1
|
Influence of Sex and Muscarinic Activity on Memory Retrieval in Mouse Model of Traumatic Brain Injury. Brain Sci 2023; 13:brainsci13010108. [PMID: 36672089 PMCID: PMC9857320 DOI: 10.3390/brainsci13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious global risk factor leading to the onset of cognitive impairment and neurodegenerative diseases. Cognitive and memory impairment following a TBI is associated with the dysregulation of cholinergic neurotransmission in the brains of subjects. The extent of memory impairment following a TBI is linked with the sex of the subject. This study aimed to identify the sex-dimorphic role of muscarinic cholinergic modulation in neurological functioning and episodic memory retrieval in a mouse model of TBI. Balb/c mice were divided into four groups of males and four groups of females (i.e., Sham, TBI, TBI + Scopolamine 1 mg/kg, and TBI + Donepezil 1 mg/kg). After training with the Morris water maze test and fear conditioning, all groups were subjected to brain injury (7.84 × 10-5 J impact force) except for the Sham mice. Following brain injury, scopolamine or donepezil was administered to the respective groups for 5 days. Acute scopolamine immediately after brain trauma showed a neuroprotective effect in the males only, while subchronic donepezil significantly impaired neurological functioning in both sexes. Subchronic scopolamine and donepezil treatment reversed the TBI-induced retrograde amnesia for spatial memory in male mice. Contextual fear memory retrieval was not affected by the TBI and treatments in both sexes. Thus, we concluded that the sex-dimorphic response of the muscarinic receptors in TBI-induced memory impairment depends on the type of memory. This study highlights the potential for therapeutic modalities in TBI subjects.
Collapse
|
2
|
Liu H, He S, Li C, Wang J, Zou Q, Liao Y, Chen R. Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1α/JNK/CHOP signal pathway. Brain Behav 2022; 12:e2786. [PMID: 36377337 PMCID: PMC9759135 DOI: 10.1002/brb3.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.
Collapse
Affiliation(s)
- Huan Liu
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Shiqing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jianpeng Wang
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qin Zou
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yongshi Liao
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
3
|
Browne CA, Hildegard A Wulf BA, Jacobson ML, Oyola M, Wu TJ, Lucki I. Long-term increase in sensitivity to ketamine's behavioral effects in mice exposed to mild blast induced traumatic brain injury. Exp Neurol 2021; 350:113963. [PMID: 34968423 DOI: 10.1016/j.expneurol.2021.113963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/23/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic, analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.
Collapse
Affiliation(s)
- Caroline A Browne
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America.
| | - B A Hildegard A Wulf
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Moriah L Jacobson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Mario Oyola
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - T John Wu
- Department of Gynecologic Surgery & Obstetrics, Uniformed Services University, Bethesda, MD 20814, United States of America
| | - Irwin Lucki
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda, MD 20814, United States of America
| |
Collapse
|
4
|
Feng Y, Li K, Roth E, Chao D, Mecca CM, Hogan QH, Pawela C, Kwok WM, Camara AKS, Pan B. Repetitive Mild Traumatic Brain Injury in Rats Impairs Cognition, Enhances Prefrontal Cortex Neuronal Activity, and Reduces Pre-synaptic Mitochondrial Function. Front Cell Neurosci 2021; 15:689334. [PMID: 34447298 PMCID: PMC8383341 DOI: 10.3389/fncel.2021.689334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
A major hurdle preventing effective interventions for patients with mild traumatic brain injury (mTBI) is the lack of known mechanisms for the long-term cognitive impairment that follows mTBI. The closed head impact model of repeated engineered rotational acceleration (rCHIMERA), a non-surgical animal model of repeated mTBI (rmTBI), mimics key features of rmTBI in humans. Using the rCHIMERA in rats, this study was designed to characterize rmTBI-induced behavioral disruption, underlying electrophysiological changes in the medial prefrontal cortex (mPFC), and associated mitochondrial dysfunction. Rats received 6 closed-head impacts over 2 days at 2 Joules of energy. Behavioral testing included automated analysis of behavior in open field and home-cage environments, rotarod test for motor skills, novel object recognition, and fear conditioning. Following rmTBI, rats spent less time grooming and less time in the center of the open field arena. Rats in their home cage had reduced inactivity time 1 week after mTBI and increased exploration time 1 month after injury. Impaired associative fear learning and memory in fear conditioning test, and reduced short-term memory in novel object recognition test were found 4 weeks after rmTBI. Single-unit in vivo recordings showed increased neuronal activity in the mPFC after rmTBI, partially attributable to neuronal disinhibition from reduced inhibitory synaptic transmission, possibly secondary to impaired mitochondrial function. These findings help validate this rat rmTBI model as replicating clinical features, and point to impaired mitochondrial functions after injury as causing imbalanced synaptic transmission and consequent impaired long-term cognitive dysfunction.
Collapse
Affiliation(s)
- Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Keguo Li
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Elizabeth Roth
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christina M Mecca
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher Pawela
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
5
|
Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, Prager EM, Ahlers ST, Crawford F. Roadmap for Advancing Pre-Clinical Science in Traumatic Brain Injury. J Neurotrauma 2021; 38:3204-3221. [PMID: 34210174 PMCID: PMC8820284 DOI: 10.1089/neu.2021.0094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pre-clinical models of disease have long played important roles in the advancement of new treatments. However, in traumatic brain injury (TBI), despite the availability of numerous model systems, translation from bench to bedside remains elusive. Integrating clinical relevance into pre-clinical model development is a critical step toward advancing therapies for TBI patients across the spectrum of injury severity. Pre-clinical models include in vivo and ex vivo animal work-both small and large-and in vitro modeling. The wide range of pre-clinical models reflect substantial attempts to replicate multiple aspects of TBI sequelae in humans. Although these models reveal multiple putative mechanisms underlying TBI pathophysiology, failures to translate these findings into successful clinical trials call into question the clinical relevance and applicability of the models. Here, we address the promises and pitfalls of pre-clinical models with the goal of evolving frameworks that will advance translational TBI research across models, injury types, and the heterogenous etiology of pathology.
Collapse
Affiliation(s)
- Douglas H Smith
- Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Patrick M Kochanek
- Department of Critical Care Medicine; Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine and Children's Hospital of Pittsburgh of UPMC, Rangos Research Center, Pittsburgh, Pennsylvania, USA
| | - Susanna Rosi
- Departments of Physical Therapy Rehabilitation Science, Neurological Surgery, Weill Institute for Neuroscience, University of California San Francisco, Zuckerberg San Francisco General Hospital, San Francisco, California, USA
| | - Retsina Meyer
- Cohen Veterans Bioscience, New York, New York, USA.,Delix Therapeutics, Inc, Boston, Massachusetts, USA
| | | | | | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate Naval Medical Research Center, Silver Spring, Maryland, USA
| | | |
Collapse
|
6
|
Santana-Gomez CE, Medel-Matus JS, Rundle BK. Animal models of post-traumatic epilepsy and their neurobehavioral comorbidities. Seizure 2021; 90:9-16. [DOI: 10.1016/j.seizure.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 12/30/2022] Open
|
7
|
Ferland-Beckham C, Chaby LE, Daskalakis NP, Knox D, Liberzon I, Lim MM, McIntyre C, Perrine SA, Risbrough VB, Sabban EL, Jeromin A, Haas M. Systematic Review and Methodological Considerations for the Use of Single Prolonged Stress and Fear Extinction Retention in Rodents. Front Behav Neurosci 2021; 15:652636. [PMID: 34054443 PMCID: PMC8162789 DOI: 10.3389/fnbeh.2021.652636] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental health condition triggered by experiencing or witnessing a terrifying event that can lead to lifelong burden that increases mortality and adverse health outcomes. Yet, no new treatments have reached the market in two decades. Thus, screening potential interventions for PTSD is of high priority. Animal models often serve as a critical translational tool to bring new therapeutics from bench to bedside. However, the lack of concordance of some human clinical trial outcomes with preclinical animal efficacy findings has led to a questioning of the methods of how animal studies are conducted and translational validity established. Thus, we conducted a systematic review to determine methodological variability in studies that applied a prominent animal model of trauma-like stress, single prolonged stress (SPS). The SPS model has been utilized to evaluate a myriad of PTSD-relevant outcomes including extinction retention. Rodents exposed to SPS express an extinction retention deficit, a phenotype identified in humans with PTSD, in which fear memory is aberrantly retained after fear memory extinction. The current systematic review examines methodological variation across all phases of the SPS paradigm, as well as strategies for behavioral coding, data processing, statistical approach, and the depiction of data. Solutions for key challenges and sources of variation within these domains are discussed. In response to methodological variation in SPS studies, an expert panel was convened to generate methodological considerations to guide researchers in the application of SPS and the evaluation of extinction retention as a test for a PTSD-like phenotype. Many of these guidelines are applicable to all rodent paradigms developed to model trauma effects or learned fear processes relevant to PTSD, and not limited to SPS. Efforts toward optimizing preclinical model application are essential for enhancing the reproducibility and translational validity of preclinical findings, and should be conducted for all preclinical psychiatric research models.
Collapse
Affiliation(s)
| | - Lauren E Chaby
- Cohen Veterans Bioscience, New York City, NY, United States
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,McLean Hospital, Belmont, MA, United States
| | - Dayan Knox
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M University, Bryan, TX, United States
| | - Miranda M Lim
- Departments of Neurology, Behavioral Neuroscience, Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, United States.,Sleep Disorders Clinic, VA Portland Health Care System, Portland, OR, United States
| | - Christa McIntyre
- Department of Neuroscience, The University of Texas at Dallas, Richardson, TX, United States
| | - Shane A Perrine
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.,Research Service, John. D. Dingell VA Medical Center, Detroit, MI, United States
| | - Victoria B Risbrough
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, United States.,Center for Excellence in Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | | | - Magali Haas
- Cohen Veterans Bioscience, New York City, NY, United States
| |
Collapse
|
8
|
Kostelnik C, Lucki I, Choi KH, Browne CA. Translational relevance of fear conditioning in rodent models of mild traumatic brain injury. Neurosci Biobehav Rev 2021; 127:365-376. [PMID: 33961927 DOI: 10.1016/j.neubiorev.2021.04.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 01/19/2023]
Abstract
Mild traumatic brain injury (mTBI) increases the risk of posttraumatic stress disorder (PTSD) in military populations. Utilizing translationally relevant animal models is imperative for establishing a platform to delineate neurobehavioral deficits common to clinical PTSD that emerge in the months to years following mTBI. Such platforms are required to facilitate preclinical development of novel therapeutics. First, this mini review provides an overview of the incidence of PTSD following mTBI in military service members. Secondly, the translational relevance of fear conditioning paradigms used in conjunction with mTBI in preclinical studies is evaluated. Next, this review addresses an important gap in the current preclinical literature; while incubation of fear has been studied in other areas of research, there are relatively few studies pertaining to the enhancement of cued and contextual fear memory over time following mTBI. Incubation of fear paradigms in conjunction with mTBI are proposed as a novel behavioral approach to advance this critical area of research. Lastly, this review discusses potential neurobiological substrates implicated in altered fear memory post mTBI.
Collapse
Affiliation(s)
- Claire Kostelnik
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States
| | - Irwin Lucki
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States
| | - Kwang H Choi
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Psychiatry, Uniformed Services University, Bethesda MD 20814, United States.
| | - Caroline A Browne
- Neuroscience Program, Uniformed Services University, Bethesda MD 20814, United States; Department of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814, United States.
| |
Collapse
|
9
|
McCorkle TA, Barson JR, Raghupathi R. A Role for the Amygdala in Impairments of Affective Behaviors Following Mild Traumatic Brain Injury. Front Behav Neurosci 2021; 15:601275. [PMID: 33746719 PMCID: PMC7969709 DOI: 10.3389/fnbeh.2021.601275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/29/2021] [Indexed: 11/30/2022] Open
Abstract
Mild traumatic brain injury (TBI) results in chronic affective disorders such as depression, anxiety, and fear that persist up to years following injury and significantly impair the quality of life for patients. Although a great deal of research has contributed to defining symptoms of mild TBI, there are no adequate drug therapies for brain-injured individuals. Preclinical studies have modeled these deficits in affective behaviors post-injury to understand the underlying mechanisms with a view to developing appropriate treatment strategies. These studies have also unveiled sex differences that contribute to the varying phenotypes associated with each behavior. Although clinical and preclinical studies have viewed these behavioral deficits as separate entities with unique neurobiological mechanisms, mechanistic similarities suggest that a novel approach is needed to advance research on drug therapy. This review will discuss the circuitry involved in the expression of deficits in affective behaviors following mild TBI in humans and animals and provide evidence that the manifestation of impairment in these behaviors stems from an amygdala-dependent emotional processing deficit. It will highlight mechanistic similarities between these different types of affective behaviors that can potentially advance mild TBI drug therapy by investigating treatments for the deficits in affective behaviors as one entity, requiring the same treatment.
Collapse
Affiliation(s)
- Taylor A. McCorkle
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R. Barson
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ramesh Raghupathi
- Graduate Program in Neuroscience, Graduate School of Biomedical Sciences and Professional Studies, Drexel University College of Medicine, Philadelphia, PA, United States
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
10
|
Gait analysis in a rat model of traumatic brain injury. Behav Brain Res 2021; 405:113210. [PMID: 33639268 DOI: 10.1016/j.bbr.2021.113210] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/09/2021] [Accepted: 02/22/2021] [Indexed: 01/19/2023]
Abstract
Gait disruptions following traumatic brain injury (TBI) are noted in the clinical population. To date, thorough analysis of gait changes in animal models of TBI to allow for correlation of pathological alterations and utilization of this as a therapeutic outcome have been limited. We therefore assessed gait using the DigiGait analysis system as well as overall locomotion using the Beam Walk test in adult male Sprague-Dawley rats following a commonly used model of TBI, parietal lobe controlled cortical impact (CCI). Rats underwent DigiGait baseline analysis 24 h prior to injury, followed by a moderate CCI in the left parietal lobe. Performance on the DigiGait was then assessed at 1, 3, 7, and 14 days post-injury, followed by histological analysis of brain tissue. Beam walk analysis showed a transient but significant impairment acutely after injury. Despite observance of gait disturbance in the clinical population, TBI in the parietal lobe of rats resulted in limited alterations in hind or forelimb function. General hindlimb locomotion showed significant but transient impairment. Significant changes in gait were observed to last through the sub-acute period, including right hindpaw angle of rotation and left forelimb and right hindlimb swing phase duration. Slight changes that did not reach statistical significant but may reflect subtle impacts of TBI on gait were reflected in several other measures, such as stride duration, stance duration and stance width. These results demonstrate that moderate-severe injury to the parietal cortex and underlying structures including corpus callosum, hippocampus, thalamus and basal ganglia result in slight changes to gait that can be detected using the Digigait analysis system.
Collapse
|
11
|
Blaze J, Choi I, Wang Z, Umali M, Mendelev N, Tschiffely AE, Ahlers ST, Elder GA, Ge Y, Haghighi F. Blast-Related Mild TBI Alters Anxiety-Like Behavior and Transcriptional Signatures in the Rat Amygdala. Front Behav Neurosci 2020; 14:160. [PMID: 33192359 PMCID: PMC7604767 DOI: 10.3389/fnbeh.2020.00160] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
The short and long-term neurological and psychological consequences of traumatic brain injury (TBI), and especially mild TBI (mTBI) are of immense interest to the Veteran community. mTBI is a common and detrimental result of combat exposure and results in various deleterious outcomes, including mood and anxiety disorders, cognitive deficits, and post-traumatic stress disorder (PTSD). In the current study, we aimed to further define the behavioral and molecular effects of blast-related mTBI using a well-established (3 × 75 kPa, one per day on three consecutive days) repeated blast overpressure (rBOP) model in rats. We exposed adult male rats to the rBOP procedure and conducted behavioral tests for anxiety and fear conditioning at 1-1.5 months (sub-acute) or 12-13 months (chronic) following blast exposure. We also used next-generation sequencing to measure transcriptome-wide gene expression in the amygdala of sham and blast-exposed animals at the sub-acute and chronic time points. Results showed that blast-exposed animals exhibited an anxiety-like phenotype at the sub-acute timepoint but this phenotype was diminished by the chronic time point. Conversely, gene expression analysis at both sub-acute and chronic timepoints demonstrated a large treatment by timepoint interaction such that the most differentially expressed genes were present in the blast-exposed animals at the chronic time point, which also corresponded to a Bdnf-centric gene network. Overall, the current study identified changes in the amygdalar transcriptome and anxiety-related phenotypic outcomes dependent on both blast exposure and aging, which may play a role in the long-term pathological consequences of mTBI.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Inbae Choi
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Umali
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia Mendelev
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna E Tschiffely
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Neurology Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
12
|
Tang SJ, Fesharaki-Zadeh A, Takahashi H, Nies SH, Smith LM, Luo A, Chyung A, Chiasseu M, Strittmatter SM. Fyn kinase inhibition reduces protein aggregation, increases synapse density and improves memory in transgenic and traumatic Tauopathy. Acta Neuropathol Commun 2020; 8:96. [PMID: 32611392 PMCID: PMC7329553 DOI: 10.1186/s40478-020-00976-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/21/2020] [Indexed: 01/06/2023] Open
Abstract
Accumulation of misfolded phosphorylated Tau (Tauopathy) can be triggered by mutations or by trauma, and is associated with synapse loss, gliosis, neurodegeneration and memory deficits. Fyn kinase physically associates with Tau and regulates subcellular distribution. Here, we assessed whether pharmacological Fyn inhibition alters Tauopathy. In P301S transgenic mice, chronic Fyn inhibition prevented deficits in spatial memory and passive avoidance learning. The behavioral improvement was coupled with reduced accumulation of phospho-Tau in the hippocampus, with reductions in glial activation and with recovery of presynaptic markers. We extended this analysis to a trauma model in which very mild repetitive closed head injury was paired with chronic variable stress over 2 weeks to produce persistent memory deficits and Tau accumulation. In this model, Fyn inhibition beginning 24 h after the trauma ended rescued memory performance and reduced phospho-Tau accumulation. Thus, inhibition of Fyn kinase may have therapeutic benefit in clinical Tauopathies.
Collapse
|
13
|
Louthan A, Gray L, Gabriele ML. Multi-sensory (auditory and somatosensory) pre-pulse inhibition in mice. Physiol Behav 2020; 222:112901. [PMID: 32360813 DOI: 10.1016/j.physbeh.2020.112901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/27/2022]
Abstract
We investigated the perception of two mechanoreceptive modalities alone and in combination: main effects and interaction between auditory and somatosensory stimulation in mice. Fifteen C57BL/6J mice between the ages of 1 and 6 months were tested three times each. Experimental design roughly followed published procedures using pre-pulse inhibition (PPI) of the acoustic startle response, except pre-pulses included vibration of the test chamber as well as soft sounds. Auditory pre-pulses were 80 dB broadband noises of 4, 9, 25, or 45 ms duration. Vibrations were of the same duration but of different frequencies (500, 460, 360, and 220 Hz). Pre-pulse inhibition increased with duration of the auditory pre-pulses, as expected. There was significant PPI to some but not all vibrotactile pre-pulses. Multimodal PPI was approximately additive (no significant auditory-by-somatosensory interaction). PPI increased more with age to somatosensory than to auditory pre-pulses. Future studies of multi-modal psychophysics in various mouse mutants could lend support to more mechanistic studies of neural specificity and possibly autism, tinnitus, and PTSD.
Collapse
|
14
|
Elliott JE, Opel RA, Pleshakov D, Rachakonda T, Chau AQ, Weymann KB, Lim MM. Posttraumatic stress disorder increases the odds of REM sleep behavior disorder and other parasomnias in Veterans with and without comorbid traumatic brain injury. Sleep 2020; 43:zsz237. [PMID: 31587047 PMCID: PMC7315766 DOI: 10.1093/sleep/zsz237] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/22/2019] [Indexed: 11/14/2022] Open
Abstract
STUDY OBJECTIVES To describe the crude prevalence of rapid eye movement (REM) sleep behavior disorder (RBD) following traumatic brain injury (TBI) and posttraumatic stress disorder (PTSD) in Veterans, given potential relationships between TBI, PTSD, RBD, and neurodegeneration. METHODS Veterans (n = 394; 94% male; 54.4 ± 15.5 years of age) were prospectively/cross-sectionally recruited from the VA Portland Health Care System and completed in-lab video-polysomnography and questionnaires. TBI and PTSD were assessed via diagnostic screening and medical record review. Subjects were categorized into four groups after assessment of REM sleep without atonia (RSWA) and self-reported dream enactment: (1) "Normal," neither RSWA nor dream enactment, (2) "Other Parasomnia," dream enactment without RSWA, (3) "RSWA," isolated-RSWA without dream enactment, and (4) "RBD," RSWA with dream enactment. Crude prevalence, prevalence odds ratio, and prevalence rate for parasomnias across subjects with TBI and/or PTSD were assessed. RESULTS Overall prevalence rates were 31%, 7%, and 9% for Other Parasomnia, RSWA, and RBD, respectively. The prevalence rate of RBD increased to 15% in PTSD subjects [age adjusted POR: 2.81 (1.17-4.66)] and to 21% in TBI + PTSD subjects [age adjusted POR: 3.43 (1.20-9.35)]. No subjects met all diagnostic criteria for trauma-associated sleep disorder (TASD), and no overt dream enactment was captured on video. CONCLUSIONS The prevalence of RBD and related parasomnias is significantly higher in Veterans compared with the general population and is associated with PTSD and TBI + PTSD. Considering the association between idiopathic-RBD and synucleinopathy, it remains unclear whether RBD (and potentially TASD) associated with PTSD or TBI + PTSD similarly increases risk for long-term neurologic sequelae.
Collapse
Affiliation(s)
- Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health and Science University, Portland, OR
| | - Ryan A Opel
- VA Portland Health Care System, Portland, OR
| | | | | | | | - Kristianna B Weymann
- VA Portland Health Care System, Portland, OR
- School of Nursing, Oregon Health and Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health and Science University, Portland, OR
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR
- Department of Medicine, Division of Pulmonary and Critical Care Medicine; Oregon Health & Science University, Portland, OR
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR
| |
Collapse
|
15
|
Fesharaki-Zadeh A, Miyauchi JT, St. Laurent-Arriot K, Tsirka SE, Bergold PJ. Increased Behavioral Deficits and Inflammation in a Mouse Model of Co-Morbid Traumatic Brain Injury and Post-Traumatic Stress Disorder. ASN Neuro 2020; 12:1759091420979567. [PMID: 33342261 PMCID: PMC7755938 DOI: 10.1177/1759091420979567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 01/21/2023] Open
Abstract
Comorbid post-traumatic stress disorder with traumatic brain injury (TBI) produce more severe affective and cognitive deficits than PTSD or TBI alone. Both PTSD and TBI produce long-lasting neuroinflammation, which may be a key underlying mechanism of the deficits observed in co-morbid TBI/PTSD. We developed a model of co-morbid TBI/PTSD by combining the closed head (CHI) model of TBI with the chronic variable stress (CVS) model of PTSD and examined multiple behavioral and neuroinflammatory outcomes. Male C57/Bl6 mice received sham treatment, CHI, CVS, CHI then CVS (CHI → CVS) or CVS then CHI (CVS → CHI). The CVS → CHI group had deficits in Barnes maze or active place avoidance not seen in the other groups. The CVS → CHI, CVS and CHI → CVS groups displayed increased basal anxiety level, based on performance on elevated plus maze. The CVS → CHI had impaired performance on Barnes Maze, and Active Place Avoidance. These performance deficits were strongly correlated with increased hippocampal Iba-1 level an indication of activated MP/MG. These data suggest that greater cognitive deficits in the CVS → CHI group were due to increased inflammation. The increased deficits and neuroinflammation in the CVS → CHI group suggest that the order by which a subject experiences TBI and PTSD is a major determinant of the outcome of brain injury in co-morbid TBI/PTSD.
Collapse
Affiliation(s)
- Arman Fesharaki-Zadeh
- Department of Psychiatry, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Jeremy T. Miyauchi
- Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Karrah St. Laurent-Arriot
- Department of Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Stella E. Tsirka
- Department of Physiology, State University of New York, Downstate Medical Center, Brooklyn, New York
| | - Peter J. Bergold
- Department of Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, New York
- Department of Neurology, State University of New York, Downstate Medical Center, Brooklyn, New York
- Department of Pharmacological Sciences, Stony Brook Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|