1
|
Yin D, Wang X, Ren L, Xie Y, Zhang T, Dai P. The role of medial olivocochlear activity in contralateral suppression of auditory steady-state responses. Auris Nasus Larynx 2023; 50:57-61. [PMID: 35649956 DOI: 10.1016/j.anl.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 01/28/2023]
Abstract
OBJECTIVE The auditory steady-state response (ASSR) amplitudes fall in the presence of contralateral noise. However, whether and to what extent medial olivocochlear (MOC) activity involves in contralateral suppression of ASSR remain unclear. Therefore, we assess the role of MOC activity in contralateral suppression of ASSR. METHODS Mice were treated with strychnine to completely eliminate MOC activity and then measured ASSR amplitudes in the presence of contralateral noise. RESULTS The contralateral noise reduces ASSR amplitudes at some stimulus intensity. After treating with the strychnine to eliminate MOC activity, ASSR amplitudes recovered again. CONCLUSIONS MOC activity participated in contralateral suppression of ASSR.
Collapse
Affiliation(s)
- Dongming Yin
- Department of Otolaryngology, Zhongshan Hospital Fudan University, Shanghai, PR China; ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Xiaolei Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liujie Ren
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Youzhou Xie
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Peidong Dai
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China.
| |
Collapse
|
2
|
The purinergic receptors 2X3 on spiral ganglion neurons enhance the medial olivocochlear reflex in mice after long-term moderate noise exposure. Neuroreport 2022; 33:786-790. [PMID: 36367795 DOI: 10.1097/wnr.0000000000001846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our purpose was to study the expression of purinergic receptors 2X2 (P2X2) and purinergic receptors 2X3 (P2X3) in spiral ganglion neurons (SGNs), the afferent nerves of medial olivocochlear (MOC) reflex, after long-term moderate noise exposure, and its relationship with the enhancement of MOC reflex. Mice were exposed a moderate broadband noise for 4 weeks consecutively. Then mouse hearing functions, including threshold auditory brainstem responses, distortion-product otoacoustic emissions, and MOC reflex, were evaluated and the expression of P2X2 and P2X3 on SGNs were assessed by cochlear immunofluorescence. AF-353 was injected before each noise exposure. Four weeks later, mice were also tested for hearing functions and expression of P2X2 and P2X3 on SGNs. The long-term moderate noise strengthened MOC reflex, and AF-353 reduced it in mice and P2X3 expression on SGNs increased after long-term moderate noise exposure, and AF-353 can downregulate it. The P2X3 on SGNs of mice increased after long-term moderate noise exposure, and the upregulation of it mediated the enhancement of MOC reflex.
Collapse
|
3
|
Cederholm JME, Parley KE, Perera CJ, von Jonquieres G, Pinyon JL, Julien JP, Ryugo DK, Ryan AF, Housley GD. Noise-induced hearing loss vulnerability in type III intermediate filament peripherin gene knockout mice. Front Neurol 2022; 13:962227. [PMID: 36226085 PMCID: PMC9549866 DOI: 10.3389/fneur.2022.962227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the post-natal mouse cochlea, type II spiral ganglion neurons (SGNs) innervating the electromotile outer hair cells (OHCs) of the ‘cochlear amplifier' selectively express the type III intermediate filament peripherin gene (Prph). Immunolabeling showed that Prph knockout (KO) mice exhibited disruption of this (outer spiral bundle) afferent innervation, while the radial fiber (type I SGN) innervation of the inner hair cells (~95% of the SGN population) was retained. Functionality of the medial olivocochlear (MOC) efferent innervation of the OHCs was confirmed in the PrphKO, based on suppression of distortion product otoacoustic emissions (DPOAEs) via direct electrical stimulation. However, “contralateral suppression” of the MOC reflex neural circuit, evident as a rapid reduction in cubic DPOAE when noise is presented to the opposite ear in wildtype mice, was substantially disrupted in the PrphKO. Auditory brainstem response (ABR) measurements demonstrated that hearing sensitivity (thresholds and growth-functions) were indistinguishable between wildtype and PrphKO mice. Despite this comparability in sound transduction and strength of the afferent signal to the central auditory pathways, high-intensity, broadband noise exposure (108 dB SPL, 1 h) produced permanent high frequency hearing loss (24–32 kHz) in PrphKO mice but not the wildtype mice, consistent with the attenuated contralateral suppression of the PrphKO. These data support the postulate that auditory neurons expressing Prph contribute to the sensory arm of the otoprotective MOC feedback circuit.
Collapse
Affiliation(s)
- Jennie M. E. Cederholm
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Kristina E. Parley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Chamini J. Perera
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Georg von Jonquieres
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jeremy L. Pinyon
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Laval University, Quebec, QC, Canada
| | - David K. Ryugo
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- Department of Otolaryngology, Head, Neck & Skull Base Surgery, St Vincent's Hospital, Sydney, NSW, Australia
| | - Allen F. Ryan
- Departments of Surgery and Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Administration Medical Center, La Jolla, CA, United States
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
- *Correspondence: Gary D. Housley
| |
Collapse
|
4
|
Lin X, Luo J, Tan J, Yang L, Wang M, Li P. Experimental animal models of drug-induced sensorineural hearing loss: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1393. [PMID: 34733945 PMCID: PMC8506545 DOI: 10.21037/atm-21-2508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/16/2021] [Indexed: 01/19/2023]
Abstract
Objective This narrative review describes experimental animal models of sensorineural hearing loss (SNHL) caused by ototoxic agents. Background SNHL primarily results from damage to the sensory organ within the inner ear or the vestibulocochlear nerve (cranial nerve VIII). The main etiology of SNHL includes genetic diseases, presbycusis, ototoxic agents, infection, and noise exposure. Animal models with functional and anatomic damage to the sensory organ within the inner ear or the vestibulocochlear nerve mimicking the damage seen in humans are employed to explore the mechanism and potential treatment of SNHL. These animal models of SNHL are commonly established using ototoxic agents. Methods A literature search of PubMed, Embase, and Web of Science was performed for research articles on hearing loss and ototoxic agents in animal models of hearing loss. Conclusions Common ototoxic medications such as aminoglycoside antibiotics (AABs) and platinum antitumor drugs are extensively used to induce SNHL in experimental animals. The effect of ototoxic agents in vivo is influenced by the chemical mechanisms of the ototoxic agents, the species of animal, routes of administration of the ototoxic agents, and the dosage of ototoxic agents. Animal models of drug-induced SNHL contribute to understanding the hearing mechanism and reveal the function of different parts of the auditory system in humans.
Collapse
Affiliation(s)
- Xuexin Lin
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia Luo
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingqian Tan
- Department of Otolaryngology Head and Neck Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Luoying Yang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mitian Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University Yuedong Hospital, Meizhou, China
| | - Peng Li
- Department of Otolaryngology Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Wang X, Mao X, Liang K, Chen X, Yue B, Yang Y. RIP3-mediated necroptosis was essential for spiral ganglion neuron damage. Neurosci Lett 2021; 744:135565. [PMID: 33359086 DOI: 10.1016/j.neulet.2020.135565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
To identify the role of RIP3 in ouabain-induced necroptosis and offer clinical implications to prevent spiral ganglion neurons (SGNs) from death, ouabain was applied in SGNs derived from fetal rats and injected into Sprague-Dawley rats to construct injury model in vitro and in vivo, respectively. The necroptosis rate of SGNs was determined by flow cytometry and MTT assays. The protein levels and phosphorylation of RIP3 were evaluated using western blotting and immunofluorescence. SGNs injury was observed using H&E staining and immunofluorescence. The hearing function of rats was evaluated by the auditory brainstem response (ABR) and Distortion Product Otoacoustic Emissions (DPOAE) methods. Ouabain caused dose-dependent necroptosis in SGNs and significant loss of SGNs of the cochlear axis in vivo. RIP3 and pRIP3 were upregulated with SGNs injury promoted, and RIP3 overexpression promoted ouabain-induced necroptosis in SGNs in vitro, which could be suppressed by necrostatin-1. RIP3 knockdown inhibited ouabain-induced necroptosis and reduced the phosphorylation of MLKL but no RIP3-dependent effect on the level of MLKL. RIP3 inhibition in vivo protected rats from ouabain-induced hearing damage with reducing ABR threshold shifts and promoting DPOAE amplitudes, while overexpression of RIP3 enhanced ouabain-induced injury that could be partially reversed by necrostatin-1. A decrease of SGNs density and an upregulation of pRIP3 were observed with RIP3 overexpression, which was in contrast when RIP3 was silenced. Therefore, RIP3 was essential for mediating necroptosis in ouabain-induced SGNs damage. Targeting RIP3 may prevent SGNs from death in clinical practice, and finally help the treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Xi Wang
- Department of Otorhinolaryngology-Head and Neck Surgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xiaobo Mao
- Department of Otorhinolaryngology-Head and Neck Surgery, The 928th Hospital of PLA Joint Logistics Support Force, Haikou 571159, Hainan Province, China
| | - Kun Liang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiaodong Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China
| | - Bo Yue
- Department of Otorhinolaryngology-Head and Neck Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| | - Yang Yang
- Department of Plastic Surgery, Xijing Hospital, Air Force Medical University, Xi'an 710032, Shaanxi Province, China.
| |
Collapse
|
6
|
Cochlear homeostasis: a molecular physiological perspective on maintenance of sound transduction and auditory neurotransmission with noise and ageing. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Yin D, Ren L, Li J, Shi Y, Duan Y, Xie Y, Zhang T, Dai P. Long-term moderate noise exposure enhances the medial olivocochlear reflex. Auris Nasus Larynx 2020; 47:769-777. [PMID: 32404262 DOI: 10.1016/j.anl.2020.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effects of long-term moderate noise on hearing functions, MOCR, and MEMR. METHODS Mice were exposed to the moderate noise (11.2 - 22.4 kHz, 80 dB SPL, 6 h/day, 4 weeks). Subsequently, the hearing functions, including threshold and input-output roles of ABR (auditory brainstem response) and cubic (2f1-f2) DPOAEs (distortion product otoacoustic emissions) were evaluated. Also, MEMR and MOCR were assessed shortly after or at four weeks following the termination of exposure to the noise. RESULTS The mice's acoustic suppression reflex was strengthened, hearing functions and MEMR were unaffected four weeks after the moderate noise. For primary tones of 16, 20 and 24 kHz, the strengths of contralateral and ipsilateral suppression in the noise group were about double those recorded in the control group. In order to further determine whether the functional changes of the afferent or efferent nerves increased the strengths of acoustic suppression, the mouse's left ear was inserted the earplug, and then exposed the moderate noise for four weeks. The strengths of contralateral suppression at 16, 20 and 24 kHz were increased for the noise + earplug than for the control group and were indistinguishable between the noise + earplug and the noise group. While no significant changes were found in the strengths of ipsilateral suppression at all frequencies for the noise + earplug group compared with the control group. Under ketamine/xylazine anesthesia, the broadband suppressor noise did not stimulate the MEMR by 20 min post-induction at all frequencies in three groups. CONCLUSION Our data demonstrated that the long-term moderate noise-exposure strengthened mice's MOCR by changing its afferent nerves, and unaffected cochlear hair cells and type I spiral ganglion neurons.
Collapse
Affiliation(s)
- Dongming Yin
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Liujie Ren
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Jieying Li
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Yuxuan Shi
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Yashan Duan
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China
| | - Youzhou Xie
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Tianyu Zhang
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China; Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China
| | - Peidong Dai
- ENT Institute, Eye & ENT Hospital of Fudan University, Fenyang Road 83, Shanghai 200031, PR China; NHC Hearing Medicine Key Laboratory (Fudan University), Shanghai, PR China.
| |
Collapse
|