1
|
Sahgal M, Saini N, Jaggi V, Brindhaa NT, Kabdwal M, Singh RP, Prakash A. Antagonistic potential and biological control mechanisms of Pseudomonas strains against banded leaf and sheath blight disease of maize. Sci Rep 2024; 14:13580. [PMID: 38866928 PMCID: PMC11169287 DOI: 10.1038/s41598-024-64028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Rhizoctonia solani, the causal agent of banded leaf and sheath blight (BL&SB), poses a significant threat to maize and various crops globally. The increasing concerns surrounding the environmental and health impacts of chemical fungicides have encouraged intensified concern in the development of biological control agents (BCAs) as eco-friendly alternatives. In this study, we explored the potential of 22 rhizobacteria strains (AS1-AS22) isolates, recovered from the grasslands of the Pithoragarh region in the Central Himalayas, as effective BCAs against BL&SB disease. Among these strains, two Pseudomonas isolates, AS19 and AS21, exhibited pronounced inhibition of fungal mycelium growth in vitro, with respective inhibition rates of 57.04% and 54.15% in cell cultures and 66.56% and 65.60% in cell-free culture filtrates. Additionally, both strains demonstrated effective suppression of sclerotium growth. The strains AS19 and AS21 were identified as Pseudomonas sp. by 16S rDNA phylogeny and deposited under accession numbers NAIMCC-B-02303 and NAIMCC-B-02304, respectively. Further investigations revealed the mechanisms of action of AS19 and AS21, demonstrating their ability to induce systemic resistance (ISR) and exhibit broad-spectrum antifungal activity against Alternaria triticina, Bipolaris sorokiniana, Rhizoctonia maydis, and Fusarium oxysporum f. sp. lentis. Pot trials demonstrated significant reductions in BL&SB disease incidence (DI) following foliar applications of AS19 and AS21, with reductions ranging from 25 to 38.33% compared to control treatments. Scanning electron microscopy revealed substantial degradation of fungal mycelium by the strains, accompanied by the production of hydrolytic enzymes. These findings suggest the potential of Pseudomonas strains AS19 and AS21 as promising BCAs against BL&SB and other fungal pathogens. However, further field trials are warranted to validate their efficacy under natural conditions and elucidate the specific bacterial metabolites responsible for inducing systemic resistance. This study contributes to the advancement of sustainable disease management strategies and emphasizes the potential of Pseudomonas strains AS19 and AS21 in combating BL&SB and other fungal diseases affecting agricultural crops.
Collapse
Affiliation(s)
- Manvika Sahgal
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India.
| | - Neha Saini
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Vandana Jaggi
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - N T Brindhaa
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Manisha Kabdwal
- Department of Microbiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, 263145, India
| | - Rajesh Pratap Singh
- Department of Plant Pathology, College of Agriculture, Govind Ballabh Pant University of Agriculture and Technology, Udam Singh Nagar, Pantnagar, Uttarakhand, 263145, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, 26, India
| |
Collapse
|
2
|
Mengstie GY, Awlachew ZT, Degefa AM. Screening of rhizobacteria for multi-trait plant growth-promoting ability and antagonism against B. fabae, the causative agent of chocolate spot disease of faba bean. Heliyon 2024; 10:e25334. [PMID: 38318010 PMCID: PMC10839597 DOI: 10.1016/j.heliyon.2024.e25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
This study aimed to isolate and characterize plant growth-promoting rhizobacteria from the faba bean rhizosphere for future inoculum production. For this purpose,127 dissimilar rhizobacterial colonies were isolated. All isolated colonies were tested for plant growth-promoting traits. Based on their multiple plant growth-promoting traits, eight potential isolates were selected and identified GY01, GY03, and GY08 are affiliated with Acinetobacter sp. GY04 and GY05 are affiliated with Chryseobacterium sp. GY06 and GY07 are affiliated with Pseudomonas costantinii and Pseudomonas chlororaphis, respectively; and GY02 is affiliated with the Bacterium strain. All eight isolates were evaluated for their effects on seed germination and vigor index and potential antagonism against Botrytis fabae. Selected isolates showed positive effects on seed germination and vigor index with different potentials. Isolate GY04 resulted in the highest vigor index (501), while isolate GY08 achieved the lowest (218). B. fabae radial growth inhibition was found in all eight isolates. The isolates inhibited the radial growth of the test pathogen with an inhibition efficacy of 72.38 % in GY04 to 25.57 % in GY-03. Generally, the results of this study indicated the potential of these isolates as a microbial inoculant with multiple functions for faba beans.
Collapse
Affiliation(s)
- Gebeyehu Yibeltie Mengstie
- Department of Biology, College of Natural and Computational Sciences, P.O. Box 90, Debark University, Debark, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, P.O. Box 196, University of Gondar, Gondar, Ethiopia
| | - Zewdu Teshome Awlachew
- Department of Biology, College of Natural and Computational Sciences, P.O. Box 196, University of Gondar, Gondar, Ethiopia
| | - Atsede Muleta Degefa
- Department of Biology, College of Natural and Computational Sciences, P.O. Box 196, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Zhang Y, Kong WL, Wu XQ, Li PS. Inhibitory Effects of Phenazine Compounds and Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 Against Phytophthora cinnamomi. PHYTOPATHOLOGY 2022; 112:1867-1876. [PMID: 35263163 DOI: 10.1094/phyto-10-21-0442-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phytophthora cinnamomi is an important plant pathogen that is widely distributed worldwide and has caused serious ecological damage and significant economic losses in forests and plantations in many countries. The use of plant growth-promoting rhizobacteria is an effective and environmentally friendly strategy for controlling diseases caused by P. cinnamomi. In this study, we investigated the antagonistic mechanism of Pseudomonas aurantiaca ST-TJ4 against P. cinnamomi through different antagonistic approaches, observations of mycelial morphology, study of mycelial metabolism, and identification of antagonistic substances. The results showed that Pseudomonas aurantiaca ST-TJ4 was able to significantly inhibit mycelial growth, causing mycelial deformation and disrupting internal cell structures. Additionally, pathogen cell membranes were damaged by ST-TJ4, and mycelial cell content synthesis was disrupted. Ultraperformance liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry analyses showed that phenazine compounds and 2-undecanone were the main antagonistic components. The ammonia produced by the ST-TJ4 strain also contributed to the inhibition of the growth of P. cinnamomi. In conclusion, our results confirm that Pseudomonas aurantiaca ST-TJ4 can inhibit P. cinnamomi through multiple mechanisms and can be used as a biological control agent for various plant diseases caused by P. cinnamomi.
Collapse
Affiliation(s)
- Yu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
4
|
Khan MS, Gao J, Zhang M, Xue J, Zhang X. Pseudomonas aeruginosa Ld-08 isolated from Lilium davidii exhibits antifungal and growth-promoting properties. PLoS One 2022; 17:e0269640. [PMID: 35714148 PMCID: PMC9205524 DOI: 10.1371/journal.pone.0269640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022] Open
Abstract
A plant growth-promoting and antifungal endophytic bacteria designated as Ld-08 isolated from the bulbs of Lilium davidii was identified as Pseudomonas aeruginosa based on phenotypic, microscopic, and 16S rRNA gene sequence analysis. Ld-08 exhibited antifungal effects against Fusarium oxysporum, Botrytis cinerea, Botryosphaeria dothidea, and Fusarium fujikuroi. Ld-08 showed the highest growth inhibition, i.e., 83.82±4.76% against B. dothidea followed by 74.12±3.87%, 67.56±3.35%, and 63.67±3.39% against F. fujikuroi, B. cinerea, and F. oxysporum, respectively. The ethyl acetate fraction of Ld-08 revealed the presence of several bioactive secondary metabolites. Prominent compounds were quinolones; 3,9-dimethoxypterocarpan; cascaroside B; dehydroabietylamine; epiandrosterone; nocodazole; oxolinic acid; pyochelin; rhodotulic acid; 9,12-octadecadienoic acid; di-peptides; tri-peptides; ursodiol, and venlafaxine. The strain Ld-08 showed organic acids, ACC deaminase, phosphate solubilization, IAA, and siderophore. The sterilized bulbs of a Lilium variety, inoculated with Ld-08, were further studied for plant growth-promoting traits. The inoculated plants showed improved growth than the control plants. Importantly, some growth parameters such as plant height, leaf length, bulb weight, and root length were significantly (P ≤0.05) increased in the inoculated plants than in the control un-inoculated plants. Further investigations are required to explore the potential of this strain to be used as a plant growth-promoting and biocontrol agent in sustainable agriculture.
Collapse
Affiliation(s)
- Mohammad Sayyar Khan
- Microbiology Division, Institute of Biotechnology and Genetic Engineering (IBGE), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Junlian Gao
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
5
|
Ahmad A, Zafar U, Khan A, Haq T, Mujahid T, Wali M. Effectiveness of compost inoculated with phosphate solubilizing bacteria. J Appl Microbiol 2022; 133:1115-1129. [DOI: 10.1111/jam.15633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Areesha Ahmad
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Urooj Zafar
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Adnan Khan
- Department of Geology University of Karachi Karachi‐75270 Pakistan
| | - Tooba Haq
- Centre of Environmental Studies, PCSIR labs Complex Karachi Karachi‐75280 Pakistan
| | - Talat Mujahid
- Department of Microbiology University of Karachi Karachi‐75270 Pakistan
| | - Mahreen Wali
- Dow University of Health Sciences, Ojha campus University Road Karachi‐75270 Pakistan
| |
Collapse
|
6
|
Novel α-Amylase Inhibitor Hemi-Pyocyanin Produced by Microbial Conversion of Chitinous Discards. Mar Drugs 2022; 20:md20050283. [PMID: 35621934 PMCID: PMC9171587 DOI: 10.3390/md20050283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
α-Amylase inhibitors (aAIs) have been applied for the efficient management of type 2 diabetes. The aim of this study was to search for potential aAIs produced by microbial fermentation. Among various bacterial strains, Pseudomonas aeruginosa TUN03 was found to be a potential aAI-producing strain, and shrimp heads powder (SHP) was screened as the most suitable C/N source for fermentation. P. aeruginosa TUN03 exhibited the highest aAIs productivity (3100 U/mL) in the medium containing 1.5% SHP with an initial pH of 7–7.5, and fermentation was performed at 27.5 °C for two days. Further, aAI compounds were investigated for scaled-up production in a 14 L-bioreactor system. The results revealed a high yield (4200 U/mL) in a much shorter fermentation time (12 h) compared to fermentation in flasks. Bioactivity-guided purification resulted in the isolation of one major target compound, identified as hemi-pyocyanin (HPC) via gas chromatography-mass spectrometry and nuclear magnetic resonance. Its purity was analyzed by high-performance liquid chromatography. HPC demonstrated potent α-amylase inhibitory activity comparable to that of acarbose, a commercial antidiabetic drug. Notably, HPC was determined as a new aAI. The docking study indicated that HPC inhibits α-amylase by binding to amino acid Arg421 at the biding site on enzyme α-amylase with good binding energy (−9.3 kcal/mol) and creating two linkages of H-acceptors.
Collapse
|
7
|
Dhole A, Shelat H. Non-Rhizobial Endophytes Associated with Nodules of Vigna radiata L. and Their Combined Activity with Rhizobium sp. Curr Microbiol 2022; 79:103. [PMID: 35157135 DOI: 10.1007/s00284-022-02792-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 01/31/2022] [Indexed: 11/27/2022]
Abstract
Root nodules of legume plants are devoted for hosting endophytic symbiotic bacteria that fix atmospheric nitrogen but recently proved as a niche for various non-rhizobial endophytes (NRE) also. In the present investigation, one rhizobial and two NRE were isolated and characterized as Rhizobium sp. AAU B3, Bacillus sp. AAU B6 and Bacillus sp. AAU B12. These isolates were studied for in vitro biocontrol activity against two pathogenic fungi. NRE isolates exhibited antifungal activity against root rot causing Macrophomina phaseolina (ITCC-6749) isolated from Vigna radiata and wilt causing pathogen Fusarium udum Butler isolated from Cajanus cajan in liquid as well as on solid medium. Furthermore, their antagonism was increased markedly when combined with Rhizobium sp. Moreover, Bacillus sp. AAU B6 showed amplification of the zwittermicin A gene (~ 950 bp) which is evident for the production of antibiotics. All three isolates showed HCN production in vitro also, Bacillus sp. AAU B12 exhibited amplification of its gene hcnC. Pathogenic fungal hyphae became thin, transparent, and bent as well as fungi lost their normal growth and branching patterns when exposed to volatile compounds produced by NRE. All the 3 isolates produced siderophores, however siderophore production was increased considerably when all three strains are mixed together. Furthermore, all the three isolates produced cell wall degrading enzymes (chitinase, protease, and cellulase) but lipolytic activity was exhibited only by Rhizobium sp. AAU B3. When NRE inoculated in combination of Rhizobium; overcomes the disease severity against M. phaseolina under pot study. Thus, from present study it is concluded that co-inoculation of NRE and Rhizobium sp. can be exploited as biocontrol bio-agents against M. phaseolina in green gram at field levels.
Collapse
Affiliation(s)
- Archana Dhole
- B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, 388110, India.
| | - Harsha Shelat
- B. A. College of Agriculture, Anand Agricultural University, Anand, Gujarat, 388110, India
| |
Collapse
|
8
|
Plant Growth-Promoting Activity of Pseudomonas aeruginosa FG106 and Its Ability to Act as a Biocontrol Agent against Potato, Tomato and Taro Pathogens. BIOLOGY 2022; 11:biology11010140. [PMID: 35053136 PMCID: PMC8773043 DOI: 10.3390/biology11010140] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022]
Abstract
P. aeruginosa strain FG106 was isolated from the rhizosphere of tomato plants and identified through morphological analysis, 16S rRNA gene sequencing, and whole-genome sequencing. In vitro and in vivo experiments demonstrated that this strain could control several pathogens on tomato, potato, taro, and strawberry. Volatile and non-volatile metabolites produced by the strain are known to adversely affect the tested pathogens. FG106 showed clear antagonism against Alternaria alternata, Botrytis cinerea, Clavibacter michiganensis subsp. michiganensis, Phytophthora colocasiae, P. infestans, Rhizoctonia solani, and Xanthomonas euvesicatoria pv. perforans. FG106 produced proteases and lipases while also inducing high phosphate solubilization, producing siderophores, ammonia, indole acetic acid (IAA), and hydrogen cyanide (HCN) and forming biofilms that promote plant growth and facilitate biocontrol. Genome mining approaches showed that this strain harbors genes related to biocontrol and growth promotion. These results suggest that this bacterial strain provides good protection against pathogens of several agriculturally important plants via direct and indirect modes of action and could thus be a valuable bio-control agent.
Collapse
|
9
|
Xu W, Xu L, Deng X, Goodwin PH, Xia M, Zhang J, Wang Q, Sun R, Pan Y, Wu C, Yang L. Biological Control of Take-All and Growth Promotion in Wheat by Pseudomonas chlororaphis YB-10. Pathogens 2021; 10:903. [PMID: 34358053 PMCID: PMC8308743 DOI: 10.3390/pathogens10070903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 11/18/2022] Open
Abstract
Wheat is a worldwide staple food crop, and take-all caused by Gaeumannomyces graminis var. tritici can lead to a tremendous decrease in wheat yield and quality. In this study, strain YB-10 was isolated from wheat rhizospheric soil and identified as Pseudomonas chlororaphis by morphology and 16S rRNA gene sequencing. Pseudomonas chlororaphis YB-10 had extracellular protease and cellulase activities and strongly inhibited the mycelium growth of Gaeumannomyces graminis var. tritici in dual cultures. Up to 87% efficacy of Pseudomonas chlororaphis YB-10 in controlling the take-all of seedlings was observed in pot experiments when wheat seed was coated with the bacterium. Pseudomonas chlororaphis YB-10 was also positive for indole acetic acid (IAA) and siderophore production, and coating wheat seed with the bacterium significantly promoted the growth of seedlings at 107 and 108 CFU/mL. Furthermore, treatment with Pseudomonas chlororaphis YB-10 increased activities of the wheat defense-related enzymes POD, SOD, CAT, PAL and PPO in seedlings, indicating induced resistance against pathogens. Overall, Pseudomonas chlororaphis YB-10 is a promising new seed-coating agent to both promote wheat growth and suppress take-all.
Collapse
Affiliation(s)
- Wen Xu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lingling Xu
- Department of Plant Pathology, College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xiaoxu Deng
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G2W1, Canada;
| | - Mingcong Xia
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jie Zhang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Qi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Runhong Sun
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yamei Pan
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Chao Wu
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Lirong Yang
- Institute of Plant Protection Research, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (W.X.); (X.D.); (M.X.); (J.Z.); (R.S.); (Y.P.); (C.W.)
- Henan International Joint Laboratory of Crop Protection, Henan Biopesticide Engineering Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| |
Collapse
|
10
|
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M, Abdel-Azeem AM, Ahluwalia AS, Saxena AK. Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Lakshmanan R, Kalaimurugan D, Sivasankar P, Arokiyaraj S, Venkatesan S. Identification and characterization of Pseudomonas aeruginosa derived bacteriocin for industrial applications. Int J Biol Macromol 2020; 165:2412-2418. [PMID: 33132130 DOI: 10.1016/j.ijbiomac.2020.10.126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
Drug resistance has become a major threat due to the frequent use of commercial antibiotics and there is an urgent need to combat this problem. Having this in mind, the present research was aimed at developing a novel P. aeruginosa puBac bacteriocin molecule. The bacteriocin was purified by ammonium sulfate precipitation followed by Sepharose FF and Sephadex G15 column purification and the purified bacteriocin has been reported to have the molar mass of 43 kDa. The findings of the optimization showed that 3500 AU/mL of bacteriocin was obtained at 37 °C, 3410 AU/mL of bacteriocin at 6.5 pH and 3780 AU/mL of bacteriocin at 48 h of incubation time. In addition, 3863 AU/mL of bacteriocin activity was obtained with Tween-80 followed by 3789 AU/mL with a concentration of 2% NaCl and 4200 AU/mL for Fe2+. PuBac bacteriocin has been shown to have a significant effect on test pathogens. For example, E. coli was found to have 3.6 μM of MIC, followed by Staphylococcus sp. with 6.15 μM of MIC and Bacillus sp. with a 7.5 μM of MIC. The remarkable properties of bacteriocin suggest that it could be used in various pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ramasamy Lakshmanan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Republic of Korea
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
12
|
Syed S, Tollamadugu NVKVP, Lian B. Aspergillus and Fusarium control in the early stages of Arachis hypogaea (groundnut crop) by plant growth-promoting rhizobacteria (PGPR) consortium. Microbiol Res 2020; 240:126562. [PMID: 32739583 DOI: 10.1016/j.micres.2020.126562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/29/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Abstract
In this study, we have attempted to develop a plant growth promoting rhizobacteria (PGPR) consortia against early-stage diseases in Arachis hypogaea (Groundnut crop) plantation of Andhra Pradesh, India. The dominant PGPRs were selected by considering the various plant growth and protection qualities, followed by characterisation and grouping based on compatibility to form a consortium of PGPRs [Group-1 includes EX-1 (Acinetobacter baumannii stain HAMBI 1846); EX-3 (Pseudomonas aeruginosa strain A1K319); EX-5 (Bacillus subterraneus strain CF1.9); KNL-1 (Bacillus subtilis strain JMP-B); CTR-4 (Enterobacter cloacae strain VITKJ1); ANT-4 (Bacillus subtilis strain SBMP4) and Group-2 includes EX-4 (Pseudomonas otitidis strain SLC8); KDP-4 (Pseudomonas aeruginosa strain Kasamber 11); NLR-4 (Bacillus species ADMK68); ANT-6 (Bacillus subtilis subsp. inaquosorum strain KCTC 13429)]. In addition to resistance to early stage pathogens, in both in vitro and pot experiments the PGPR consortium showed significantly higher germination rate and root induction (Aspergillus niger; A. flavus; Fusarium oxysporum) when compared to control and fertilizer treated groups. In addition, Group 2 was more successful in stimulating and protecting plant growth among the two groups of PGPRs developed. The PGPR consortia developed showed multiple plant growth characteristics, including phosphate solubilization, production of HCN and Indole acetic acid along with broad antagonism against the tested phytopathogens.
Collapse
Affiliation(s)
- Shameer Syed
- College of Life Sciences, Nanjing Normal University, No. 1, WenYuan Road, Qi Xia District, Nanjing, 210023, Jiangsu Province, China; Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, ANGRAU, Tirupati, India.
| | - N V K V Prasad Tollamadugu
- Nanotechnology Laboratory, Institute of Frontier Technology, Regional Agricultural Research Station, ANGRAU, Tirupati, India
| | - Bin Lian
- College of Life Sciences, Nanjing Normal University, No. 1, WenYuan Road, Qi Xia District, Nanjing, 210023, Jiangsu Province, China
| |
Collapse
|
13
|
Chopra A, Bobate S, Rahi P, Banpurkar A, Mazumder PB, Satpute S. Pseudomonas aeruginosa RTE4: A Tea Rhizobacterium With Potential for Plant Growth Promotion and Biosurfactant Production. Front Bioeng Biotechnol 2020; 8:861. [PMID: 32850725 PMCID: PMC7403194 DOI: 10.3389/fbioe.2020.00861] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/03/2020] [Indexed: 12/04/2022] Open
Abstract
Tea is an ancient non-alcoholic beverage plantation crop cultivated in the most part of Assam, India. Being a long-term monoculture, tea plants are prone to both biotic and abiotic stresses, and requires massive amounts of chemicals as fertilizers and pesticides to achieve worthy crop productivity. The rhizosphere bacteria with the abilities to produce phytohormone, secreting hydrolytic enzyme, biofilm formation, bio-control activity provides induced systemic resistance to plants against pathogens. Thus, plant growth promoting (PGP) rhizobacteria represents as an alternative candidate to chemical inputs for agriculture sector. Further, deciphering the secondary metabolites, including biosurfactant (BS) allow developing a better understanding of rhizobacterial strains. The acidic nature of tea rhizosphere is predominated by Bacillus followed by Pseudomonas that enhances crop biomass and yield through accelerating uptake of nutrients. In the present study, a strain Pseudomonas aeruginosa RTE4 isolated from tea rhizosphere soil collected from Rosekandy Tea Garden, Cachar, Assam was evaluated for various plant-growth promoting attributes. The strain RTE4 produces indole acetic acid (74.54 μg/ml), hydrolytic enzymes, and solubilize tri-calcium phosphate (46 μg/ml). Bio-control activity of RTE4 was recorded against two foliar fungal pathogens of tea (Corticium invisium and Fusarium solani) and a bacterial plant pathogen (Xanthomonas campestris). The strain RTE4 was positive for BS production in the preliminary screening. Detailed analytical characterization through TLC, FTIR, NMR, and LCMS techniques revealed that the strain RTE4 grown in M9 medium with glucose (2% w/v) produce di-rhamnolipid BS. This BS reduced surface tension of phosphate buffer saline from 71 to 31 mN/m with a critical micelle concentration of 80 mg/L. Purified BS of RTE4 showed minimum inhibitory concentration of 5, 10, and 20 mg/ml against X. campestris, F. solani and C. invisium, respectively. Capability of RTE4 BS to be employed as a biofungicide as compared to Carbendazim - commercially available fungicide is also tested. The strain RTE4 exhibits multiple PGP attributes along with production of di-rhamnolipid BS. This gives a possibility to produce di-rhamnolipid BS from RTE4 in large scale and explore its applications in fields as a biological alternative to chemical fertilizer.
Collapse
Affiliation(s)
- Ankita Chopra
- Department of Biotechnology, Assam University, Silchar, India
| | - Shishir Bobate
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Praveen Rahi
- National Centre for Microbial Resource, National Centre for Cell Science, Pune, India
| | - Arun Banpurkar
- Department of Physics, Savitribai Phule Pune University, Pune, India
| | | | - Surekha Satpute
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
14
|
Pseudomonas aeruginosa Predominates as Multifaceted Rhizospheric Bacteria with Combined Abilities of P-solubilization and Biocontrol. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
15
|
Kenawy A, Dailin DJ, Abo-Zaid GA, Malek RA, Ambehabati KK, Zakaria KHN, Sayyed RZ, El Enshasy HA. Biosynthesis of Antibiotics by PGPR and Their Roles in Biocontrol of Plant Diseases. PLANT GROWTH PROMOTING RHIZOBACTERIA FOR SUSTAINABLE STRESS MANAGEMENT 2019:1-35. [DOI: 10.1007/978-981-13-6986-5_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Chandra S, Askari K, Kumari M. Optimization of indole acetic acid production by isolated bacteria from Stevia rebaudiana rhizosphere and its effects on plant growth. J Genet Eng Biotechnol 2018; 16:581-586. [PMID: 30733776 PMCID: PMC6354003 DOI: 10.1016/j.jgeb.2018.09.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 08/09/2018] [Accepted: 09/09/2018] [Indexed: 11/28/2022]
Abstract
The ability to synthesize Indole-3-acetic acid (IAA) is widely associated with the plant growth promoting rhizobacteria (PGPR). The present work deals with isolation and characterization of such bacteria from the rhizosphere of medicinal plant Stevia rebaudiana and optimization of IAA production from its isolates. The optimization of IAA production was carried out at different pH and temperature with varied carbon and nitrogen sources of culture media. Out of different isolates obtained, three of them were screened as efficient PGPRs on the basis of different plant growth promoting attributes. Isolates CA1001 and CA2004 showed better production of IAA at pH 9 (91.7 µg ml−1) and at temperature 37 °C (81.7 µg ml−1). Dextrose (1%) was found to be the best carbon source for isolate CA1001 with 104 µg ml−1 IAA production. Isolate CA 2004 showed best production of IAA 36 µg ml−1 and 34 µg ml−1 at 1.5% and 1% Beef extract as nitrogen source respectively. Isolate CA 1001 showed 32 µg ml−1 IAA production at 0.5% nicotinic acid concentration. From the current study, CA1001 and CA2004 emerged as noble alternatives for IAA production further which also resulted in root and shoot biomass generation in crop plants, hence can be further used as bio-inoculants for plant growth promotion.
Collapse
Affiliation(s)
- Sheela Chandra
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kazim Askari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.,Deptt. of Biotechnology, Era University, Lucknow, India
| | - Madhumita Kumari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India.,ICAR, Research Centre for Eastern Region, Palandu, Ranchi, India
| |
Collapse
|