakistan
| | - Tariq Ismail
- Department
of Pharmacy, COMSAT University, Abbottabad 22060, Pakistan
| |
Collapse
|
32
|
Liao C, Chen G, Yang Q, Liu Y, Zhou T. Potential Therapeutic Effect and Mechanisms of Mesenchymal Stem Cells-Extracellular Vesicles in Renal Fibrosis. Front Cell Dev Biol 2022; 10:824752. [PMID: 35359447 PMCID: PMC8961868 DOI: 10.3389/fcell.2022.824752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Renal fibrosis (RF) is central pathological pathway for kidney diseases, with the main pathological features being the aberrant accumulation of myofibroblasts that produce accumulation of extracellular matrix in the renal interstitium and glomeruli. Acute kidney injury (AKI) and chronic kidney disease (CKD) are associated with RF. Current treatment strategies for RF are ineffective. Mesenchymal stem cells (MSCs) have been found to be able to treat organ fibrosis including RF, but they have some safety problems, such as cell rejection, carcinogenicity, and virus contamination, which limit the application of MSCs. However, current studies have found that MSCs may exert their therapeutic effect by releasing extracellular vesicles (EVs). MSC-EVs can transfer functional proteins and genetic material directly to the recipient cells. As non-cell membrane structures, MSC-EVs have the advantages of low immunogenicity, easy preservation, and artificial modification, but do not have the characteristics of self-replication and ectopic differentiation. Therefore, EVs are safer than MSCs for treatment, but might be less effective than MSCs. Recent studies have also found that MSC-EVs can improve renal function and pathological changes of RF. Thus, this review summarizes the therapeutic effect of MSC-EVs on RF and the mechanisms that have been discovered so far, so as to provide a theoretical basis for the further study of the role of MSC-EVs in treating RF diseases.
Collapse
Affiliation(s)
- Chunling Liao
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
33
|
Bai C, Zhu Y, Dong Q, Zhang Y. Chronic intermittent hypoxia induces the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome. Bioengineered 2022; 13:7528-7540. [PMID: 35263214 PMCID: PMC8973594 DOI: 10.1080/21655979.2022.2047394] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a respiratory disorder and chronic intermittent hypoxia (CIH) is an important pathological characteristic of OSAS. Injuries on renal tubular epithelial cells were observed under the condition of CIH. Pyroptosis is a programmed mode of cell death following cell apoptosis and cell necrosis, which is mediated by NLRP3 signaling. The present study aims to investigate the effects of CIH on the pyroptosis of renal tubular epithelial cells and the underlying mechanism. Firstly, CIH was induced in two renal tubular epithelial cell lines, HK-2 cells and TCMK-1 cells. As the aggravation of hypoxia, an increasing trend of elevated apoptotic rate was observed in HK-2 cells and TCMK-1 cells, accompanied by the excessive release of ROS and LDH, and upregulation of NLRP3. Subsequently, the CIH model was established on rats. The pathological analysis results indicated that in CIH rats, the glomerular bottom membrane and mesangium were slightly thickened and edema was observed in the renal tubule epithelium. More serious injury was observed in the moderate intermittent hypoxia group. The expression level of IL-1β and IL-18 was promoted as the aggravation of hypoxia, accompanied by the elevated production of LDH and ROS. The expression level of cleaved Caspase-1, Caspase-1, GSDMD, TLR4, MyD88, NF-κB, p-NF-κB, and NLRP3 was found significantly upregulated as the aggravation of hypoxia. Lastly, the pathological changes in rats induced by CIH were dramatically abolished by MCC950, a specific inhibitor of NLRP3. Collectively, CIH triggered the pyroptosis of renal tubular epithelial cells by activating the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Chunyan Bai
- Division of Geriatrics, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yingfei Zhu
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Qiaoliang Dong
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| | - Yuwei Zhang
- Division of International Medical Services, Xiangya Second Hospital of Central South University, Changsha City, Hunan Province, China
| |
Collapse
|
34
|
Chen JW, Ma PW, Yuan H, Wang WL, Lu PH, Ding XR, Lun YQ, Yang Q, Lu LJ. mito-TEMPO Attenuates Oxidative Stress and Mitochondrial Dysfunction in Noise-Induced Hearing Loss via Maintaining TFAM-mtDNA Interaction and Mitochondrial Biogenesis. Front Cell Neurosci 2022; 16:803718. [PMID: 35210991 PMCID: PMC8861273 DOI: 10.3389/fncel.2022.803718] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/14/2022] [Indexed: 12/25/2022] Open
Abstract
The excessive generation of reactive oxygen species (ROS) and mitochondrial damage have been widely reported in noise-induced hearing loss (NIHL). However, the specific mechanism of noise-induced mitochondrial damage remains largely unclear. In this study, we showed that acoustic trauma caused oxidative damage to mitochondrial DNA (mtDNA), leading to the reduction of mtDNA content, mitochondrial gene expression and ATP level in rat cochleae. The expression level and mtDNA-binding function of mitochondrial transcription factor A (TFAM) were impaired following acoustic trauma without affecting the upstream PGC-1α and NRF-1. The mitochondria-target antioxidant mito-TEMPO (MT) was demonstrated to enter the inner ear after the systemic administration. MT treatment significantly alleviated noise-induced auditory threshold shifts 3d and 14d after noise exposure. Furthermore, MT significantly reduced outer hair cell (OHC) loss, cochlear ribbon synapse loss, and auditory nerve fiber (ANF) degeneration after the noise exposure. In addition, we found that MT treatment effectively attenuated noise-induced cochlear oxidative stress and mtDNA damage, as indicated by DHE, 4-HNE, and 8-OHdG. MT treatment also improved mitochondrial biogenesis, ATP generation, and TFAM-mtDNA interaction in the cochlea. These findings suggest that MT has protective effects against NIHL via maintaining TFAM-mtDNA interaction and mitochondrial biogenesis based on its ROS scavenging capacity.
Collapse
Affiliation(s)
- Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Experimental Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
35
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
36
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
37
|
Wang G, Yin W, Shin H, Tian Q, Lu W, Hou SX. Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. NATURE AGING 2021; 1:1024-1037. [PMID: 37118341 DOI: 10.1038/s43587-021-00130-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 09/27/2021] [Indexed: 04/30/2023]
Abstract
Peroxidated lipids accumulate in the presence of reactive oxygen species and are linked to neurodegenerative diseases. Here we find that neuronal ablation of ARF1, a small GTPase important for lipid homeostasis, promoted accumulation of peroxidated lipids, lipid droplets and ATP in the mouse brain and led to neuroinflammation, demyelination and neurodegeneration, mainly in the spinal cord and hindbrain. Ablation of ARF1 in cultured primary neurons led to an increase in peroxidated lipids in co-cultured microglia, activation of the microglial NLRP3 inflammasome and release of inflammatory cytokines in an Apolipoprotein E-dependent manner. Deleting the Nlrp3 gene rescued the neurodegenerative phenotypes in the neuronal Arf1-ablated mice. We also observed a reduction in ARF1 in human brain tissue from patients with amyotrophic lateral sclerosis and multiple sclerosis. Together, our results uncover a previously unrecognized role of peroxidated lipids released from damaged neurons in activation of a neurotoxic microglial NLRP3 pathway that may play a role in human neurodegeneration.
Collapse
Affiliation(s)
- Guohao Wang
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Weiqin Yin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Hyunhee Shin
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | - Steven X Hou
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD, USA.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Zhang X, Agborbesong E, Li X. The Role of Mitochondria in Acute Kidney Injury and Chronic Kidney Disease and Its Therapeutic Potential. Int J Mol Sci 2021; 22:ijms222011253. [PMID: 34681922 PMCID: PMC8537003 DOI: 10.3390/ijms222011253] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondria are heterogeneous and highly dynamic organelles, playing critical roles in adenosine triphosphate (ATP) synthesis, metabolic modulation, reactive oxygen species (ROS) generation, and cell differentiation and death. Mitochondrial dysfunction has been recognized as a contributor in many diseases. The kidney is an organ enriched in mitochondria and with high energy demand in the human body. Recent studies have been focusing on how mitochondrial dysfunction contributes to the pathogenesis of different forms of kidney diseases, including acute kidney injury (AKI) and chronic kidney disease (CKD). AKI has been linked to an increased risk of developing CKD. AKI and CKD have a broad clinical syndrome and a substantial impact on morbidity and mortality, encompassing various etiologies and representing important challenges for global public health. Renal mitochondrial disorders are a common feature of diverse forms of AKI and CKD, which result from defects in mitochondrial structure, dynamics, and biogenesis as well as crosstalk of mitochondria with other organelles. Persistent dysregulation of mitochondrial homeostasis in AKI and CKD affects diverse cellular pathways, leading to an increase in renal microvascular loss, oxidative stress, apoptosis, and eventually renal failure. It is important to understand the cellular and molecular events that govern mitochondria functions and pathophysiology in AKI and CKD, which should facilitate the development of novel therapeutic strategies. This review provides an overview of the molecular insights of the mitochondria and the specific pathogenic mechanisms of mitochondrial dysfunction in the progression of AKI, CKD, and AKI to CKD transition. We also discuss the possible beneficial effects of mitochondrial-targeted therapeutic agents for the treatment of mitochondrial dysfunction-mediated AKI and CKD, which may translate into therapeutic options to ameliorate renal injury and delay the progression of these kidney diseases.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ewud Agborbesong
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA; (X.Z.); (E.A.)
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +507-266-0110
| |
Collapse
|
39
|
Ye Y, Wang X, Yang Z, Xu Q, Zhang B. Hsp22 Inhibits Oxidative Stress-Induced Endplate Chondrocyte Apoptosis by Regulating Mitochondrial Pathway. J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Facet joint degeneration (FJD), which is also called facet joint syndrome (FJS), has become one of the most commonly seen etiological factors for lumbago. Cartilage lesion triggered by lumbar facet joint (LFJ) degeneration might be related to mitochondrial impairment,
but the its underlying mechanism remains unclear. Materials and methods: The endplate chondrocytes were induced by hydrogen peroxide (H2O2) to mimic the pathological conditions of oxidative stress. Enzyme linked immunosorbent assay (ELISA) were used for the evaluation
of reactive oxygen species (ROS). Adenosine-triphosphate (ATP) level was assessed using ATP detection, along with the detection the expression of cytochrome C in mitochondria (mito-cyt c) and in cell cytoplasm (cyto-cyt c) and cleaved caspase 3 by Western blot analysis. TUNEL assay was conducted
for the measurement of cell apoptosis in endplate chondrocytes. Reverse transcription-polymerase chain reaction (RT-qPCR) was used to verify the expression of heat shock protein 22 (HSP22) and the transfection efficiency of HSP22 interference plasmid. Results: It was found that H2O2
promoted the mitochondrial dysfunction, ROS generation and cell apoptosis in endplate chondrocytes. Moreover, HSP22 was down-regulated in H2O2-induced endplate chondrocytes, and interference of HSP22 decreased the ROS production, increased the ATP level and promoted the
cell apoptosis, resulting in the enhanced impairment of endplate chondrocytes. Additionally, mitochondrial ROS inhibitor (Mito-TEMPO) ameliorated the injury effects of HSP22 silencing in the H2O2-induced endplate chondrocytes. Conclusion: In conclusion, HSP22 inhibits
oxidative stress-induced endplate chondrocyte apoptosis by regulating mitochondrial pathway, possibly providing novel guidance direction for the treatment of LFJ degeneration.
Collapse
Affiliation(s)
- Yi Ye
- Department of Orthopedics, Ningbo Fourth Hospital, Xiang Shan County, Zhejiang 315700, P. R. China
| | - Xucan Wang
- Department of Orthopedics, Ningbo Fourth Hospital, Xiang Shan County, Zhejiang 315700, P. R. China
| | - Zhenqing Yang
- Department of Orthopedics, Ningbo Fourth Hospital, Xiang Shan County, Zhejiang 315700, P. R. China
| | - Qian Xu
- Department of Orthopedics, Ningbo Fourth Hospital, Xiang Shan County, Zhejiang 315700, P. R. China
| | - Bo Zhang
- Department of Orthopedics, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo Institute of Life and Health Industry, Ningbo, Zhejiang 315010, P. R.China
| |
Collapse
|
40
|
Schuliga M, Read J, Knight DA. Ageing mechanisms that contribute to tissue remodeling in lung disease. Ageing Res Rev 2021; 70:101405. [PMID: 34242806 DOI: 10.1016/j.arr.2021.101405] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Age is a major risk factor for chronic respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and certain phenotypes of asthma. The recent COVID-19 pandemic also highlights the increased susceptibility of the elderly to acute respiratory distress syndrome (ARDS), a diffuse inflammatory lung injury with often long-term effects (ie parenchymal fibrosis). Collectively, these lung conditions are characterized by a pathogenic reparative process that, rather than restoring organ function, contributes to structural and functional tissue decline. In the ageing lung, the homeostatic control of wound healing following challenge or injury has an increased likelihood of being perturbed, increasing susceptibility to disease. This loss of fidelity is a consequence of a diverse range of underlying ageing mechanisms including senescence, mitochondrial dysfunction, proteostatic stress and diminished autophagy that occur within the lung, as well as in other tissues, organs and systems of the body. These ageing pathways are highly interconnected, involving localized and systemic increases in inflammatory mediators and damage associated molecular patterns (DAMPs); along with corresponding changes in immune cell function, metabolism and composition of the pulmonary and gut microbiomes. Here we comprehensively review the roles of ageing mechanisms in the tissue remodeling of lung disease.
Collapse
Affiliation(s)
- Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| | - Jane Read
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
41
|
Jiménez-Uribe AP, Bellido B, Aparicio-Trejo OE, Tapia E, Sánchez-Lozada LG, Hernández-Santos JA, Fernández-Valverde F, Hernández-Cruz EY, Orozco-Ibarra M, Pedraza-Chaverri J. Temporal characterization of mitochondrial impairment in the unilateral ureteral obstruction model in rats. Free Radic Biol Med 2021; 172:358-371. [PMID: 34175439 DOI: 10.1016/j.freeradbiomed.2021.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022]
Abstract
Renal fibrosis is a well-known mechanism that favors chronic kidney disease (CKD) development in obstructive nephropathy, a significant pathology worldwide. Fibrosis induction involves several pathways, and although mitochondrial alterations have recently emerged as a critical factor that triggers renal damage in the obstructed kidney, the temporal mitochondrial alterations during the fibrotic induction remain unexplored. Therefore, in this work, we evaluated the time course of mitochondrial mass and bioenergetics alterations induced by a unilateral ureteral obstruction (UUO), a widely used model to study the mechanism involved in kidney fibrosis induction and progression. Our results show a marked reduction in mitochondrial oxidative phosphorylation (OXPHOS) in the obstructed kidney on days 7 to 28 of obstruction without significant mitochondrial coupling changes. Besides, we observed that mitochondrial mass was reduced, probably due to decreased biogenesis and mitophagy induction. OXPHOS impairment was associated with decreased mitochondrial biogenesis markers, the peroxisome proliferator-activated receptor γ co-activator-1alpha (PGC-1α), and nuclear respiratory factor 1 (NRF1); and also, with the induction of mitophagy in a PTEN-induced kinase 1 (PINK1) and Parkin independent way. It is concluded that the impairment of OXPHOS capacity may be explained by the reduction in mitochondrial biogenesis and the induction of mitophagy during fibrotic progression.
Collapse
Affiliation(s)
| | - Belen Bellido
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | | - Edilia Tapia
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Departmento de Patofisiología Cardio-renal, Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico
| | - José Antonio Hernández-Santos
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - Francisca Fernández-Valverde
- Laboratorio de Patología Experimental, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | | | - Marisol Orozco-Ibarra
- Laboratorio de Neurobiología Molecular y Celular, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Av. Insurgentes Sur # 3877, La Fama, Alcaldía Tlalpan, CP 14269, Ciudad de México, Mexico
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico.
| |
Collapse
|
42
|
Fibrosis, the Bad Actor in Cardiorenal Syndromes: Mechanisms Involved. Cells 2021; 10:cells10071824. [PMID: 34359993 PMCID: PMC8307805 DOI: 10.3390/cells10071824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiorenal syndrome is a term that defines the complex bidirectional nature of the interaction between cardiac and renal disease. It is well established that patients with kidney disease have higher incidence of cardiovascular comorbidities and that renal dysfunction is a significant threat to the prognosis of patients with cardiac disease. Fibrosis is a common characteristic of organ injury progression that has been proposed not only as a marker but also as an important driver of the pathophysiology of cardiorenal syndromes. Due to the relevance of fibrosis, its study might give insight into the mechanisms and targets that could potentially be modulated to prevent fibrosis development. The aim of this review was to summarize some of the pathophysiological pathways involved in the fibrotic damage seen in cardiorenal syndromes, such as inflammation, oxidative stress and endoplasmic reticulum stress, which are known to be triggers and mediators of fibrosis.
Collapse
|
43
|
Andrianova NV, Zorov DB, Plotnikov EY. Targeting Inflammation and Oxidative Stress as a Therapy for Ischemic Kidney Injury. BIOCHEMISTRY (MOSCOW) 2021; 85:1591-1602. [PMID: 33705297 DOI: 10.1134/s0006297920120111] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inflammation and oxidative stress are the main pathological processes that accompany ischemic injury of kidneys and other organs. Based on this, these factors are often chosen as a target for treatment of acute kidney injury (AKI) in a variety of experimental and clinical studies. Note, that since these two components are closely interrelated during AKI development, substances that treat one of the processes often affect the other. The review considers several groups of promising nephroprotectors that have both anti-inflammatory and antioxidant effects. For example, many antioxidants, such as vitamins, polyphenolic compounds, and mitochondria-targeted antioxidants, not only reduce production of the reactive oxygen species in the cell but also modulate activity of the immune cells. On the other hand, immunosuppressors and non-steroidal anti-inflammatory drugs that primarily affect inflammation also reduce oxidative stress under some conditions. Another group of therapeutics is represented by hormones, such as estrogens and melatonin, which significantly reduce severity of the kidney damage through modulation of both these processes. We conclude that drugs with combined anti-inflammatory and antioxidant capacities are the most promising agents for the treatment of acute ischemic kidney injury.
Collapse
Affiliation(s)
- N V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - E Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| |
Collapse
|
44
|
DeJulius CR, Dollinger BR, Kavanaugh TE, Dailing E, Yu F, Gulati S, Miskalis A, Zhang C, Uddin J, Dikalov S, Duvall CL. Optimizing an Antioxidant TEMPO Copolymer for Reactive Oxygen Species Scavenging and Anti-Inflammatory Effects in Vivo. Bioconjug Chem 2021; 32:928-941. [PMID: 33872001 PMCID: PMC8188607 DOI: 10.1021/acs.bioconjchem.1c00081] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is broadly implicated in chronic, inflammatory diseases because it causes protein and lipid damage, cell death, and stimulation of inflammatory signaling. Supplementation of innate antioxidant mechanisms with drugs such as the superoxide dismutase (SOD) mimetic compound 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) is a promising strategy for reducing oxidative stress-driven pathologies. TEMPO is inexpensive to produce and has strong antioxidant activity, but it is limited as a drug due to rapid clearance from the body. It is also challenging to encapsulate into micellar nanoparticles or polymer microparticles, because it is a small, water soluble molecule that does not efficiently load into hydrophobic carrier systems. In this work, we pursued a polymeric form of TEMPO [poly(TEMPO)] to increase its molecular weight with the goal of improving in vivo bioavailability. High density of TEMPO on the poly(TEMPO) backbone limited water solubility and bioactivity of the product, a challenge that was overcome by tuning the density of TEMPO in the polymer by copolymerization with the hydrophilic monomer dimethylacrylamide (DMA). Using this strategy, we formed a series of poly(DMA-co-TEMPO) random copolymers. An optimal composition of 40 mol % TEMPO/60 mol % DMA was identified for water solubility and O2•- scavenging in vitro. In an air pouch model of acute local inflammation, the optimized copolymer outperformed both the free drug and a 100% poly(TEMPO) formulation in O2•- scavenging, retention, and reduction of TNFα levels. Additionally, the optimized copolymer reduced ROS levels after systemic injection in a footpad model of inflammation. These results demonstrate the benefit of polymerizing TEMPO for in vivo efficacy and could lead to a useful antioxidant polymer formulation for next-generation anti-inflammatory treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bryan R Dollinger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Taylor E Kavanaugh
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eric Dailing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Fang Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Shubham Gulati
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Angelo Miskalis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Caiyun Zhang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
- Anhui University of Chinese Medicine, Hefei, Anhui 230000, China
| | - Jashim Uddin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sergey Dikalov
- Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
45
|
Mitochondria-targeted antioxidant, mito-TEMPO mitigates initiation phase of N-Nitrosodiethylamine-induced hepatocarcinogenesis. Mitochondrion 2021; 58:123-130. [PMID: 33711502 DOI: 10.1016/j.mito.2021.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/16/2023]
Abstract
Targeting mitochondrial oxidative stress during initial stages of hepatocarcinogenesis can be an effective and promising strategy to prevent hepatocellular carcinoma (HCC). In the present study, mitochondria targeted antioxidant, mito-TEMPO was administered to male BALB/c mice at a dosage 0.1 mg/kg b.w. (intraperitoneal) twice a week, followed by single N-Nitrosodiethylamine (NDEA) intraperitoneal injection (10 mg/kg b.w.). After 24 h of NDEA administration, animals were sacrificed, blood and liver tissue were collected. Liver injury markers, histoarchitecture, antioxidant defence status, mitochondrial reactive oxygen species (ROS), lipid peroxidation (LPO), mitochondrial dysfunction analysis, and mitochondrial membrane potential were investigated. Mito-TEMPO pre-treatment protected animals from the damaging effects of NDEA as observed by normalization of liver injury markers. NDEA metabolism resulted in a significantly increased intracellular and mitochondrial ROS generation with concomitant increase in LPO formation. The activity of mitochondrial complex I, complex II, malate dehydrogenase were significantly reduced and mitochondrial membrane potential was increased. Mito-TEMPO effectively scavenged NDEA-induced ROS generation and reduced LPO formation. A significant improvement was also observed in the activity of mitochondrial complex I, complex II, malate dehydrogenase and normalisation of mitochondrial membrane potential. Results suggested that mito-TEMPO had significant impact on the initiation phase of hepatocarcinogensis which could be one of the reason for its reported chemopreventive effect.
Collapse
|
46
|
Tuncer S, Akkoca A, Celen MC, Dalkilic N. Can MitoTEMPO protect rat sciatic nerve against ischemia-reperfusion injury? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:545-553. [PMID: 33415504 DOI: 10.1007/s00210-020-02039-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Abdominal ischemia-reperfusion (I/R) is known to cause both structural and functional damage to sciatic nerve which is related to the oxidative stress. We investigated the protective effects of mitochondria-targeted antioxidant (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl) triphenylphosphonium chloride (MitoTEMPO) on ischemia-reperfusion-induced nerve damage by using the conduction velocity distribution (CVD) calculations from in vitro compound nerve action potential (CNAP) recordings from rat sciatic nerve. Adult male Wistar albino rats were divided into three groups. The IR and IR + MT groups had aortic cross-clamping for 1 h followed by 2 h reperfusion, while SHAM group had the same procedure without cross-clamping. IR + MT group received 0.7 mg/kg/day MitoTEMPO injection for 28 days before I/R, while other groups received vehicle alone. Ischemia-reperfusion resulted in a significant decrease (p < .05) in maximum depolarizations (mV), areas (mV.ms), and maximum and minimum upstroke velocities (mV/ms) of CNAPs, while injection of MitoTEMPO showed a complete protective effect on these impairments. The histograms for CVD showed that I/R blocked the contribution of fast-conducting fibers (> 60 m/s). MitoTEMPO prevented that blockage and caused a shift in the CVD. Functional nerve damage caused by I/R can be prevented by MitoTEMPO, which can enter mitochondria, the main source of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Seckin Tuncer
- Department of Biophysics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey.
| | - Ahmet Akkoca
- Department of Occupational Health and Safety, Selcuk University, Taskent Vocational School, Konya, Turkey
| | - Murat Cenk Celen
- Department of Biophysics, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Nizamettin Dalkilic
- Department of Biophysics, Faculty of Medicine, Baskent University, Ankara, Turkey
| |
Collapse
|
47
|
Le Gal K, Wiel C, Ibrahim MX, Henricsson M, Sayin VI, Bergo MO. Mitochondria-Targeted Antioxidants MitoQ and MitoTEMPO Do Not Influence BRAF-Driven Malignant Melanoma and KRAS-Driven Lung Cancer Progression in Mice. Antioxidants (Basel) 2021; 10:antiox10020163. [PMID: 33499262 PMCID: PMC7912553 DOI: 10.3390/antiox10020163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cells produce high levels of mitochondria-associated reactive oxygen species (ROS) that can damage macromolecules, but also promote cell signaling and proliferation. Therefore, mitochondria-targeted antioxidants have been suggested to be useful in anti-cancer therapy, but no studies have convincingly addressed this question. Here, we administered the mitochondria-targeted antioxidants MitoQ and MitoTEMPO to mice with BRAF-induced malignant melanoma and KRAS-induced lung cancer, and found that these compounds had no impact on the number of primary tumors and metastases; and did not influence mitochondrial and nuclear DNA damage levels. Moreover, MitoQ and MitoTEMPO did not influence proliferation of human melanoma and lung cancer cell lines. MitoQ and its control substance dTPP, but not MitoTEMPO, increased glycolytic rates and reduced respiration in melanoma cells; whereas only dTPP produced this effect in lung cancer cells. Our results do not support the use of mitochondria-targeted antioxidants for anti-cancer monotherapy, at least not in malignant melanoma and lung cancer.
Collapse
Affiliation(s)
- Kristell Le Gal
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (K.L.G.); (C.W.); (V.I.S.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (K.L.G.); (C.W.); (V.I.S.)
- Department of Biosciences and Nutrition, Karolinska Institutet, 123 43 Huddinge, Sweden;
| | - Mohamed X. Ibrahim
- Department of Biosciences and Nutrition, Karolinska Institutet, 123 43 Huddinge, Sweden;
| | - Marcus Henricsson
- Wallenberg laboratory, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
| | - Volkan I. Sayin
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30 Gothenburg, Sweden; (K.L.G.); (C.W.); (V.I.S.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Martin O. Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, 123 43 Huddinge, Sweden;
- Correspondence:
| |
Collapse
|
48
|
Hong YA, Park CW. Catalytic Antioxidants in the Kidney. Antioxidants (Basel) 2021; 10:antiox10010130. [PMID: 33477607 PMCID: PMC7831323 DOI: 10.3390/antiox10010130] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species and reactive nitrogen species are highly implicated in kidney injuries that include acute kidney injury, chronic kidney disease, hypertensive nephropathy, and diabetic nephropathy. Therefore, antioxidant agents are promising therapeutic strategies for kidney diseases. Catalytic antioxidants are defined as small molecular mimics of antioxidant enzymes, such as superoxide dismutase, catalase, and glutathione peroxidase, and some of them function as potent detoxifiers of lipid peroxides and peroxynitrite. Several catalytic antioxidants have been demonstrated to be effective in a variety of in vitro and in vivo disease models that are associated with oxidative stress, including kidney diseases. This review summarizes the evidence for the role of antioxidant enzymes in kidney diseases, the classifications of catalytic antioxidants, and their current applications to kidney diseases.
Collapse
Affiliation(s)
- Yu Ah Hong
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Cheol Whee Park
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Institute for Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6038
| |
Collapse
|
49
|
Rogov AG, Goleva TN, Epremyan KK, Kireev II, Zvyagilskaya RA. Propagation of Mitochondria-Derived Reactive Oxygen Species within the Dipodascus magnusii Cells. Antioxidants (Basel) 2021; 10:antiox10010120. [PMID: 33467672 PMCID: PMC7830518 DOI: 10.3390/antiox10010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/04/2022] Open
Abstract
Mitochondria are considered to be the main source of reactive oxygen species (ROS) in the cell. It was shown that in cardiac myocytes exposed to excessive oxidative stress, ROS-induced ROS release is triggered. However, cardiac myocytes have a network of densely packed organelles that do not move, which is not typical for the majority of eukaryotic cells. The purpose of this study was to trace the spatiotemporal development (propagation) of prooxidant-induced oxidative stress and its interplay with mitochondrial dynamics. We used Dipodascus magnusii yeast cells as a model, as they have advantages over other models, including a uniquely large size, mitochondria that are easy to visualize and freely moving, an ability to vigorously grow on well-defined low-cost substrates, and high responsibility. It was shown that prooxidant-induced oxidative stress was initiated in mitochondria, far preceding the appearance of generalized oxidative stress in the whole cell. For yeasts, these findings were obtained for the first time. Preincubation of yeast cells with SkQ1, a mitochondria-addressed antioxidant, substantially diminished production of mitochondrial ROS, while only slightly alleviating the generalized oxidative stress. This was expected, but had not yet been shown. Importantly, mitochondrial fragmentation was found to be primarily induced by mitochondrial ROS preceding the generalized oxidative stress development.
Collapse
Affiliation(s)
- Anton G. Rogov
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Tatiana N. Goleva
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Khoren K. Epremyan
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
| | - Igor I. Kireev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Vorobyevy Gory 1, Moscow 119992, Russia;
| | - Renata A. Zvyagilskaya
- Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences 33, bld. 2 Leninsky Ave., Moscow 119071, Russia; (A.G.R.); (T.N.G.); (K.K.E.)
- Correspondence:
| |
Collapse
|
50
|
Delgado-Valero B, de la Fuente-Chávez L, Romero-Miranda A, Visitación Bartolomé M, Ramchandani B, Islas F, Luaces M, Cachofeiro V, Martínez-Martínez E. Role of endoplasmic reticulum stress in renal damage after myocardial infarction. Clin Sci (Lond) 2021; 135:143-159. [PMID: 33355632 DOI: 10.1042/cs20201137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is associated with renal alterations resulting in poor outcomes in patients with MI. Renal fibrosis is a potent predictor of progression in patients and is often accompanied by inflammation and oxidative stress; however, the mechanisms involved in these alterations are not well established. Endoplasmic reticulum (ER) plays a central role in protein processing and folding. An accumulation of unfolded proteins leads to ER dysfunction, termed ER stress. Since the kidney is the organ with highest protein synthesis fractional rate, we herein investigated the effects of MI on ER stress at renal level, as well as the possible role of ER stress on renal alterations after MI. Patients and MI male Wistar rats showed an increase in the kidney injury marker neutrophil gelatinase-associated lipocalin (NGAL) at circulating level or renal level respectively. Four weeks post-MI rats presented renal fibrosis, oxidative stress and inflammation accompanied by ER stress activation characterized by enhanced immunoglobin binding protein (BiP), protein disulfide-isomerase A6 (PDIA6) and activating transcription factor 6-alpha (ATF6α) protein levels. In renal fibroblasts, palmitic acid (PA; 50-200 µM) and angiotensin II (Ang II; 10-8 to 10-6M) promoted extracellular matrix, superoxide anion production and inflammatory markers up-regulation. The presence of the ER stress inhibitor, 4-phenylbutyric acid (4-PBA; 4 µM), was able to prevent all of these modifications in renal cells. Therefore, the data show that ER stress mediates the deleterious effects of PA and Ang II in renal cells and support the potential role of ER stress on renal alterations associated with MI.
Collapse
Affiliation(s)
- Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lucía de la Fuente-Chávez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María Visitación Bartolomé
- Departmento de Inmunología, Oftalmología y Otorrinolaringología, Facultad de Psicología, Universidad Complutense Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Bunty Ramchandani
- Servicio de Cirugía Cardiaca Infantil, Hospital La Paz, Madrid, Spain
| | - Fabián Islas
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - María Luaces
- Servicio de Cardiología, Instituto Cardiovascular, Hospital Clínico San Carlos, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|